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Abstract

Non-Gaussian shocks can identify causal effects in structural VARs, but ex-

isting approaches face both conceptual and computational challenges. Concep-

tually, shocks are only identified up to sign and permutation, requiring careful

normalization. Computationally, standard algorithms scale poorly, limiting ap-

plications to small models. We develop a Bayesian framework that resolves both

issues and enables estimation in high-dimensional settings. Our approach uni-

fies common departures from Gaussianity − such as heavy tails and stochastic

volatility − and accommodates external instruments to sharpen identification.

This expands the scope of non-Gaussian SVARs to the large-scale models in-

creasingly used in economics.
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1 Introduction

Since at least Tinbergen (1939), economists have understood that economic outcomes

reflect both endogenous responses to economic conditions and unexpected changes–

shocks. Identifying these shocks and measuring their effects remains a central chal-

lenge. In standard linear time series models, including vector autoregressions (VARs)

(Sims, 1980), many different identification assumptions yield the same first and sec-

ond moments for observables. Thus, Gaussianity offers no additional identifying in-

formation in such settings. To address this, researchers have turned to non-Gaussian

models, including those with stochastic volatility (e.g., Rigobon, 2003; Lewis, 2021)

and t-distributed shocks (e.g., Brunnermeier et al., 2021). Both settings enable iden-

tification of structural shocks − though only up to sign and permutation.

Despite these advances, two key problems remain. First, existing approaches to

statistical identification typically rely on algorithms such as the Metropolis-Hastings

algorithm, which scale poorly with model size. This limits the number of observables

that can be included. Second, the normalization problem − identification only up

to sign and permutation − can lead to misleading posterior distributions if left unre-

solved (Hamilton et al., 2007). Existing solutions (Jarociński, 2024; Lanne et al., 2017;

Gouriéroux et al., 2020) either do not scale or still yield clearly multimodal posteriors,

as we show in Section 3.

This paper contributes three solutions. First, we develop a fast, scalable Gibbs

sampler for non-Gaussian structural VARs that accommodates general forms of non-

Gaussianity, including t-distributed shocks and stochastic volatility. Second, we pro-

pose a new normalization algorithm that handles the sign and permutation indetermi-

nacy by extending the likelihood-preserving approach of Waggoner and Zha (2003b).

Importantly, our normalization algorithm works well in large systems. Third, we al-

low for additional identification restrictions, including zero restrictions, to incorporate

information from external instruments (Plagborg-Møller and Wolf, 2021).

Our focus is Bayesian inference, which is common in VARs due to the regularization

enabled by informative priors (Bańbura et al., 2010; Chan, 2020). Maximum likelihood

methods are impractical in large systems, and full-information frequentist approaches

are rarely used. That said, our normalization algorithm can support GMM-type es-

timation (Lanne and Luoto, 2021; Lanne et al., 2017; Keweloh, 2021), especially in

combination with bootstrap methods that require many function evaluations. Method-

ologically, our approach extends the Gibbs sampling framework of Waggoner and Zha
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(2003a) from Gaussian to non-Gaussian settings.1

Our paper relates to a broader literature on non-Gaussian SVARs and hybrid

identification strategies. For example, Braun (2023) and Herwartz (2018) apply non-

parametric methods, while Drautzburg and Wright (2023) combine moment restric-

tions with sign restrictions to rule out dependent shocks. Like those papers, we assume

shocks are independent, which is sufficient for identification.2 Andrade et al. (2023) use

flexible moment restrictions alongside standard sign restrictions. Our assumption of

t-distributed shocks delivers direct estimates of the degrees of freedom, which measure

deviations from Gaussianity. This parametric approach is more parsimonious than

non-parametric methods, but more vulnerable to misspecification. To address this, we

provide Monte Carlo evidence that our method remains accurate even when the true

shocks are not t-distributed. That will also be our specification in the application that

follows.

Our work also connects to the literature on identification via stochastic volatility

(e.g., Carriero et al., 2021; Lanne et al., 2010; Lewis, 2021). Recent work on Gibbs

samplers for such models includes Chan et al. (2024) and Wu and Koop (2023). What

distinguishes our method is its generality: we accommodate multiple sources of non-

Gaussianity, allow additional identifying restrictions, and offer a new normalization

algorithm that works even in large models.

In our applications, we focus on t-distributed shocks because they have recently

become popular in structural VARs both as an identification device and as a way

to model fat tails (Cúrdia et al., 2014; Chiu et al., 2017) and thus improve forecast-

ing performance. Key papers that rely on t-distributions include Lanne and Luoto

(2020) and Anttonen et al. (2024). In forecasting, researchers often assume indepen-

dent t-distributed shocks with a recursive ordering, which allows equation-by-equation

estimation even in large VARs (Clark and Ravazzolo, 2015; Chiu et al., 2017; Chan,

2020).3 But recursive orderings impose strong and often unrealistic timing restric-

tions, making them often less useful for structural analysis. Our paper also relates to

an important recent contribution by Jarociński (2024), who identified monetary policy

shocks in the US using t-distributed shocks.

1The Gibbs sampler is more efficient than the Metropolis-Hastings algorithm, which has been used
in smaller structural VARs (Baumeister and Hamilton, 2015).

2For alternatives to independence that still allow for identification, see Mesters and Zwiernik
(2024).

3Alternatively, one can introduce as many Gaussian shocks as observables, yielding a factor struc-
ture in forecast errors (Prüser, 2024).
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To illustrate our method, we revisit one of the fundamental questions in macroe-

conomics: Which shocks account for the bulk of business cycle fluctuations? In a key

contribution, Angeletos et al. (2020) provide a contemporary answer.4 They use struc-

tural vector autoregressions (SVARs) to identify a shock that maximizes fluctuations

in key measures of U.S. real activity. Specifically, they use a variant of the “max-

share” approach of Uhlig (2004), which identifies a shock that maximizes the share of

the forecast error variance for a given variable. However, this identification scheme

delivers an estimated shock series that can be a linear combination of multiple under-

lying structural shocks. Wolf (2020) refers to this phenomenon as the “masquerading

problem” in sign-restricted VAR settings, and Francis and Kindberg-Hanlon (2022)

show that this issue can also arise with the max-share identification scheme.5 Dou

et al. (2025) formalize this concern, deriving necessary and sufficient conditions under

which max-share identifies the correct shock. These conditions are typically strong,

including, for example, orthogonal impulse response functions.

We take a different approach. Using the same data as Angeletos et al. (2020), we

assume the data are non-Gaussian – specifically, that structural shocks follow indepen-

dent t-distributions. This ensures full identification of the SVAR parameters (Comon,

1994), up to sign and column permutations, which our normalization resolves.6 We

then compute forecast variance decompositions across horizons to assess which shocks

explain most of GDP fluctuations. Crucially, non-Gaussianity is a testable assumption:

the estimated degrees of freedom measure its strength. A model with higher degrees

of freedom is closer to Gaussian, weakening identification and widening posterior in-

tervals.7 This logic also applies to stochastic volatility: We can compare Gaussian and

non-Gaussian specifications using the marginal likelihood, providing a natural measure

of identification strength.

In our application, we uncover a shock whose impulse response resembles the “main

business cycle shock” of Angeletos et al. (2020), yet it does not account for most of

the variation in GDP. Still, it is one of the two most important shocks. The other,

more influential at longer horizons, moves total factor productivity and resembles

a traditional supply shock, in line with real business cycle (RBC) theory (Kydland

4For an alternative approach focusing on the cyclical component of the data, see Bianchi et al.
(2023).

5Angeletos et al. (2020) acknowledge this and refer to their identified shock as a “reduced-form”
shock. Unless one adopts strong assumptions about which shocks truly drive the data, this leaves the
door open to the masquerading problem.

6If only some shocks are non-Gaussian, those remain identified (Maxand, 2020).
7For a frequentist alternative that allows for weak identification, see Hoesch et al. (2024).
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and Prescott, 1982). This finding is consistent with previous work by Forni et al.

(forthcoming).

The paper is structured as follows: Section 2 presents details of our VAR model,

while Section 3 reports the results on Monte Carlo simulations assessing our method-

ology. Section 4 presents our results on US GDP. Section 5 concludes.

2 Our Approach

In this section, we describe a class of time series models that is general enough to en-

compass all common approaches to exploit statistical properties of the data to identify

structural shocks and their effects. We then present our proposed reparametrization

of the matrix that governs the initial impact of these shocks, explain how it yields a

Gibbs sampler, and then detail our approach to normalization to address the model’s

identification issues due to sign and permutation switches of the impact responses.

We refer to Appendix E of the Online Appendix for a full description of the posterior

sampling procedure, and to Appendices B-C-D for the technical derivations.

2.1 The Model

We study models of the form

yt = c+

p∑
l=1

Πlyt−l +BD
1
2
t et, (1)

et ∼ N(0, I).

The k× 1 vector yt collects the k endogenous variables of the model, whose evolution

depends on the k×1 vector of constants c as well as p lags of the endogenous variables.

The k×m matrix Π = [c,Π1, ..,Πp] contains the constant terms and the autoregressive

parameters, with m = 1 + kp.

We will refer to ϕ = vec(Π) as the vector that stacks the columns of Π vertically.

Dt is a diagonal matrix that contains the variances of the structural shocks on the

main diagonal, Dt = diag(d1t, .., dit, .., dkt).
8 The entries {Dt}Tt=1, which are combined

into the kT × kT block diagonal matrix D = diag(D1, .., Dt, .., DT ), are treated as

8Because Dt is a diagonal matrix with variances on the main diagonal, all elements of Dt are
positive and the matrix square root is unique.
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unknown parameters. Conditioning on D, model (1) is Gaussian. It is exactly the

time-varying nature of the elements of Dt that allows identification of the impact

matrix B and the associated structural shocks up to sign and permutation. The exact

conditions for identification depend on the specifics of D, but if all but one element

of Dt are time-varying and the paths of volatility (i.e. the elements of Dt) are not

proportional to each other over time, identification obtains (see Lewis, 2021; Bertsche

and Braun, 2022 for the case of general stochastic volatility, Maxand, 2020 for the case

of non-Gaussian shocks with constant variance, and Lewis, 2024 for a comparison).

At this point, we do not need to choose one specific law of motion for Dt, but

it is useful to highlight (Geweke, 1993) that if we make the elements of Dt follow

independent inverse gamma distributions with a choice of parameters we discuss below,

the model is isomorphic to a model with t-distributed independent structural shocks

(i.e. each element of D
1
2
t et then follows an independent t distribution). However, we

want to emphasize that the mixture representation of the error component in (1) is

very flexible - for a general approximation theorem of non-Gaussian densities by a

mixture of Normal distributions, see, for example, Goodfellow et al. (2016). Braun

(2023) builds a Gibbs sampler for such a specification. On the other hand, more general

persistent processes for the elements of Dt, e.g. smooth transition models (Lütkepohl

and Netsunajev, 2017), Markov switching models (Lanne et al., 2010; Lütkepohl and

Wozniak, 2020), models with known volatility regimes (Rigobon, 2003), or models with

autoregressive stochastic volatility of various forms (Normandin and Phaneuf, 2004;

Lütkepohl and Netsŭnajev, 2017; Bertsche and Braun, 2022), are also nested in our

class of models.

More broadly, our requirement for the law of motion for Dt is that (i) a Gibbs

sampler is available for inference for this part of the model so that estimation is fast,

and (ii) it delivers identification of B up to sign and permutation. Before we go

on, two points are worth mentioning: In the case of Dt = I; ∀t, we return to the

standard Gaussian model with constant variances where the statistical properties of

the data do not suffice to identify the impact of shocks B. As such, one natural way

to test the strength of identification is to compare the fit of a Gaussian model versus

the non-Gaussian alternative of choice, for example via the computation of marginal

likelihoods, for which many algorithms are available. Second, since our framework

is agnostic and can accommodate a large set of different modeling choices for D, it

provides a natural laboratory to compare these different identification schemes.

Our approach exploits a Gibbs sampler, meaning that we need to characterize the
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posterior distribution of a given set of parameters conditional on not only the data

but also all other parameters. We first focus here on the parts of the Gibbs sampler

that are novel, in particular the drawing of the B matrix. For completeness, we also

describe below how we draw D and associated parameters for the case where structural

shocks follow a t-distribution, which is the specification we use in our application.

2.2 Prior Distributions

We define p(ϕ, B,v) as the joint prior distribution for the parameters of model (1). v

denotes parameters that govern the Dt process. In our application, we follow Geweke

(1993) and study a model with t-distributed errors, which leads to an inverse Gamma

prior on the latent variables dit parametrized as

p(dit|hi, ri) =
rhi
i

Γ(hi)
· d−hi−1

it e
−ri· 1

dit , (2a)

hi =
vi
2
, (2b)

ri =
vi − 2

2
. (2c)

dit is a-priori independent across (i, t) and a-priori independent of (ϕ, B). In employing

this approach, we follow a large literature on univariate and multivariate models; see,

for instance, Clark and Ravazzolo (2015), Chiu et al. (2017), Karlsson and Mazur

(2020) and Karlsson et al. (2023). In this setting, vi represents the degrees of freedom

of shock i, where we define v = (v1, .., vi, .., vk). We set the scale parameters of the

t-distribution to normalize the variance of the structural shocks to unity and assume

vi > 2, ∀ i.
More broadly, we work with the following decomposition of the joint prior distri-

bution:

p(ϕ, B,v, D) = p(ϕ, B,v) · p(D|v), (3)

= p(ϕ) · p(B) · p(v) · p(D|v) (4)

Furthermore, in the application with t-distributed shocks, we also have that

p(D|v) =
T∏
t=1

k∏
i=1

p(dit|vi). (5)
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This decomposition relies on the variances dit being i.i.d. in that setting. Instead,

stochastic volatility specifications common in the literature assume persistence, but

still imply a prior distribution p(D|v). The prior p(dit|vi) in our application is the

inverse Gamma prior described in equation (2). We work with a Normal prior for

ϕ, which nests priors already used for large VARs (Bańbura et al., 2010), but our

method can be extended to other priors specifically derived for large VARs with many

observables (Chan, 2022). We use a flat, improper prior on B, and discuss alternative

possible priors in the next section. Lastly, our method works with a wide range of

candidate priors for v. In our simulations and application we use a truncated Normal

prior with a large upper bound so that our prior allows for shocks that are basically

indistinguishable from Gaussian shocks.

2.3 Posterior Sampling

We want to explore the joint posterior distribution of model (1) via a Gibbs sampler.

This, in turn, requires deriving the conditional posterior distributions of each of the

parameters of the model. The literature already knows how to conveniently draw

from some of these distributions. It is straightforward to show that p(ϕ|Y,B,D,v)
is a Normal distribution. p(D|Y,ϕ, B,v) and p(v|Y,ϕ, B,D), the conditional poste-

rior distributions of the structural shock variances and the parameters governing the

evolution of those variances, depend on how exactly non-Gaussianity is modeled. For

the case with t-distributed errors, Geweke (1993) shows that p(D|Y,ϕ, B,v) is an in-

verse Gamma distribution. These results have been extensively used in the literature;

see, for instance, Chiu et al. (2017), Lanne and Luoto (2020) and Anttonen et al.

(2024). We show below how to draw from the distribution of the degrees of freedom

p(v|Y,ϕ, B,D) in that case using a Gibbs sampler.

For a Gibbs sampler to be feasible for this model, it remains to derive a convenient

way of sampling from the conditional distribution of B, which encodes the impact

effects of structural shocks on the observables:

p(B|Y,ϕ, D,v). (6)

Developing a convenient way of sampling from p(B|Y,ϕ, D,v) has so far proved

challenging. Following Cogley and Sargent (2005), many papers in the literature

parametrize the model using

A = B−1, (7)
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and achieve a computationally convenient sampling procedure for p(B|Y,ϕ, D,v) that
is feasible under the assumption that A (and hence B) is triangular (Clark and Ravaz-

zolo, 2015, Chiu et al., 2017, Karlsson and Mazur, 2020 and Karlsson et al., 2023).

However, since the shocks of the model are independent and non-Gaussian, all ele-

ments in A and B are identified, and the triangular restrictions on (A,B) become

over-identifying. So far, the literature that introduces no zero restrictions on (A,B)

has resorted to simulation-based methods, employing a Metropolis-Hastings step on

p(B|Y,ϕ,v, D) (as in Lanne and Luoto, 2020, Brunnermeier et al., 2021), or em-

ploying a more involved MCMC procedure on the full joint posterior distribution

p(ϕ, B,v, D|Y ) (Anttonen et al., 2024). One of our contributions is to develop a way

of drawing from the conditional posterior distributions (6) and (10) using only distri-

butions of common form. This means that no Metropolis-Hastings step is required,

which makes the analysis computationally much less demanding.

The core insight for how to sample from (6) hinges on a new reparametrization,

which, to our knowledge, has not been used in Bayesian econometrics. Although our

benchmark approach sets a flat prior to B, here we parameterize A instead, introducing

the decomposition

A = ΛLU, (8)

where Λ is a diagonal k×k matrix with entries λi, and L and U are lower- and upper-

triangular k × k matrices, respectively, both restricted to have ones on their main

diagonals. We assume λi ̸= 0 for all i, which is a necessary and sufficient condition for

(8) to exist and be unique.9

The choice between using the A or B parametrization is inconsequential for our

method: the Jacobian of the inverse mapping is straightforward to derive, so one could

also impose a flat prior directly on A, which we do in the Online Appendix (instead,

our applications and simulations in the main text impose a flat prior on B, taking into

account the Jacobian of the mapping from A to B). Our decomposition is related to,

but distinct from, the standard LDU decomposition. One can derive it in two steps:

first, apply a LU decomposition to A, then decompose the resulting L into the product

of a diagonal matrix and a lower triangular matrix with unit diagonal entries. Thus,

the existence and uniqueness conditions match those of the LU decomposition. Hence,

essentially (8) does not have restrictions other than the non-singularity of B (or A).10

9Under this reparametrization, B = U−1 L−1 Λ−1.
10The LU decomposition can be computed for any invertible matrix A, though it may require

permuting its rows. In our structural VAR, this amounts to nothing more than changing the order
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As a consequence, we can think of (8) much like other reparameterizations employed

in the SVAR literature.11

As is well known (see, for example, Brunnermeier et al., 2021), the determinant of

A enters the likelihood function, complicating posterior derivation unless additional

assumptions are imposed (see, e.g., Kociȩcki et al., 2012; Arias et al., 2018). However,

our
(
Λ, L, U

)
reparametrization in (8) conveniently yields

|det(A)| =
k∏

i=1

|λi|, (9)

i.e., the determinant depends only on the diagonal entries of Λ (because L and U

both have ones on their main diagonals). Moreover, |det(A)| depends on Λ in a way

that resembles the kernel of a Gamma distribution. These two properties make a

Gibbs sampler feasible, because they imply a Gamma conditional posterior for Λ and

a Normal conditional posterior for both L and U . In summary, by drawing L,U and

Λ separately, we can derive a Gibbs sampler for A (or B). Details of those posterior

distributions can be found in the Online Appendix.

One key fundamental issue that remains with regard to B or A is that the likelihood

function has many peaks that correspond to impact matrices that have the same

economic interpretation, but differ in the sign and ordering of their columns. We

tackle that normalization problem below. Our Gibbs sampler requires a flat prior on

either B or A. In a non-Gaussian framework, B and A are identified (up to sign and

column permutations, addressed in the next section), so the exact form of the prior

is less critical than in the Gaussian case, where it encodes the necessary identification

restrictions (Baumeister and Hamilton, 2015; Arias et al., 2019; Inoue and Kilian,

2020). Nonetheless, in Section 2.5 we show how to move away from uniform priors to

incorporate additional information for identification.

To complete our Gibbs procedure for the case with t-distributed shocks, we must

also show that the conditional posterior for the degrees of freedom has a tractable

form:

p(v|Y,ϕ, B,D). (10)

of the equations.
11For example, Arias et al. (2018) apply sign restrictions by setting A = Qh(Σ), where Σ is the

reduced-form covariance matrix of a Gaussian VAR, h(·) is a unique decomposition, and Q is an
orthogonal matrix. In contrast, Wu and Koop (2023) use the eigenvalue-eigenvector decomposition
of Σ to simplify sampling in large-scale VAR models.
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We accomplish this via a Griddy-Gibbs sampler (Ritter and Tanner, 1992), which

discretizes v. In our simulations and empirical application, we let v range over a

fine grid between 3 and 60, specifying a truncated Normal prior over this interval.12

Further details appear in the Online Appendix.

2.4 Identification up to Sign and Permutations of the Shocks

Because the model features independent non-Gaussian shocks, theoretical restrictions

are not needed for statistical identification. However, as Lanne et al. (2017) show,

identification holds only up to the sign and permutation of the columns of B (or

equivalently, the rows of A). Accounting for this indeterminacy can pose computa-

tional challenges: For any k × k matrix B, there are k! · 2k alternative matrices that

differ solely by column sign or permutation. Although these differences are econom-

ically meaningless, they must be managed in the sampler to avoid mixing shocks of

different types, multimodality of posterior distributions (Hamilton et al., 2007), and

slow convergence of the posterior sampler. We first show this issue in an example

before turning to our solution.

2.4.1 An Illustration

To highlight the need for normalization, we focus on a numerical example where the

non-Gaussianity comes from t-distributed structural shocks. Details and derivations

for this example can be found in Appendix A of the Online Appendix.

Consider the following bivariate data generating process:(
y1t

y2t

)
=

(
b11 b12

b21 b22

)(
ϵ1t

ϵ2t

)
, (11)

where ϵt = (ϵ1t, ϵ2t) are independently t-distributed structural shocks with common

degrees of freedom v. We normalize the variance of these shocks to 1, which means

that we assume the variance is finite. Furthermore, for this example, we find it useful

to illustrate identification by computing fourth-order moments, so we assume v = 6

12In principle, we could set the lower bound to 2, which is a bound we need to impose because
we want to study the response to a one standard deviation shock. However, when doing so, we
encountered the problems identified by Fernandez and Steel (1999). As shown by their Theorem 5,
when v approaches 2, since the scale parameter of the t-distribution, defined in Online Appendix
B, tends to zero in such a case, the t-Student likelihood function can become arbitrarily large and
ultimately lead to an improper posterior.
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in this numerical example. Model (11) can be rewritten as

yt = BcQϵt, (12)

where we define Σ = BB′ as the covariance matrix of yt, Bc the Cholesky decompo-

sition of Σ, and Q = B−1
c B an orthogonal matrix so that QQ′ = I. Finally, we define

the individual elements of B as B =

(
b11 b12

b21 b11

)
. Our goal is to identify (B,v), or

equivalently, (Bc, Q,v). We reparametrize the model and set

Q = Q(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, (13)

a Givens rotation that produces an orthogonal matrix with det
(
Q(θ)

)
= 1. This

assumption is standard in the literature (Canova and De Nicoló, 2002) and loses no

generality aside from fixing the determinant (a restriction that we will come back

to in the following), meaning that the number of modes of the likelihood function

is cut in half. We treat Bc as known (since Bc is identified by second moments

alone). We also assume that the degrees of freedom are known for now (but study

the identification of those parameters in Appendix A). We fix numerical values for

all parameters and assess how the fourth moments of the data vary as we vary the

parameters. Checking whether these fourth moments identify the model parameters

amounts to asking if more than one value of θ implies the same fourth moments. We

compute fourth moments in this section to assess identification, but the parameter

values where implied fourth moments are equal to the true population moments are

exactly those parameter values associated with peaks of the likelihood function, so

in this specific example this approach is without loss of generality. By construction,

any θ is consistent with the second moments alone, and because we study symmetric

distributions, all third moments are zero.

Each panel in Figure 1 shows the fourth moments for this model evaluated on a grid

of θ. The moments are shown in percentage deviation from the true moments. Panel A)

reports the case of Gaussianity. In that case, the moments are constant in θ, showing

that fourth moments do not provide any information when the model is Gaussian.

Since the likelihood function of the model under Gaussianity is uniquely pinned down

by the first and second moments, higher moments provide no additional information.

With t-distributed errors instead, we see that there are 4 distinct parameter values
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that give the true fourth moments.13 As we confirm in Appendix A, the B matrices

implied by those values of θ only differ in signs and order of columns, highlighting the

need for normalization.

Figure 1: Illustrative example

0 /2 1.5 2 
-60

-40
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0

0 /2 1.5 2 
-50
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50

100

Note: Fourth moments for numerical example. Details can be found in Appendix A

2.4.2 Our Normalization

In light of this issue, a second methodological contribution of our paper is a new,

computationally efficient way to handle sign and permutation indeterminacies in VARs

with non-Gaussian shocks.14 We first compute a matrix B̂ that approximates one of the

13There are actually 8 peaks of the likelihood function, but our use of Givens rotation matrices
in this example rules out 4 of those because the rotation matrix Q in those cases has a determinant
of −1, which is ruled out by Givens rotation matrices. This issue does not arise in our estimation
algorithm since we do not use Givens rotations there.

14A researcher can use a normalization strategy to remove this multiplicity during the sampling
process, as we do, or sample the full unnormalized posterior. In the latter case, a normalization routine
such as the one proposed in this paper will have to be applied ex post to be able to interpret results.
We focus here on normalization issues related to the matrix B - depending on the choice of model
for the volatility matrix Dt, researchers might need to solve additional, well known, normalization
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model’s modes, which serves as a target in the Gibbs sampler. For example, B̂ could

be the maximum-likelihood estimator of B.15 Then let Ps be a signed permutation

matrix of dimension k × k, with nonzero elements equal to either 1 or −1. In each

sampler iteration, we draw (Λ, L, U), thus obtaining A and B. We store BPs, where

Ps solves

min
Ps

∆; where ∆ = trace
[(
BPs − B̂

)′(
B̂B̂′)−1(

BPs − B̂
)]
. (14)

In other words, we choose the signed permutation matrix Ps that minimizes the

weighted distance between BPs and the target B̂. As shown in Appendix D of the

Online Appendix, minimizing ∆ generalizes the Likelihood Preserving (LP) normal-

ization of Waggoner and Zha (2003b) − originally designed for Gaussian SVARs − to

non-Gaussian SVARs (including t-distributions). We therefore refer to this approach

as generalized LP normalization. The most important feature of our approach is com-

putational. Naively, one might compute the distance (14) for all k! · 2k possible signed

permutation matrices in each Gibbs iteration, which is an infeasible option even for

moderate k. Instead, as we discuss in Appendix D of the Online Appendix, we can

show that the minimization problem from (14) amounts to solving

min
P

tr{P · −|B̂−1B|}, (15)

where P denotes the usual permutation matrix, tr signifies ’trace’, and |B̂−1B| means

absolute values for all entries in B̂−1B matrix (taken element-wise). Being able to

rewrite (14) as (15) is a crucial advantage because it rewrites the key minimization

problem as a linear assignment problem, for which the literature on combinatorial

optimization has already derived solutions. In particular, the Online Appendix shows

issues in the estimation of that block when considering discrete regime shifts in variances governed
by a Markov chain, which can lead to a label switching problem.

15One approach is to estimate B̂ by running the MLE procedure by Lanne et al. (2017) before
starting the sampler. This approach works efficiently in small- and medium-scale models. For larger
models, an alternative is to apply no normalization in the burn-in part of the Gibbs sampler, and set
B̂ equal to the value of B associated with the highest value of the posterior among burn-in draws.
The remainder of the paper considers both approaches. In practice, we use either of the described
approaches to obtain an initial estimate B̃, and then compute B̂ as the sign and column permuted
version of that initial estimate that minimizes the distance (measured as we discuss below) from the
identity matrix. This last step is not necessary for our algorithm (nor does it change the properties
of our algorithm), but makes comparison between specifications easier because the target B̂ is always
chosen to be as close as possible to the identity matrix within the set of sign and column permuted
versions of the initial estimate.
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how to apply the Hungarian algorithm from combinatorial optimization to solve (15)

and transforming the optimal P into the optimal Ps. Importantly, all these operations

can be executed at negligible computational cost – even for large models.

Our method also differs from other approaches to identification up to sign and per-

mutation in non-Gaussian SVARs. Compared to Lanne et al. (2017) and Gouriéroux

et al. (2020), our method reduces the risk of mode-switching by explicitly targeting a

single mode B̂. Relative to Brunnermeier et al. (2021), we avoid imposing an infor-

mative prior on A, letting the likelihood’s shape provide identification. Finally, unlike

Jarociński (2024), we do not evaluate a target function for each of the k! · 2k permu-

tations every Gibbs iteration. This makes our approach tractable for large systems.

For example, on a standard laptop, we can solve the minimization problem for a 20-

variable VAR in 0.0001 seconds (during each Gibbs iteration). Evaluating the target

function for each permutation for such a large model would require 20! ·220 ≈ 2.5 ·1024

functions evaluations. See Section 3 for a comparison of alternative normalization

procedures in simulation, and the Online Appendix for details and additional speed

comparisons.

Although our approach is new to the VAR literature, it has some precedents. The

distance measure used in our generalized LP normalization is closely related to the

minimum distance index (MDI) proposed by Ilmonen et al. (2010). In fact, when

structural shocks have normalized variances, the MDI and the distance measure for

our generalized LP normalization become essentially equivalent. However, their in-

tended use differs. The MDI was designed to evaluate the performance of independent

component analysis (ICA) methods relative to the true model, where the main ob-

ject of interest is the value of the distance itself. By contrast, we use the distance to

implement a normalization procedure, not to evaluate estimator quality. The MDI is

the standard benchmark for comparing ICA algorithms, as discussed in Matteson and

Tsay (2017) and Moneta and Pallante (2022).

Because their goal is different from ours, the algorithm of Ilmonen et al. (2010)

does not yield the signed permutation matrix that minimizes the distance, which is

essential for our purposes. Their motivation for the MDI was to construct a distance

metric that is invariant to scaling, sign changes, and permutations of the mixing ma-

trix (corresponding to our B matrix if variances are not normalized). In contrast, our

distance measure is directly derived from the LP normalization. Interestingly, Ilmo-

nen et al. (2010) also recognized that minimizing the MDI leads to a linear assignment

problem, and proposed the Hungarian algorithm to solve it, as we do. This algorithm
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also appears in related ICA work on matching signal components across time win-

dows, see Tichavsky and Koldovsky (2004), and in the popular LiNGAM algorithm of

Shimizu et al. (2006). Risk et al. (2014) also rely on both the MDI and the algorithm of

Tichavsky and Koldovsky (2004), and thus extensively use the Hungarian algorithm.

In the statistics literature, the Hungarian algorithm has been used in addressing the

label switching problem in finite mixture models. Stephens (2000) observed its po-

tential to improve MCMC-based algorithms but did not pursue it further. Cron and

West (2011) were the first to explicitly apply the Hungarian algorithm in that context,

demonstrating its scalability for models with many components. See also Lin et al.

(2013, 2016) for applications in hierarchical and classification mixture models.

Finally, the normalization procedure we develop here is not limited to our Bayesian

framework. It can be applied with other priors on the impact matrix, or in frequentist

contexts such as GMM estimation of non-Gaussian SVARs (Lanne et al., 2017; Lanne

and Luoto, 2021; Keweloh, 2021).

2.5 Adding Identification Restrictions

We now show how to incorporate linear identification restrictions into our model.

Strictly speaking, identifying restrictions are not needed in a non-Gaussian model, and

introduce overidentification. However, identifying restrictions can still help inference,

especially when the sample size is relatively small.

We focus on restrictions placed on A, which makes it straightforward to include

instrument-based restrictions of the type proposed by Plagborg-Møller andWolf (2021).

More generally, any zero restriction – such as requiring A or B to be lower triangular –

can be accommodated within our framework. To keep the conditional posterior distri-

bution tractable, we only impose restrictions that operate on one row of A at a time.

However, restrictions can be stacked and imposed jointly. In practice, we implement

these restrictions when sampling U , one of the matrices in the decomposition of A.

One prototypical restriction is given by:

zAs = zΛLUs = r, (16)

where z is a 1× k vector of known constants, s is a k × 1 vector of known constants,

and r is a known scalar. Then all j linear restrictions imposed on the i−th row of A

may be written:
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ziA[s1s2...sj] = ziΛLU [s1s2...sj] = [r1r2...rj], (17)

where zi = [0...0 1 0...0], a vector of zeros except for a unit value in the i−th entry.

Vectorizing this equation gives

([s1s2...sj]
′ ⊗ ziΛL)vec(U) = vec([r1r2...rj]). (18)

If the restrictions involve more than one row in A then we can just stack them one

after another to get:

Rlr · vec(U) = rlr, (19)

where Rlr is a function of Λ, L. U in our algorithm is unit upper triangular. To be

consistent with this assumption, we explicitly model these additional restrictions:

Rup · vec(U) = rup, (20)

where Rup is not a function of Λ, L.

We next stack all restrictions to arrive at:[
Rlr

Rup

]
︸ ︷︷ ︸

R

vec(U) =

[
rlr

rup

]
︸ ︷︷ ︸

r

(21)

Since vec(U) in our algorithm is conditionally multivariate Gaussian and we are im-

posing linear restrictions (R · vec(U) = r) on a Gaussian random vector, which is a

well-studied problem in probability theory − the resulting constrained distribution is

still Gaussian (see Cong et al., 2017, and the references therein), and as such can be

embedded in a computationally straightforward way in our Gibbs sampler.

3 Validation Using Simulated Data

We illustrate our methodology using a simulation based on a bivariate VAR(6) without

a constant, where the structural shocks follow a t-distribution with unit variance.
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Specifically,

yt =
6∑

l=1

Π̃lyt−l + B̃ϵt, (22)

p(ϵt) =
2∏

i=1

p(ϵit), (23)

ϵit ∼ t(ṽi). (24)

The model generates the dynamics of two variables, which we label as “output” (or-

dered first) and the “price level”. The driving shocks − labeled “demand” (ordered

first) and “supply” − are t-distributed.

Following Canova et al. (2024), we set the true parameter values of the data-

generating process by first specifying a functional form for the impulse responses, then

choosing (Π̃, B̃) to match those responses. We parameterize the true impulse responses

via the Gaussian basis functions of Barnichon and Matthes (2018), adapted by Canova

et al. (2024). Let ψ̃ij,h be the true impulse response of variable i to shock j at horizon

h. We specify

ψ̃ij,h = aij · exp
[
−
((h− bij)

2

c2ij

)
+
b2ij
c2ij

]
, (25)

where aij governs the impact effect of shock j on variable i, bij is an integer that

marks the horizon at which the peak response occurs (and equals 0 if there is no hump

shape), and cij captures the persistence of the response. Hence, each response over

H + 1 horizons is fully determined by three parameters, (aij, bij, cij).

We set {aij, bij, cij} to generate the following impulse responses. The first shock

is a demand shock that raises output and the price level on impact by 0.6 and 0.7,

respectively. Both responses then decline to zero, reaching half their impact effect

5 and 3 horizons later, respectively. The second shock is a supply shock that raises

output by 0.4 on impact but lowers the price level by 0.7. These responses both exhibit

a hump shape: output peaks 4 horizons after the shock at 50% above its impact level,

and the price level peaks 5 horizons later at 100% above (in absolute value) its impact

effect.

We specify impulse responses up to horizon H = 6, matching the number of lags

in the true model. As discussed by Canova et al. (2024), there is a unique solution

in
(
Π̃, B̃

)
such that the VAR-implied responses up to horizon H coincide with the

responses from equation (25). In our baseline analysis, we set ṽi = 6 for i = 1, 2.
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See Appendix F of the Online Appendix for additional details on the data-generating

process.

We first generate a single dataset from our specified data-generating process. We

initialize the simulation at the unconditional mean (zero) and create 350 observations.

We discard the first 100, retain the next 50 as a training sample, and use the remaining

200 for estimation. We then estimate a VAR with 6 lags (no constant) on the simulated

data, applying the following prior. For the autoregressive parameters, we use a Normal

prior centered at zero, calibrated according to Kadiyala and Karlsson (1997) and

Canova (2007) (using the aforementioned training sample). For the impact matrix B,

we specify a flat prior. Finally, for the degrees of freedom, we adopt a truncated Normal

prior (support between 3 and 60), centered at 20 with (pre-truncation) variance 20 for

each degrees-of-freedom parameter.

In the baseline simulations, we compute the target matrix B̂ required for the gener-

alized LP normalization using the preliminary maximum likelihood estimator by Lanne

et al. (2017) (see footnote 15) of the sampler. We initialize our Gibbs sampler as de-

scribed in Appendix E of the Online Appendix. The sampler runs for 25,000 draws,

discarding the first 5,000 as burn-in. On a standard computer with an Intel i7-7700K

4.2GHz Quad Core processor and 64GB RAM, this takes about eight minutes.

Figure 2 presents our methodology’s performance in estimating impulse responses.

The solid blue line and shaded regions represent the pointwise median and 68/90%

credible sets, respectively. The red dashed line shows the true impulse response from

the data-generating process. For comparison, the black squared line shows an alterna-

tive set of responses identical to the true ones, except that the supply shock’s response

is flipped in sign. The figure shows that the sampler correctly recovers the true sign

of the impact effects once we decide on a sign normalization (such a normalization

can always be changed ex post to aid interpretation). It also captures that a demand

shock exhibits no hump-shaped response, while a supply shock does generate a delayed

response. In addition, both the persistence and timing of each response are precisely

estimated.

Figure 3 illustrates how our sampler succeeds in recovering the true impact re-

sponses. The solid line represents the marginal posterior distribution of each entry of

B under our normalization procedure, which addresses sign and permutation indeter-

minacies. The dotted line shows the posterior when no normalization is applied. The

blue diamonds mark the true values of B, while the blue dots depict the corresponding

entries of the target matrix B̂. By comparing these two, we see that B̂ ranks the de-
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Figure 2: Impulse response functions
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Note: The red dashed lines show the true impulse responses associated with the data generating
process. The blue lines and shaded areas show the pointwise posterior median and 68%/90%
credible sets. The black squared lines show the sign/permutation of the true impulse responses
that is closest to the impulse responses estimated in the posterior.

mand shock first, treating a positively signed shock as expansionary − both consistent

with the data-generating process. In contrast, B̂ interprets a positively signed supply

shock as contracting output, while the true positive supply shock actually increases

output. The red star shows the true impact effect of the supply shock, but with its

sign flipped to match B̂. After correcting for this sign, the model recovers the true

impact of the shock.

Figure 4 displays the marginal prior (dashed line) and posterior (solid lines) dis-

tributions for the degrees of freedom. Our prior on v is relatively uninformative, yet

the figure shows that our method uncovers clear evidence of non-Gaussianity in this
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Figure 3: Impact effect of the shocks (B)

-1 -0.5 0 0.5 1
0

1

2

3

4

5

-1 0 1
0

1

2

3

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

-2 -1 0 1 2
0

1

2

3

Note: The blue diamond indicates Btrue. The blue dot indicates the target matrix B̂ used for
the normalization. The red star indicates the sign/permutation of Btrue that is the closest to B̂.
The continuous line shows the marginal posterior of the entries of B from 20,000 posterior draws
when applying the generalized LP normalization. The dotted line shows the marginal posterior
when no normalization is used.

sample, hence ensuring that B is identified. The degrees of freedom of the demand

shock are estimated more precisely than those of the supply shock. However, our esti-

mated impulse responses show that the impulse responses are precisely estimated for

both shocks. Figure F-9 in the Online Appendix confirms that our ability to estimate

vtrue improves with larger samples, as expected.

So far, we have illustrated our Bayesian procedure using a single dataset. We now

illustrate an exercise that compares the performance of our generalized LP normaliza-

tion with alternative methods. We keep the data-generating process fixed and generate
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Figure 4: Degrees of freedom
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Note: The red star indicates the true value of the degrees of freedom. The dashed black line
shows the prior distribution, which is a N(20, 20) truncated to be positive in the support [3, 60].
The solid blue line shows the posterior distribution obtained from 20,000 posterior draws.

ten datasets. For each dataset, we run the sampler four times, using either our nor-

malization, or the normalizations by Lanne et al. (2017), Gouriéroux et al. (2020) or

Jarociński (2024). The results are shown in Figure 5, which compares the estimated

marginal posterior distributions associated with the effect of a positive demand shock

on the price level (this corresponds to entry (2,1) of matrix B, see Figure F-3 − Fig-

ure F-6 in the Online Appendix for the full analysis). For each dataset, our approach

and the approach by Jarociński (2024) are implemented using the same numerical ML

estimate of B̂, for comparability. The two methods give very similar results, displaying

only minimal bimodality. Yet, our method can be used for large models, as discussed

before, which is not true for the method by Jarociński (2024). In contrast, the remain-

ing two methods occasionally deliver strong bimodality, an issue that can arise with

some normalization schemes (Hamilton et al., 2007).

We then extend the analysis to 100 datasets, and explore the ability of our model

to capture the correct impulse responses. The black squared line in Figure 6 shows the

true impulse response, matching the sign and ordering of the shocks in Figure 2. For

each dataset, when necessary, we flip the order and signs of the target matrix B̂ so that

they match the sign and ordering of the black squared line, to improve comparability.

The blue lines in Figure 6 represent the pointwise medians of the estimated responses

for each of the 100 replications. The figure indicates that our method reliably recovers

the true dynamics.

We find that our approach accurately recovers impulse responses even when the
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Figure 5: Comparing alternative normalizations: (2, 1) entry of matrix B:
Effect of a demand shock on the price level

-1
.2

5 -1
-0

.7
5

-0
.5

-0
.2

5 0
0.

25 0.
5

0.
75 1

1.
25

-1
.2

5 -1
-0

.7
5

-0
.5

-0
.2

5 0
0.

25 0.
5

0.
75 1

1.
25

-1
.2

5 -1
-0

.7
5

-0
.5

-0
.2

5 0
0.

25 0.
5

0.
75 1

1.
25

-1
.2

5 -1
-0

.7
5

-0
.5

-0
.2

5 0
0.

25 0.
5

0.
75 1

1.
25

Note: Each line corresponds to the marginal posterior distribution estimated using one of the
ten pseudo datasets generated in simulation. For each dataset, the sampler was run four times,
applying each of the four normalizations. See Figure F-3 − Figure F-6 in the Online Appendix
for the full set of results.

model is mispecified. Figure 7 replicates Figure 6, but now the data-generating process

features Laplace-distributed shocks with unit standard deviation, while the estimated

model still assumes t-distributed shocks. This exercise tests robustness to the specific

distributional form. For comparability, we re-order and re-sign the columns of B̂ to

align with the true impulse responses, as indicated by the black squared line. As the

figure shows, the estimated impulse responses remain close to the truth. This result

supports claims by Sims (2021) and Brunnermeier et al. (2021) (see their footnote 8):

if shocks are independent, symmetric, and fat-tailed − even if not t-distributed − a
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Figure 6: Impulse response functions
Robustness across 100 samples
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Note: The black squared line shows the true impulse responses, after changing the sign/ordering
of the shocks as in Figure 2. The dashed blue lines show the median impulse responses across
100 datasets, with sign/ordering of the shocks changed when needed to improve comparability to
the true impulse responses.

t-based structural VAR can still uncover the correct dynamics.

We refer to Appendix F in the Online Appendix for additional Monte Carlo results.

There, we study what happens when we target the identity matrix in our normaliza-

tion, highlighting that an informative normalization target is necessary (Figure F-7).

We then show that the results are qualitatively unchanged relative to our benchmark

if the target matrix is computed within the burn-in part of the sampler rather than

with a preliminary ML estimation (Figure F-8), see footnote 15. We also increase the

sample size (Figure F-9), use a flat prior on B−1 instead of B (Figure F-10), vary the
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Figure 7: Impulse response functions
Robustness across 100 samples and DGP featuring Laplace shocks
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Note: The black squared line shows the true impulse responses, after changing the sign/ordering
of the shocks as in Figure 2. The dashed blue lines show the median impulse responses across
100 datasets, with sign/ordering of the shocks changed when needed to improve comparability to
the true impulse responses.

prior on the degrees of freedom (Figure F-11), and increasing the prior variance on ϕ

(Figure F-12).

4 What Shocks Drive Real GDP?

We now apply our framework to assess which shocks matter most for U.S. real GDP.

Angeletos et al. (2020) use a structural VAR with Gaussian shocks to identify a “Main

Business Cycle” shock that explains much of the volatility in real activity at business-
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cycle frequencies. They find that (i) a single shock can account for nearly 80 percent of

GDP volatility when GDP is used to measure real activity,16 (ii) the shock resembles

a weakly inflationary demand shock based on its impulse responses, (iii) it is largely

uncorrelated with TFP, and (iv) it does not drive long-run fluctuations in real activity.

We revisit and extend these findings under non-Gaussian shocks. Specifically, we

ask whether the business cycle can be attributed to a single shock or if multiple

shocks share responsibility for GDP volatility. Our specification follows the baseline

Angeletos et al. (2020) model, using their exact dataset. This dataset includes 10

variables (GDP, investment, consumption, hours worked, unemployment rate, labor

share, Federal funds rate, inflation, labor productivity, and TFP), all in log levels

except for the Federal funds rate. All variables are real and in per capita terms where

applicable. The sample is quarterly from 1955Q1 to 2017Q4, and, as in the original

study, we include two lags.

We specify the baseline prior for the analysis as follows. For the autoregressive

parameters, we use the traditional Minnesota prior. For contemporaneous impulse

responses B, we use a flat prior. For degrees of freedom, we use a Normal distribution

centered at 20 and with variance 20, truncated to be positive between (3, 60). Posterior

sampling is carried out using the method discussed in Section 2, generating 25,000

draws and discarding the first 10,000 draws.

Before interpreting our results, we first check the credibility of our identification

assumption. In our framework, shocks are t-distributed, and we estimate their degrees

of freedom as a natural measure of the identification strength. Lower degrees of free-

dom imply stronger deviations from Gaussianity. This contrasts with previous studies,

such as Brunnermeier et al. (2021), that fix degrees of freedom. Figure 8 reports the

posterior distributions for the degrees of freedom for all 10 shocks in our model. We see

that the prior is updated sharply downward for all shocks, suggesting non-Gaussian

shocks. This finding supports our approach, since our identification strategy relies on

non-Gaussianity.

Next, we turn to our main question: Is there one key shock driving GDP? To

answer this question, we compute forecast error variance decompositions at different

horizons. To be more specific, we denote by yi,t+h the i-th element of yt+h and by si

the selection vector of the same dimension as yt+h that has zeros everywhere except

at position i. The formula for the forecast error variance decomposition (FEVD) of

16When targeting unemployment, instead, their identified shock still explains more than half of the
business-cycle variation in GDP.
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Figure 8: Evidence of non-Gaussianity: prior and posterior on the degrees of freedom
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Note: The dashed red line shows the prior distribution, which is a N(20, 20) truncated to be
positive in the support [3,60]. The solid blue line shows the posterior distribution obtained from
15,000 posterior draws.

variable i of yt at horizon h due to the k-th structural shock is:

FEVDi,k(h) =

∑h−1
m=0 (s

′
iΘmsk)

2∑h−1
m=0 s

′
iΘmΘ

′
msi

, (26)

where Θm are the impulse response coefficients that can be obtained by repeated

substitution into the VAR model.17 We use this time domain variance decomposition

as it is arguably more common in the literature than the frequency domain version

used in Angeletos et al. (2020). However, it is worth noting that Angeletos et al.

(2020) find that in their model, their frequency domain-based variance decomposition-

based identification behaves similarly to a time domain variance decomposition-based

identification at horizon h = 4. We consider variance decompositions up to 24 quarters

in Figure 9 and find that no shock explains more than 25% of the (posterior median)

relative forecast error variance of real GDP at any horizon.18 The two shocks that

matter most are shock 3, peaking around four quarters, and shock 7, peaking at about

three years. What do these shocks represent?

17For details on this derivation, see Lütkepohl (2005).
18In contrast, their Figure 4 shows that their benchmark shock, which targets unemployment and

not GDP directly in the identification, gives Angeletos et al. (2020) a time domain forecast error
variance decomposition where their shock explains more than 50 percent of GDP fluctuations at
horizons up to 5 quarters.
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Figure 9: Forecast error variance decomposition of real GDP
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Note: The solid lines show the pointwise posterior median, the shaded areas show the 68% and
90% pointwise posterior credible sets.

Figure 10 shows the impulse responses to these shocks, normalized to a unit stan-

dard deviation impulse. The top two rows show the responses to shock 3, which

increases real activity, lowers unemployment, but has no effect on TFP and one a

small (if any) effect on inflation. Thus, this shock closely resembles the main business

cycle shock of Angeletos et al. (2020), with the caveat that we find it is less important

than suggested in that work (albeit still one of the two key drivers of GDP in the US).

The second shock we identify, which is important at longer horizons, also increases real

activity, but at the same time lowers inflation and moves TFP. Thus, it is reminiscent

of standard TFP shocks (Kydland and Prescott, 1982). In fact, in the canonical Smets

and Wouters (2007) model, a TFP shock leads to lower inflation, just as we find. The

full forecast error variance decompositions associated with the shocks from Figure 10

is reported in Figure G-13 of the Online Appendix.
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Figure 10: Impulse responses

Shock 3: demand shock
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Shock 7: supply shock
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Note: The blue dotted lines show the pointwise posterior median from our estimation, with
corresponding 68% and 90% pointwise posterior credible sets shown with shaded areas. The
black dashed and solid lines in the top figure show the pointwise median and 90% credible sets
estimated by Angeletos et al. (2020) for the Main Business Cycle shock. To improve visibility,
these were scaled to ensure that the median impact response of unemployment is the same as in
our estimation.
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Before turning to robustness checks, one might wonder why our conclusions about

the demand shock (shock 3) differ from those of Angeletos et al. (2020), despite using

the same data and lag length, and recovering similar impulse responses. The key

difference lies in our assumption of t-distributed shocks, which alters the shape of the

likelihood and thus affects the entire posterior distribution. We find clear evidence of

non-Gaussianity in the data, which leads to different parameter estimates. While we

still recover a shock that resembles their main business cycle shock, the improved fit

of our model reveals a second shock that also plays an important role in explaining

GDP fluctuations.19

In the Appendix, we show that the results do not change when computing the

target matrix B̂ in the burn-in phase of the sampler rather than using a preliminary

ML estimation (G-14−G-15). We also show that our findings are robust to several

alternative specifications: a flat prior on A instead of B = A−1 (G-16−G-17), a flat

prior on the degrees of freedom (G-18−G-19), a looser prior on the autoregressive

parameters (G-20−G-21), and a model with four lags (G-22−G-23).

4.1 Max-Share Identification Revisited

Finally, we ask what the Angeletos et al. (2020) approach would recover if our es-

timated model were the truth. To do so, we select the parameter draw from our

benchmark specification that yields a forecast error variance decomposition (FEVD)

closest to our median estimate,20 using a quadratic loss. We treat these parameters as

the data-generating process and simulate ten artificial datasets of the same length as

the actual U.S. sample. We then estimate the Angeletos et al. (2020) model on each

simulated dataset. As shown in the left panels of Figure 11, their method identifies a

dominant business cycle shock with properties similar to the one found in actual U.S.

data.21 Yet by construction, no such dominant shock exists in the true model, as can

be seen in the right panels, which plot the FEVDs for the data-generating process.

Importantly, the shock that delivers the largest true FEVD for unemployment is not

19Our estimated degrees of freedom are low, confirming that the t-distribution improves model fit.
If the data favored Gaussianity, the posterior would push degrees of freedom higher. Since our prior
is weakly informative and leans towards Gaussianity, this result reflects genuine evidence from the
data.

20To be precise, we choose the posterior draw as our data generating process that yields a FEVD
for GDP for all shocks from horizon 1 to 24 that is as close as possible to our median estimate.

21This is not surprising, given that our data-generating process is based on parameters estimated
from the same dataset.
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the same shock that gives the largest true FEVD for real GDP.22 This illustrates the

masquerading problem discussed in the introduction.

Figure 11: The Angeletos et al. (2020) approach in a non-Gaussian setting
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Note: Left panels - Median FEVDs across 10 simulated datasets based on benchmark results,
Angeletos et al. (2020) methodology, using a data-generating process with t-distributed shocks.
Different shades of blue denote different simulated datasets. Right panels - True FEVDs of the
relevant variable for all shocks.

5 Conclusions

This paper develops a new Gibbs sampler for structural VARs with non-Gaussian

shocks. By reparametrizing the model, we show that all conditional posteriors take

standard forms, removing the computational bottlenecks that have limited non-Gaussian

SVARs to small systems. Our framework nests common specifications, including t-

distributed shocks and stochastic volatility, and avoids strong theoretical restrictions

22While we set the data-generating process by choosing the one posterior draw that yields FEVDs
that most closely resemble the posterior median FEVDs, the fit is not perfect in that the panels on
the right hand side of Figure 11 do not exactly match the median FEVDs displayed in Figure 9. This
is expected because the posterior medians are estimated horizon-by-horizon. Similar issues have been
pointed out for impulse responses by Inoue and Kilian (2022).
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by relying solely on statistical properties for identification. It also accommodates ad-

ditional identifying assumptions, such as zero restrictions or external instruments. To

address the sign and ordering indeterminacy inherent to non-Gaussian models, we

introduce a fast and scalable normalization procedure.

Applied to U.S. data, our method shows that no single shock dominates real GDP

volatility. Both demand and supply shocks matter, highlighting the importance of

allowing for multiple sources of business cycle fluctuations.
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A Example of identification under non-Gaussianity

This section of the Online Appendix provides the details of the illustration in Section

2.4.1 of the paper, showing how non-Gaussianity affects the identification of SVAR

models. We use the illustration not only to show that higher moments help identify

the parameters of the model, but also to help visualize why, in this class of model,

identification is achieved only up to the sign and ordering of the shock, a point that

plays an important role in the paper. See also Hoesch et al. (2024) and Lewis (2024)

for a related discussion of identification under non-Gaussianity.

Consider the following bivariate data generating process:(
y1t

y2t

)
=

(
b11 b12

b21 b22

)(
ϵ1t

ϵ2t

)
, (A-1)

where ϵt = (ϵ1t, ϵ2t) are independently t-distributed structural shocks with degrees of

freedom v = (v1, v2)
′. We normalize the variance of these shocks to 1 (which implies

that we assume the variance to be finite and thus v1, v2 > 2). Model (A-1) can be

rewritten as

yt = BcQϵt, (A-2)

where we define Σ = BB′ as the covariance matrix of yt, Bc the Cholesky decomposi-

tion of Σ, and Q = B−1
c B an orthogonal matrix (so that QQ′ = I). Finally, we define

the individual elements of B as B =

(
b11 b12

b21 b11

)
. Our goal is to identify (B,v), or

equivalently, (Bc, Q,v).

Equation Σ = BB′ implies the following second moment restrictions on the ele-

ments of B:

E(y21t) = b211 + b212, (A-3a)

E(y1ty2t) = b11b21 + b12b22, (A-3b)

E(y22t) = b221 + b222. (A-3c)

Because these three equations involve four unknowns, Bc is identified, but B is not

(Kilian and Lütkepohl, 2018). While these restrictions hold under both Gaussianity

and more generally with a t-distribution, these are the only model restrictions that

can be used for the identification of B under Gaussianity. In fact, the Gaussian special

A-2



case of the model (which holds for vi = ∞, i = 1, 2) implies that higher moments are

constant in B, given that the full distribution of a Gaussian process is pinned down by

the first two moments. Thus, in the Gaussian setting, only second moment restrictions

are available from the model, and we would need to impose further restrictions to

identify B (e.g., b12 = 0 to obtain B = Bc).

We now illustrate how non-Gaussianity helps with the identification of B. To do so,

in this example we assume that higher moments exist, and show that information in

these moments can be exploited. It is important to note, however, that identification

via non-Gaussianity does not rely on the existence of higher moments, see e.g. Kagan

et al. (1973), ch. 10, Eriksson and Koivunen (2004). We assume their existence only

to streamline the exposition in this example. Since we assume symmetric distributions

(Gaussian or t), third moments vanish, so any arguments based on moments has to

use at least fourth moments.

In this bivariate example, the relevant expressions for the fourth moments (derived

at the end of this section) are:

E(y41t) = b411κ1 + 6b211b
2
12 + b412κ2, (A-4a)

E(y31ty2t) = b311b21κ1 + 3b11b
2
12b21 + 3b211b12b22 + b312b22κ2, (A-4b)

E(y21ty
2
2t) = b211b

2
21κ1 + b212b

2
21 + 4b11b12b21b22 + b211b

2
22 + b212b

2
22κ2, (A-4c)

E(y1ty
3
2t) = b11b

3
21κ1 + 3b11b21b

2
22 + 3b12b

2
21b22 + b12b

3
22κ2, (A-4d)

E(y42t) = b421κ1 + 6b221b
2
22 + b422κ2, (A-4e)

with κi =
3(vi−2)
vi−4

(note that κi coincides with both the fourth moment and kurtosis of

ϵit, namely E(ϵ4it), thanks to E(ϵit) = 0 and E(ϵ2it) = 1). When the data generating

process is Gaussian, v1 = v2 = ∞ implies that κ1 = κ2 = 3, and all equations (A-4)

become constant in the orthogonal matrix Q (i.e., in alternative choices of B such that

BB′ = Σ). Hence, the fourth moments provide no additional information to identify

B. This is because under Gaussianity, the right-hand sides of (A-4) can be written

exclusively as functions of the right-hand sides of the second-moment conditions in

(A-3). Since those second moments are invariant to orthogonal rotations, so must be

the fourth moments under Gaussianity. Instead, under a t distribution, where κi ̸= 3,

the left hand side from (A-4) vary with Q, given Bc. As a result, the fourth moments

provide additional information beyond what is contained in the second moments.

A-3



To illustrate the above point, we provide a numerical example by setting

Btrue =

(
1 −1.25

2 0.5

)
. (A-5)

Although these parameter values are arbitrary, one motivation might be the following:

If yt includes output and prices, and ϵt includes a demand shock and a supply shock (in

that order), then a positive demand shock increases output and prices, while a positive

supply shock decreases output and increases prices. To highlight identification issues

that persist even as sample size grows, we work in population, assuming knowledge of

all moments of the data yt.
1

Equations (A-3) and (A-4) form a system of eight polynomial equations (up to fifth

order) in six parameters,
(
b11, b12, b21, b22, κ1, κ2

)
. We reparametrize the model and set

Q = Q(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, (A-6)

a Givens rotation that produces an orthogonal matrix with det
(
Q(θ)

)
= 1. This

assumption is standard in the literature (Canova and De Nicoló, 2002) and loses

no generality aside from fixing the determinant (a restriction we come back to be-

low). Next, we impose v = (v, v)′, reducing the unknown parameter space from(
b11, b12, b21, b22, κ1, κ2

)
to (θ, v), and we treat Bc as known (since Bc is identified by

second moments alone). The value of θ consistent with Btrue is θtrue = 0.29π, and we

set vtrue = 6. We then use (A-3)-(A-4) to compute the fourth moments implied by(
θtrue, vtrue

)
.2 Checking whether these fourth moments identify the model parameters

amounts to asking if the system (A-4) has a solution other than
(
θ, v
)
=
(
θtrue, vtrue

)
=(

0.29π, 6
)
. By construction, any θ is consistent with the second moments alone.

Each of the three panels in Figure A-1 show the fourth moments from equation

(A-4) evaluated over a grid of θ, conditioning on a value of v shown in each panel. The

moments are shown in percentage deviation from the true moments associated with

(θtrue, vtrue). Panel A reports the case when evaluating moments (A-4) for v = ∞,

hence κi = 3, i = 1, 2 (Gaussianity). Two results emerge from Panel A. First, that

the fourth moments are constant in θ, showing that fourth moments do not provide

1In Section 3 of the paper we examined our approach in finite samples, under a more realistic
data-generating process.

2These are E(y41t) = 30.01, E(y31ty2t) = 13.64, E(y21ty
2
2t) = 27.84, E(y1ty

3
2t) = 41.06 and

E(y42t) = 102.38.
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any information when the estimated model is restricted to be Gaussian. Second, that

a Gaussian model fails to match the fourth moments in the data. As an example, the

true moments E(y41t) = 30.01 and E(y21t) = 2.56 imply the population kurtosis of y1t

equal to
E(y41t)

(E(y21t))
2 = 4.57. Evaluating (A-4) using κi = 3, i = 1, 2 gives E(y21t) = 19.70

and kurtosis
E(y41t)

(E(y21t))
2 = 3 for any value of θ, with E(y41t) being 34% below the true

value (red thick line), showing that the Gaussian model is misspecified. Since the

likelihood function of model under Gaussianity is uniquely pinned down by the first

and second moments, higher moments provide no additional information, except for

uncovering that the true fourth moments cannot be reconciled with a Gaussian model.

Things change dramatically when evaluating (A-4) using κi = 6 for i = 1, 2, which

coincides with the true value. The middle panel of Figure A-1 shows that the fourth

moments in (A-4) are no longer constant in θ, hence fourth moments provide additional

information for identification. In addition, it shows that there are now exactly four

values of θ that match the five moments from (A-4):
(
0.29π, 0.78π, 1.26π, 1.78π

)′
. We

return to this residual identification issue below when we discuss normalization. In

the middle panel, we specifically evaluate the moments at the true degrees of freedom.

This step matters only if the data’s fourth moments let us infer the correct degrees of

freedom in the first place. Panel C of Figure A-1 demonstrates that using v ̸= vtrue

(specifically v = 9 here) prevents an exact match of all moments. Hence, the model’s

fourth moments − and thus the likelihood function − are informative about both the

degrees of freedom in the t-distribution and the elements of B.

Table A-1 clarifies how the four values of θ identified in Panel B of Figure A-1

relate to matrix B. Following Lanne et al. (2017), the likelihood function of the t-

distributed model has 2! · 22 = 8 modes, which differ from Btrue by the sign or the

ordering of the shocks. Matrix a in Table A-1 shows Btrue. The remaining matrices

on the left differ from Btrue by flipping the sign of one or both columns, while those

on the right swap the columns. From Lanne et al. (2017), we know that the model’s

likelihood peaks at these eight solutions. Economically, all solutions produce the same

impulse responses, once we account for shock ordering and sign. The four θ-values

from Panel B of Figure A-1 correspond to matrices a, f, g, and d in Table A-1. To

generate all solutions listed in the table, we can generalize the example to

yt = BcQ(θ)P ϵt,

where P is a permutation matrix. Under this specification, θ = 0.29π yields matrix a
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Figure A-1: Illustrative example
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Note: Fourth moments are computed using equations (A-4) evaluated for B = Bchol · Q, with
Bchol set equal to the Cholesky decomposition of Btrue ·B′

true and Q set as from equation (A-6)
over a grid on θ. The figure shows the moments in percentage deviation from the true values
associated with (Btrue, vtrue). The top panel evaluates equations (A-4) for κi = 3, i = 1, 2, which
is associated with a Gaussian model (v1 = v2 = ∞). The middle and lower panel set κi implied
by v = vtrue = 6 or v = 9.

(no column permutation) or matrix b (with column permutation), but the implied Q

for matrix b has determinant −1 and thus cannot be generated by a Givens rotation.

The same reasoning applies to the remaining θ-solutions.

Table A-1 also shows why it is important to address the inference challenges posed
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Table A-1: Modes of the likelihood of the model in Panel B from Figure A-1

B θ permute B θ permute

a)

(
1 −1.25
2 0.5

)
0.29π no b)

(
−1.25 1
0.5 2

)
0.29π yes

c)

(
−1 −1.25
−2 0.5

)
0.78π yes d)

(
1.25 1
−0.5 2

)
1.78π no

e)

(
1 1.25
2 −0.5

)
1.78π yes f)

(
−1.25 −1
0.5 −2

)
0.78π no

g)

(
−1 1.25
−2 −0.5

)
1.26π no h)

(
1.25 −1
−0.5 −2

)
1.26π yes

Note: Btrue =

(
1 −1.25
2 0.5

)
corresponds to matrix a). The remaining matrices c, e, g on the left

differ from Btrue up to the sign of the first or second column, or both. Matrices b, d, f, h differ
from Btrue regarding the ordering of the columns, and sign of the columns.

by identification up to the sign and ordering of shocks. Although the eight modes

in Table A-1 are economically identical, if the posterior sampler jumps among them,

the resulting posterior approximation can be highly misleading about the genuine

uncertainty (Hamilton et al., 2007). To avoid this problem, prior work has proposed

normalization schemes (Waggoner and Zha, 2003b; Jarociński, 2024). In the paper, we

adopt their insight of selecting parameter draws closest to a particular mode during

sampling, and we demonstrate how to implement this strategy efficiently, even in

large-scale systems.

We conclude this section by providing the derivations for the population moments

(A-4) used above. The model is given by(
y1t

y2t

)
=

(
b11 b12

b21 b22

)(
ϵ1t

ϵ2t

)
, (A-7)

where

B =

(
b11 b12

b21 b11

)
, (A-8)

and ϵt = (ϵ1t, ϵ2t) are independently t-distributed structural shocks with degrees of

freedom v = (v1, v2)
′ and variances normalized to 1. E(ϵit) = 0 implies E(yit) = 0,
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i = 1, 2. Then

E(y41t) = E(b11ϵ1t + b12ϵ2t)
4, (A-9)

= E(b411ϵ
4
1t + 4b311ϵ

3
1tb12ϵ2t + 6b211ϵ

2
1tb

2
12ϵ

2
2t + 4b11ϵ1tb

3
12ϵ

3
2t + b412ϵ

4
2t), (A-10)

= b411E(ϵ
4
1t) + 6b211b

2
12 + b412E(ϵ

4
2t), (A-11)

with the last step deriving from the independence assumption between ϵ1t and ϵ2t, and

E(ϵit) = 0, E(ϵ2it) = 1. We defined ki the kurtosis of ϵit. Since ϵit has mean 0 and

variance normalized to 1, it holds that

E(ϵ4it) = κi =
3(νi − 2)

νi − 4
. (A-12)

Hence

E(y41t) = b411κ1 + 6b211b
2
12 + b412κ2, (A-13)

while similar derivations give

E(y42t) = b421κ1 + 6b221b
2
22 + b422κ2. (A-14)

Next:

E(y31ty2t) = E(b11ϵ1t + b12ϵ2t)
3(b21ϵ1t + b22ϵ2t), (A-15)

= E(b311ϵ
3
1t + 3b211ϵ

2
1tb12ϵ2t + 3b11ϵ1tb

2
12ϵ

2
2t + b312ϵ

3
2t)(b21ϵ1t + b22ϵ2t), (A-16)

= E(b311ϵ
3
1tb21ϵ1t + 3b211ϵ

2
1tb12ϵ2tb21ϵ1t + 3b11ϵ1tb

2
12ϵ

2
2tb21ϵ1t + b312ϵ

3
2tb21ϵ1t+

+ b311ϵ
3
1tb22ϵ2t + 3b211ϵ

2
1tb12ϵ2tb22ϵ2t + 3b11ϵ1tb

2
12ϵ

2
2tb22ϵ2t + b312ϵ

3
2tb22ϵ2t),

(A-17)

= E(b311ϵ
4
1tb21 + 3b11ϵ

2
1tb

2
12ϵ

2
2tb21 + 3b211ϵ

2
1tb12ϵ

2
2tb22 + b312ϵ

4
2tb22), (A-18)

= b311b21κ1 + 3b11b
2
12b21 + 3b211b12b22 + b312b22κ2. (A-19)
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E(y1ty
3
2t) = E(b11ϵ1t + b12ϵ2t)(b21ϵ1t + b22ϵ2t)

3, (A-20)

= E(b11ϵ1t + b12ϵ2t)(b
3
21ϵ

3
1t + 3b221ϵ

2
1tb22ϵ2t + 3b21ϵ1tb

2
22ϵ

2
2t + b322ϵ

3
2t), (A-21)

= E(b11ϵ1tb
3
21ϵ

3
1t + 3b11ϵ1tb

2
21ϵ

2
1tb22ϵ2t + 3b11ϵ1tb21ϵ1tb

2
22ϵ

2
2t + b11ϵ1tb

3
22ϵ

3
2t+

+ b12ϵ2tb
3
21ϵ

3
1t + 3b12ϵ2tb

2
21ϵ

2
1tb22ϵ2t + 3b12ϵ2tb21ϵ1tb

2
22ϵ

2
2t + b12ϵ2tb

3
22ϵ

3
2t),

(A-22)

= E(b11b
3
21ϵ

4
1t + 3b11ϵ

2
1tb21b

2
22ϵ

2
2t + 3b12ϵ

2
2tb

2
21ϵ

2
1tb22 + b12b

3
22ϵ

4
2t), (A-23)

= b11b
3
21κ1 + 3b11b21b

2
22 + 3b12b

2
21b22 + b12b

3
22κ2, (A-24)

E(y21ty
2
2t) = E(b11ϵ1t + b12ϵ2t)

2(b21ϵ1t + b22ϵ2t)
2, (A-25)

= E(b211ϵ
2
1t + 2b11ϵ1tb12ϵ2t + b212ϵ

2
2t)(b

2
21ϵ

2
1t + 2b21ϵ1tb22ϵ2t + b222ϵ

2
2t), (A-26)

= E(b211ϵ
2
1tb

2
21ϵ

2
1t + b212ϵ

2
2tb

2
21ϵ

2
1t+

+ 4b11ϵ1tb12ϵ2tb21ϵ1tb22ϵ2t+

+ b211ϵ
2
1tb

2
22ϵ

2
2t + b212ϵ

2
2tb

2
22ϵ

2
2t), (A-27)

= b211b
2
21κ1 + b212b

2
21 + 4b11b12b21b22 + b211b

2
22 + b212b

2
22κ2. (A-28)

B The model

The model is given by

yt =

p∑
l=1

Πlyt−l + c+ Ut, (B-29)

= Πxt + Ut, (B-30)

Ut = Bϵt, (B-31)

p(ϵt|σ,v) =
k∏

i=1

p(ϵit|σi, vi), (B-32)

ϵit ∼ t(σi, vi), (B-33)

p(ϵit|σi, vi) = σ−1
i · v−

1
2

i ·
Γ
(

vi+1
2

)
π

1
2Γ
(

vi
2

) ·
(
1 +

ϵ2it
vi · σ2

i

)− vi+1

2
. (B-34)

The k× 1 vector yt contains the endogenous variables of the model. The m× 1 vector

xt = (y′
t−1, ..,y

′
t−p, 1)

′ contains the lagged variables and the constant term, with p
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the number of lags in the model and m = k · p + 1. The structural shocks ϵt are

i.i.d. with zero mean. Individual components of ϵt, i.e. ϵit, are mutually independent

and possess a univariate t-distribution, possibly with different degrees of freedom.

Following, for example, Geweke (1993), the probability density function of each shock

is parametrized according to equation (B-34), with (σi, vi) the shock-specific scale and

degrees of freedom, and v = (v1, .., vi, .., vk)
′, σ = (σ1, .., σi, .., σk)

′. As in Brunnermeier

et al. (2021) (see their footnote 11), we set the scale parameter to:

σi =

√
vi − 2

vi
, (B-35)

which implies that the variance of each structural t-distributed shock is normalized to

unity,

V (ϵit) = 1. (B-36)

Under this normalization, the k × k matrix B captures the impact effect of a one

standard deviation shocks.3

As in Geweke (1993), we use the following, alternative specification of the model:

yt =

p∑
l=1

Πlyt−l + c+ Ut, (B-37)

= Πxt + Ut, (B-38)

Ut = B
√
Dtet, (B-39)

et ∼ N(0, I), (B-40)

Dt = diag(d1t, .., dit, .., dkt), (B-41)

p(dit|hd,i, rd,i) =
r
hd,i

d,i

Γ(hd,i)
· d−hd,i−1

it e
−rd,i· 1

dit , (B-42)

hd,i =
vi
2
, rd,i =

vi − 2

2
. (B-43)

The k stochastic terms in the new specification, et, are Gaussian with the identity

covariance matrix. The latent variables dit are treated as unknown parameter with

inverse Gamma prior that is independent across i and t, parametrized according to

3This normalization implies that the set of observationally equivalent models differ only up to sign
and permutation of the shocks, but not up to the scale of the shocks (Lanne et al., 2017). We exploit
this feature in order to build the generalized LP normalization, see subsection 2.4 of the paper and
Appendix D.

B-10



(B-42), and
√
Dt = diag(d

1
2
1t, .., d

1
2
it, .., d

1
2
kt). It is assumed that Dt is independent of es,

for every t and s. The shape and rate parameters (hd,i, rd,i) of p(dit|hd,i, rd,i) are set as
in (B-43), which comply with the normalization V (ϵit) = 1 made in the original model

specification.

Rewrite the parametrization of the model as

ϕ = vec(Π), (B-44)

D = diag(D1, .., Dt, .., DT ). (B-45)

The vector ϕ is of dimensions km × 1. The array D is sparse and of dimensions

kT × kT . The joint prior distribution for the alternative specification of the model is

p(ϕ, B,D,v) = p(ϕ) · p(B) · p(D|v) · p(v). (B-46)

Our approach requires the prior on ϕ to be Normal. While we set ϕ as a-priori

independent of (B,D,v), this modelling assumption can be removed. As discussed

above, the prior p(D|v) is given by (B-42), with hyperparameters calibrated according

to (B-43). By contrast, the prior on (B,v) can be more flexibly selected by the

researcher, as discussed below.

C Derivations of the conditional posterior distri-

butions

Posterior sampling is achieved by means of a Gibbs sampler. The conditional posteriors

for the parameters (ϕ, D,v) are standard in the literature and are reported here for

completeness. The conditional posterior of B is discussed in greater length and exploits

the reparametrization discussed in the paper.

C.1 Conditional posterior p(ϕ|Y,B,D,v)

The likelihood function of model (B-37)-(B-40) can be written as

p(Y |ϕ, B,D) = (2π)−
Tk
2 · |B|−T · |D|−

1
2 · e−

1
2
(ỹ−Wϕ)′

(
(IT⊗B)D(IT⊗B′)

)−1

(ỹ−Wϕ), (C-47)
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with

Y = [y1, ..,yt, ..,yT ], (C-48)

ỹ = vec(Y ), (C-49)

X = [x1, ..,xt, ..,xT ], (C-50)

W = (X ′ ⊗ Ik). (C-51)

Using (C-47), we can derive

p(ϕ|Y,B,D,v) ∝ p(ϕ) · p(Y |ϕ, B,D), (C-52)

∝ e−
1
2
(ϕ−µ)′V −1(ϕ−µ) · e−

1
2
(ỹ−Wϕ)′

(
(IT⊗B)D(IT⊗B′)

)−1

(ỹ−Wϕ), (C-53)

= e−
1
2
(ϕ−µ)′V −1(ϕ−µ) · e−

1
2
(ỹ−Wϕ)′Ω−1(ỹ−Wϕ), (C-54)

∝ e−
1
2
(ϕ′V −1ϕ−2ϕ′V −1µ+ϕ′W ′Ω−1Wϕ−2ϕ′W ′Ω−1ỹ), (C-55)

ϕ|Y,B,D,v ∼ N
(
µ∗, V ∗), (C-56)

V ∗ =
(
V −1 +W ′Ω−1W

)−1
, (C-57)

µ∗ = V ∗[V −1µ+W ′Ω−1ỹ], (C-58)

Ω = (IT ⊗B)D(IT ⊗B′). (C-59)

C.2 Conditional posterior p(D|Y,ϕ, B,v)

The conditional posterior for D is also standard. After defining

gt = B−1[yt − Πxt], (C-60)
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model (B-37)-(B-40) coincides with gt ∼ N(0, Dt), hence

p(D|Y,ϕ, B,v) =
T∏
t=1

k∏
i=1

p
(
dit|yt,xt,Π, B, vi

)
, (C-61)

p
(
dit|yt,xt,Π, B, vi

)
∝ p(dit|hd,i, rd,i) · p(gt|Π, B,v, Dt), (C-62)

∝
[ r

hd,i

d,i

Γ(hd,i)
· d−hd,i−1

it e
−rd,i· 1

dit

]
· d−

1
2

it · e−
1
2

g2it
dit , (C-63)

∝ d
−(hd,i+

1
2
)−1

it · e−(rd,i+
g2it
2
) 1
dit , (C-64)

= d
−h∗

d,i−1

it · e−r∗d,it
1

dit , (C-65)

dit|yt,xt,Π, B,v ∼ iΓ(h∗d,i, r
∗
d,it), (C-66)

h∗d,i = hd,i +
1

2
, (C-67)

r∗d,it = rd,i +
g2it
2
. (C-68)

C.3 Conditional posterior p(v|Y,ϕ, B,D)

The conditional posterior for v is

p
(
v|Y,Π, B,D

)
∝ p(D|v) · p(v), (C-69)

∝
[ T∏

t=1

k∏
i=1

r
hd,i

d,i

Γ(hd,i)
· d−hd,i−1

it e
−rd,i· 1

dit

]
· p(v), (C-70)

=
[ k∏

i=1

( r
hd,i

d,i

Γ(hd,i)

)T
·

T∏
t=1

(
d
−hd,i−1
it e

−rd,i· 1
dit

)]
· p(v), (C-71)

=
[ k∏

i=1

( r
hd,i

d,i

Γ(hd,i)

)T
·
( T∏

t=1

dit
)−hd,i−1

e
−rd,i·

(∑T
t=1

1
dit

)]
· p(v). (C-72)

We assume prior independence across v, i.e. p(v) =
∏k

i=1 p(vi). Since (hd,i, rd,i)

only depend on entry i of v, prior independence implies independence in conditional
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posterior:

p
(
v|Y,Π, B,D

)
=

k∏
i=1

p
(
vi|Y,Π, B,D

)
, (C-73)

p
(
vi|Y,Π, B,D

)
∝
( r

hd,i

d,i

Γ(hd,i)

)T
·
( T∏

t=1

dit
)−hd,i−1

e
−rd,i·

(∑T
t=1

1
dit

)
· p(vi). (C-74)

Last, we use a Griddy-Gibbs sampler and discretize the support for vi.

C.4 Conditional posterior p(B|Y,ϕ, D,v)

Posterior sampling on B is achieved indirectly via sampling on the parametrization

A = B−1. After defining

zt = yt − Πxt, (C-75)

model (B-37)-(B-40) coincides with zt ∼ N(0, A−1DtA
−1′), hence the likelihood func-

tion is

p
(
Z|Π, A,D

)
= (2π)−

Tk
2 · |A|T ·

( T∏
t=1

|Dt|−
1
2

)
· e−

1
2

∑T
t=1 z

′
tA

′D−1
t Azt , (C-76)

with Z = [z1, ..,zt, ..,zT ]. Note that in fact |A| := |det(A)|.
We rewrite A as

A = ΛLU. (C-77)

where Λ = diag(λ1, .., λi, .., λk) is a k × k diagonal matrix, L and U are lower and

upper triangular matrices, respectively, of dimension k × k, both with unit diagonal

entries. Assuming that all λi are nonzero, the underlying decomposition of A exists

and is unique. The free entries of (L,U) are (l,u), respectively. We use the notation

vec(L) = s+ SLl, (C-78)

vec(U) = s+ SUu, (C-79)

with (l,u) of dimension k(k − 1)/2 × 1, (SL, SU) of dimension k2 × k(k − 1)/2, s of

dimension k2× 1, and (SL, SU , s) having zero or one entries as appropriate. Note that

because (L,U) are triangular matrices with unit diagonal entries, the determinant of
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A evaluated in the parametrization (Λ, L, U) is only a function of Λ, namely

|A| =
k∏

i=1

|λi|. (C-80)

Define pA(A) as the prior distribution on A. In order to write it down explicitly,

one should take a stand on the chosen parametrization of the SVAR model i.e. whether

A or B is our basic parameter. In either case our baseline prior setup assumes flat

prior. Hence two cases are of interest for us:

pA(A) ∝ 1, (C-81)

pA(A) ∝ |A|−2k. (C-82)

(C-81) is the case in which the researcher expresses an uninformative prior directly on

A (hence implicitly the SVAR uses A as its basic parameter). (C-82) is the case in

which the researcher expresses an uninformative prior on B, with |A|−2k the Jacobian

term in the transformation from B to A, assuming the entries of B are functionally

unconstrained (Kociȩcki, 2010). When evaluated in the (Λ, L, U), (C-82) is only a

function of λi’s via equation (C-80).

Combining (C-76)-(C-81)-(C-82) gives the conditional posterior for A:

p(A|Y,ϕ, D,v
)
∝ pA(A) · |A|T · e−

1
2

∑T
t=1 z

′
tA

′D−1
t Azt . (C-83)

In order to proceed further we need the Jacobian of the transformation from A to

(Λ, L, U). It may be shown that:

J(A→ Λ, L, U) =
k∏

i=1

|λi|k−1. (C-84)

Hence, (C-83) implies the following conditional posterior jointly for (Λ, L, U):

p(Λ, L, U |Y,ϕ, D,v
)
∝
( k∏

i=1

|λi|k−1
)
· pA(ΛLU) ·

( k∏
i=1

|λi|T
)
· e−

1
2

∑T
t=1 z

′
tU

′L′ΛD−1
t ΛLUzt ,

(C-85)

=
( k∏

i=1

|λi|T+k−1
)
· pA(ΛLU) · e−

1
2

∑T
t=1 z

′
tU

′L′ΛD−1
t ΛLUzt . (C-86)
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Our approach to sample from p(Λ, L, U |Y,ϕ, D,v
)
consists in showing that the

conditional posteriors of Λ, L and U all have a common form. Starting with L, under

either (C-81) or (C-82) we can derive

p(L|Y,ϕ, D,v,Λ, U) ∝ e−
1
2

∑T
t=1 z

′
tU

′L′ΛD−1
t ΛLUzt , (C-87)

= e−
1
2
vec(L)′

∑T
t=1

(
Uztz′

tU
′⊗ΛD−1

t Λ
)
vec(L), (C-88)

= e−
1
2
vec(L)′

∑T
t=1

(
Uztz′

tU
′⊗Λ2D−1

t

)
vec(L), (C-89)

p(l|Y,ϕ, D,v,Λ, U) ∝ e−
1
2
(s+SLl)

′WL(s+SLl), (C-90)

∝ e−
1
2
(l′S′

LWLSLl+2l′S′
LWLs), (C-91)

hence,

l|Y,ϕ, D,v,Λ, U ∼ N
(
µ∗

L, V
∗
L

)
, (C-92)

V ∗
L = (S ′

LWLSL)
−1 (C-93)

µ∗
L = −V ∗

LS
′
LWLs, (C-94)

WL =
T∑
t=1

(
Uztz

′
tU

′ ⊗ Λ2D−1
t

)
, (C-95)

The derivations for U are similar. Under either (C-81) or (C-82) we can derive

p(U |Y,ϕ, D,v,Λ, L) ∝ e−
1
2

∑T
t=1 z

′
tU

′L′ΛD−1
t ΛLUzt , (C-96)

= e−
1
2
vec(U)′

∑T
t=1

(
ztz′

t⊗L′ΛD−1
t ΛL

)
vec(U), (C-97)

= e−
1
2
vec(U)′

∑T
t=1

(
ztz′

t⊗L′Λ2D−1
t L
)
vec(U), (C-98)

p(u|Y,ϕ, D,v,Λ, U) ∝ e−
1
2
(s+SUu)′WU (s+SUu), (C-99)

∝ e−
1
2
(u′S′

UWUSUu+2u′S′
UWUs), (C-100)
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hence

u|Y,ϕ, D,v,Λ, L ∼ N
(
µ∗

U , V
∗
U

)
(C-101)

V ∗
U = (S ′

UWUSU)
−1, (C-102)

µ∗
U = −V ∗

US
′
UWUs, (C-103)

WU =
T∑
t=1

(
ztz

′
t ⊗ L′Λ2D−1

t L
)
. (C-104)

It remains to derive the conditional posterior for Λ, which is

p(Λ|Y,ϕ, D,v, L, U) ∝
( k∏

i=1

|λi|T+k−1
)
· pA(ΛLU) · e−

1
2

∑T
t=1 z

′
tU

′L′ΛD−1
t ΛLUzt , (C-105)

=
( k∏

i=1

|λi|T+k−1
)
· pA(ΛLU) · e−

1
2

∑T
t=1 z

′
tU

′L′D−0.5
t Λ2D−0.5

t LUzt ,

(C-106)

=
( k∏

i=1

|λi|T+k−1
)
· pA(ΛLU) · e−

1
2

∑T
t=1 c

′
tΛ

2ct , (C-107)

=
( k∏

i=1

|λi|T+k−1
)
· pA(ΛLU) · e−

1
2

∑k
i=1

∑T
t=1 c

2
itλ

2
i , (C-108)

=
k∏

i=1

|λi|T+k+α−1 · e−
1
2
λ2
i

∑T
t=1 c

2
it , (C-109)

where α = 0 if we adopt (C-81), or α = −2k if we use (C-82).

Let us define xi = λ2i . Although this transformation is not 1-1 since λi may be

both positive and negative, from standard probability we know that if λi has pdf p(λi)

then the pdf of xi is g(xi) =
1
2
x
− 1

2
i p(

√
xi) +

1
2
x
− 1

2
i p(−√

xi) , for xi > 0. Since in our

case p(
√
xi) = p(−√

xi), hence g(xi) = x
− 1

2
i p(

√
xi), it follows that

p(x1, x2, .., xk|Y,ϕ, D,v, L, U) ∝
k∏

i=1

x
− 1

2
i |x

1
2
i |T+k+α−1 · e−

1
2
xi

∑T
t=1 c

2
it , (C-110)

=
k∏

i=1

x
T+k+α

2
−1

i · e−
1
2
xi

∑T
t=1 c

2
it , (C-111)
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hence

xi|Y,ϕ, D,v, L, U ∼ Γ(h∗λ,i, r
∗
λ,i), (C-112)

r∗λ,i =

∑T
t=1 c

2
it

2
, (C-113)

ct = D−0.5
t LUzt, (C-114)

where it holds

h∗λ,i =
T + k

2
, (C-115)

if prior (C-81) is used, and

h∗λ,i =
T − k

2
, (C-116)

if prior (C-82) is used. Note that we are using the following shape-rate parametrization

of the Gamma distribution

p(x|h, r) = rh

Γ(h)
· xh−1e−r·x. (C-117)

Having drawn xi we set λi =
√
xi with probability 1

2
, or λi = −√

xi with probability
1
2
, see Waggoner and Zha (2003a), p. 357, for an analogous treatment.

D Identification up to sign and ordering

The non-Gaussian, statistically independent nature of the structural shocks combined

with the normalization of the variance to unity implies that the model is identified

up to sign and permutation of the shocks (Lanne et al., 2017). In order to avoid the

associated multimodality of the posterior of A and B, we have to be sure that we

uncover the posterior uncertainty surrounding only one (possibly arbitrarily chosen)

mode. We achieve this via a normalization rule that builds on Waggoner and Zha

(2003b) (WZ hereafter). WZ work with the Gaussian SVAR model with variance of

the structural shocks normalized to 1, and develop the Likelihood Preserving (LP)

normalization that addresses the indeterminacy of the model up to the sign of the

shocks. We extend their method to address indeterminacy up to sign and ordering

(or permutation) of the shocks in a SVAR with independent t-distributed shocks. We

refer to this as the generalized LP normalization. In this section we first define the
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generalized LP normalization and then relate it to the original specification by WZ.

Last, we show that existing combinatorial optimization techniques allow for a very

fast computation of the matrix needed to operationalize the normalization rule. This

makes the normalization rule feasible also for large models.

Let P denote the permutation matrix and Ps the signed permutation matrix. Our

criterion to choose Ps is

min
Ps

tr{(BPs − B̂)′Â′Â(BPs − B̂)}, (D-118)

where θ̂ denotes the Maximum Likelihood (ML) estimator of θ.4 By multiplying

matrices in (D-118) and using the fact that B̂ = Â−1, one can show that (D-118) is

equivalent to any of the following maximization problems:

max
Ps

tr{PsÂB} = max
Ps

tr{ÂBPs} = max
Ps

tr{ÂA−1Ps} = max
Ps

tr{P ′
sA

′−1Â′}. (D-119)

In order to appreciate the similarity of our criterion to the original LP normalization,

we show that if Ps were the diagonal matrix with ±1 on the diagonal, then the solution

to (D-118) would be exactly the LP normalization. Since WZ use the SVAR with its

transposed form, their (A, Â) are our (A′, Â′). Provided that Ps is a diagonal matrix

with ±1 on the diagonal, the solution to the last formula in (D-119) amounts to

multiplying each diagonal element of A−1Â by −1 if it is negative and by 1, if it is

positive. Following WZ’s notation, let ei denote the i−th column of Ik. Then the

i−th diagonal element of A−1Â may be written as e′iA
−1Âei = e′iA

−1âi, where âi

denotes the i−th column of Â. An A draw is LP normalized if e′iA
−1âi > 0 for each

i = 1, .., k. Multiplication of the i−th diagonal element of A−1Â by −1 is equivalent

to multiplication of the i−th column of A by −1 since −1 · e′iA−1âi = e′iI
∗
kA

−1âi =

e′i(AI
∗
k)

−1âi, where I
∗
k is the k × k identity matrix except its i−th diagonal element

is set to −1. This is exactly the LP normalization for Gaussian SVARs, rewritten in

WZ’s notation.

In our general setup, we need to compute the signed permutation matrix Ps that

solves one of the equivalent problems in (D-119). To this end, let us denote G = ÂA−1

4Note that using the notation in Proposition 4 in WZ, the minimizing function can be written
as ||BPs − B̂||Ω̂−1 , where Ω̂ = Â−1Â′−1 = B̂B̂′ is the ML estimate of the covariance of the reduced

form disturbances. The weighting function Ω̂−1 is important for the distance to be invariant under
changing the measurement units in the data. In particular, the solution to (D-118) remains the same
if instead of the original data yt we use Hyt, where H is any nonsingular matrix - see Proposition 5
in WZ.
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and gi,j the (i, j)−th element of G. We focus on max
Ps

tr{PsG}. The problem is to

choose the permutation of rows of G (possibly multiplied by −1) such that tr{PsG}
attains its maximum. At the maximum tr{PsG} = p1gπ(1),1+p2gπ(2),2+ · · ·+pkgπ(k),k,
where π(i) denotes permutation of the row index and each pi = ±1. We first note

that at the maximum each term pigπ(i),i must be nonnegative. To see it, assume, by

contradiction, that at least one pigπ(i),i < 0. Then by setting p∗i = −1 · pi we have

p1gπ(1),1 + · · ·+ pigπ(i),i + · · ·+ pkgπ(k),i < p1gπ(1),1 + · · ·+ p∗i gπ(i),i + · · ·+ pkgπ(k),k, i.e.

contradiction. Hence at the maximum:

p1gπ(1),1 + p2gπ(2),2 + · · ·+ pkgπ(k),k = |p1gπ(1),1|+ |p2gπ(2),2|+ · · ·+ |pkgπ(k),k|,
= |p1||gπ(1),1|+ |p2||gπ(2),2|+ · · ·+ |pk||gπ(k),k|,
= |gπ(1),1|+ |gπ(2),2|+ · · ·+ |gπ(k),k|. (D-120)

This suggests the modified problem:

max
P

tr{P · |G|} = max
P

tr{P · |ÂA−1|}, (D-121)

where P is the usual permutation matrix and |G| means absolute values taken element-

wise for all entries in G matrix. At the maximum tr{P · |G|} = |gπ(1),1| + |gπ(2),2| +
· · ·+ |gπ(k),k|, hence though the space of permutation matrices is a subset of the space

of signed permutation matrices, the maximum of the original optimization problem

(D-119) is attained by the modified (i.e. constrained) optimization problem (D-121).

When working with (D-121), finding the signed permutation corresponding to this

maximum only requires picking pi = 1 or pi = −1 such that each pigπ(i),i is positive

(we omit considering the measure zero event such that gπ(i),i = 0 for some i, which

does not appear in practice).

All in all, instead of evaluating the objective function (D-118) (or D-119) for every

Ps, which is computationally infeasible even for medium-scale models, we only need

to solve

max
P

tr{P · |G|} = min
P

tr{P · −|G|}. (D-122)

However, the formulation in (D-122) shows that we encounter the linear assignment

problem from combinatorial optimization. The classic method to solve it is the so-

called Hungarian algorithm and its modern refinements, which are computationally

really fast. Trying many versions of this algorithm, it turned out that the built-

in MATLAB function ‘matchpairs’ is the fastest. To appreciate its computational
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efficiency, take a generic number of variables k. Set Â = 10 · Ik, draw the entries of

B from independent N(0, 1), compute G = ÂB, evaluate the time it takes to solve

(D-122), and repeat. The following summarizes, on average over 100,000 repetitions,

how long it took to solve (D-122): 0.000056 seconds for k = 5; 0.00007 seconds for

k = 10; 0.0001 seconds for k = 20 and 0.0013 seconds for k = 100 (computation done

on an Intel Xeon E5-1603 v4 and 2.80 GHz). As the illustration shows, the execution

time of this optimization technique does not increase substantially even for large k,

hence making the normalization rule practical even for large models.

With our method, once we find the permutation matrix P that solves (D-122), we

have to consider the diagonal elements in PG = PÂA−1 = PÂB. If the i−th diagonal

element in PÂB is negative we change the 1 in the i−th row of P to −1, otherwise

we do nothing. Doing so we accomplish the task of finding the signed permutation

matrix that solves (D-118). This completes the computation of Ps, which is required

at every iteration of the posterior sampler.

The following algorithm summarizes the steps required for the generalized LP nor-

malization:

Algorithm 1: generalized LP normalization:

Given a target matrix Â apply the following steps at each iteration of the

sampler, after drawing (A,B):

1. solve min
P

tr{P · −|ÂB|} using a version of the Hungarian algorithm,

where P is the usual permutation matrix and |ÂB| stands for the

matrix of absolute values of all entries in ÂB (taken element-wise);

2. if the i−th diagonal element in PÂB is negative, change the 1 in the

i−th row of P to −1, otherwise do nothing. As as result, we get Ps

that solves (D-118);

3. replace B with BPs and A with P ′
sA.

We stress that this normalization rule can be applied to any non-Gaussian SVAR, and

not just to SVAR models with t-distributed shocks.

Recently, Jarociński (2024) proposed an alternative but similar rule to normalize

the draws of a SVAR model with independent t-distributed structural shocks. He

used the Gaussian approximation to the likelihood function of A as a criterion. In
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particular, using our notation, his method amounts to solving

min
Ps

(vec(A′Ps)− vec(Â′))′V̂ −1(vec(A′Ps)− vec(Â′)), (D-123)

where V̂ is the asymptotic variance of vec(A′) i.e. the corresponding block of the

inverse of the (minus) Hessian of the likelihood evaluated at the mode. For better

comparison, let us write our criterion (D-118) as

min
Ps

[(vec(BPs)− vec(B̂))′(Ik ⊗ Ω̂)−1(vec(BPs)− vec(B̂))], (D-124)

where Ω̂ = Â−1Â′−1 = B̂B̂′. Hence one difference between our method and his is

that we normalize B draws, whereas Jarociński (2024) normalizes A draws. He then

assumes large sample approximation of the covariance of vec(A′) as the weighting

function, whereas we assume block diagonal covariance for vec(B) with the same block

Ω̂ (which however follows directly from the LP normalization approach). However,

the main difference lies in how we solve the underlying minimization problem. We

use the highly efficient Hungarian algorithm, whereas Jarociński (2024) evaluates all

k! permutation matrices, see Algorithm 2 in his Online Appendix. As documented

above, the case of k = 20 requires about 0.0001 seconds to find the optimal permutation

matrix. Using the approach by Jarociński (2024) requires computing 20! = 2.432902 ·
1018 permutation matrices to find the one that solves (D-123).

E Summary of the algorithm to sample from the

posterior of a SVAR with t-distributed struc-

tural shocks

All in all, our Gibbs sampling method for sampling from the joint posterior distribution

of a SVAR model with independent, t-distributed structural shocks can be summarized

as follows:

Algorithm 2: Gibbs sampler for SVAR models with independent t-distributed

structural shocks :

0. in a preliminary step to the sampler, estimate a target matrix B̂ =
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Â−1 using e.g. the maximum likelihood estimator.5 Then, at each

iteration of the sampler:

1. draw ϕ from the Normal conditional posterior from equation (C-56);

2. draw L from the Normal conditional posterior from equation (C-92);

3. draw U from the Normal conditional posterior from equation (C-101)

(possibly under the additional identifyng restrictions on A);

4. draw xi’s from the Gamma conditional posteriors from equation (C-112);

5. compute Λ by setting each (i, i) entry either as λi = −√
xi or λi =

√
xi

(with equal probability);

6. compute Ā associated with (Λ, L, U) using equation (C-77) and set

B̄ = Ā−1;

7. set B = B̄Ps, with Ps computed using the generalized LP normaliza-

tion from Algorithm 1, Appendix D;

8. draw D from the inverse Gamma conditional posterior from equation

(C-66);

9. draw v from the discretized conditional posterior from equation (C-74);

10. repeat from step 1.

To initialize the sampler one can set ϕ = vec(Π) to the OLS estimate, (l,u) to zero,

and λi’s equal to the standard deviations estimated on a training sample, in the spirit

of the Minnesota prior. v can, instead, be set at the ML estimates. If no MLE is to

be computed before the sampler, one can run the burn-in part of the Gibbs sampler

without applying any normalization, and then set B̂ equal to the value associated with

the highest evaluation of the posterior distribution in the burn-in part of the sampler,

see footnote 15 in the main text. Then, an alternative value for the initialization of v

is to be selected.

We end this section with two final remarks. First, note that placing the normal-

ization step 7 before drawing (D,v) ensures that the ordering of the structural shocks

is consistent with the ordering of the degrees of freedom. Second, note that the stored

values of B are associated with a matrix A that may not admit a decomposition via

5To estimate the preliminary target matrix B̂ we found it convenient to use the 3-step maximum
likelihood estimator suggested by Lanne et al. (2017). This makes the procedure quite fast also for
our ten variable application from section 4 of the paper.
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equation (C-77). This fact is without loss of generality, as the decomposition is only

employed as an operational procedure to develop a Gibbs sampler.

F Additional material on the simulation exercise

The parameter values of the data generating process are

B =

(
0.60 0.40

0.70 −0.70

)
, (F-125)

v =

(
6

6

)
, (F-126)

Π1 =

(
1.0612 −0.0759

−0.2502 1.1404

)
, (F-127)

Π2 =

(
−0.0660 0.0093

−0.0253 −0.0905

)
, (F-128)

Π3 =

(
−0.0641 0.0109

0.0286 −0.0655

)
, (F-129)

Π4 =

(
−0.0530 0.0119

0.0639 −0.0434

)
, (F-130)

Π5 =

(
−0.0355 0.0113

0.0660 −0.0304

)
, (F-131)

Π6 =

(
−0.0165 0.0084

0.0425 −0.0230

)
. (F-132)

The target matrix used for the generalized LP normalization was estimated to

Btarget =

(
0.7015 −0.3279

0.7271 0.7236

)
. (F-133)
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Figure F-2: Generalized LP normalization
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Note: The vertical red line shows when the burn-in draws end. For each of the 25,000 posterior
draws, the figure indicates if the generalized LP normalization permutes the ordering of the
columns of B (vertical values 5-8) or not (vertical values 1-4). It also indicates if the sign of the
columns of B was not changed (values 1, 5), was changed for the first column only (values 2, 6),
second column only (values 3, 7), or both columns (values 4, 8).
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Figure F-3: Comparing normalizations: our approach
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Figure F-4: Comparing normalizations: Jarociński (2024)
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Figure F-5: Comparing normalizations: Lanne et al. (2017)
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Figure F-6: Comparing normalizations: Gouriéroux et al. (2020)
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Figure F-7: Impact effect of the shocks (B) when the normalization
targets an arbitrary matrix: B̂ = I2
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Note: The blue diamond indicates Btrue. The blue dot indicates the target matrix B̂ used for
the normalization. The red star indicates the sign/permutation of Btrue that is the closest to B̂.
The continuous line shows the marginal posterior of the entries of B from 20,000 posterior draws
when applying the generalized LP normalization.
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Figure F-8: Robustness when computing the target matrix in the sampler
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Note: In Panel A, the blue solid line shows the marginal posterior from the baseline specification
while the thick purple line shows the marginal posterior under the alternative specification. In
Panel B, the blue line and shaded areas show the pointwise median and credible sets corresponding
to the baseline estimation, while the red dotted lines show the pointwise credible sets in the
alternative specification. F-31



Figure F-9: Robustness for T = 1, 000

A) Degrees of freedom
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Note: In Panel A, the blue solid line shows the marginal posterior from the baseline specification
while the thick purple line shows the marginal posterior under the alternative specification. In
Panel B, the blue line and shaded areas show the pointwise median and credible sets corresponding
to the baseline estimation, while the red dotted lines show the pointwise credible sets in the
alternative specification. F-32



Figure F-10: Robustness for flat prior on A

A) Degrees of freedom
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Note: In Panel A, the blue solid line shows the marginal posterior from the baseline specification
while the thick purple line shows the marginal posterior under the alternative specification. In
Panel B, the blue line and shaded areas show the pointwise median and credible sets corresponding
to the baseline estimation, while the red dotted lines show the pointwise credible sets in the
alternative specification. F-33



Figure F-11: Robustness for flat prior on v

A) Degrees of freedom
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Note: In Panel A, the blue solid line shows the marginal posterior from the baseline specification
while the thick purple line shows the marginal posterior under the alternative specification. In
Panel B, the blue line and shaded areas show the pointwise median and credible sets corresponding
to the baseline estimation, while the red dotted lines show the pointwise credible sets in the
alternative specification. F-34



Figure F-12: Robustness for looser prior on ϕ (λ1 = 0.2 rather than 0.1 using the
notation in Canova, 2007)

A) Degrees of freedom
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Note: In Panel A, the blue solid line shows the marginal posterior from the baseline specification
while the thick purple line shows the marginal posterior under the alternative specification. In
Panel B, the blue line and shaded areas show the pointwise median and credible sets corresponding
to the baseline estimation, while the red dotted lines show the pointwise credible sets in the
alternative specification.
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Figure G-13: Forecast error variance decomposition

Shock 3: demand shock

0 4 8 12 16 20
0

10
20
30
40
50
60
70

0 4 8 12 16 20
0

10
20
30
40
50
60
70

0 4 8 12 16 20
0

10
20
30
40
50
60

0 4 8 12 16 20
0

10
20
30
40
50
60

0 4 8 12 16 20
0

10
20
30
40
50
60
70
80
90

100

0 4 8 12 16 20
0

10

20

30

40

0 4 8 12 16 20
0

10

20

30

0 4 8 12 16 20
0

10

20

0 4 8 12 16 20
0

10

20

30

40

0 4 8 12 16 20
0

10

20

Shock 7: supply shock
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Note: The black dotted lines show the pointwise posterior median from our estimation, with
corresponding 68% and 90% pointwise posterior credible sets shown with shaded areas. The
black dashed and solid lines in the top figure show the pointwise median and 90% credible sets
estimated by Angeletos et al. (2020) for the Main Business Cycle shock.
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Figure G-14: Robustness computing target matrix B̂ in the sampler: impulse responses

A) Demand shock
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Note: The dotted line and shaded areas show the pointwise median and credible sets from the
baseline specification. The solid lines show the pointwise credible sets from the alternative spec-
ification.
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Figure G-15: Robustness computing target matrix B̂ in the sampler: forecast error
variance decomposition

A) Demand shock
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Note: The dotted line and shaded areas show the pointwise median and credible sets from the
baseline specification. The dashed and solid lines show the pointwise median and credible sets
from the alternative specification.
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Figure G-16: Robustness for flat prior on A: impulse responses

A) Demand shock
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Note: The dotted line and shaded areas show the pointwise median and credible sets from the
baseline specification. The solid lines show the pointwise credible sets from the alternative spec-
ification.
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Figure G-17: Robustness for flat prior on A: forecast error variance decomposition

A) Demand shock

0 4 8 12 16 20
0

10
20
30
40
50
60

0 4 8 12 16 20
0

10
20
30
40
50
60

0 4 8 12 16 20
0

10
20
30
40
50
60
70

0 4 8 12 16 20
0

10
20
30
40
50
60

0 4 8 12 16 20
0

10
20
30
40
50
60

0 4 8 12 16 20
0

10

20

30

40

0 4 8 12 16 20
0

10

20

0 4 8 12 16 20
0

10

20

0 4 8 12 16 20
0

10

20

30

0 4 8 12 16 20
0

10

20

B) supply shock

0 4 8 12 16 20
0

10
20
30
40
50
60

0 4 8 12 16 20
0

10

20

30

40

0 4 8 12 16 20
0

10

20

30

40

0 4 8 12 16 20
0

10

20

30

40

0 4 8 12 16 20
0

10

20

30

40

0 4 8 12 16 20
0

10

20

0 4 8 12 16 20
0

10
20
30
40
50
60
70
80
90

100

0 4 8 12 16 20
0

10

20

0 4 8 12 16 20
0

10

20

30

0 4 8 12 16 20
0

10

20

30

Note: The dotted line and shaded areas show the pointwise median and credible sets from the
baseline specification. The dashed and solid lines show the pointwise median and credible sets
from the alternative specification.
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Figure G-18: Robustness for flat prior on v: impulse responses

A) Demand shock
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Note: The dotted line and shaded areas show the pointwise median and credible sets from the
baseline specification. The solid lines show the pointwise credible sets from the alternative spec-
ification.
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Figure G-19: Robustness for flat prior on v: forecast error variance decomposition

A) Demand shock
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Note: The dotted line and shaded areas show the pointwise median and credible sets from the
baseline specification. The dashed and solid lines show the pointwise median and credible sets
from the alternative specification.
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Figure G-20: Robustness for looser prior on ϕ: impulse responses

A) Demand shock
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Note: The dotted line and shaded areas show the pointwise median and credible sets from the
baseline specification. The solid lines show the pointwise credible sets from the alternative spec-
ification.
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Figure G-21: Robustness for looser prior on ϕ: forecast error variance decomposition

A) Demand shock
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Note: The dotted line and shaded areas show the pointwise median and credible sets from the
baseline specification. The dashed and solid lines show the pointwise median and credible sets
from the alternative specification.
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Figure G-22: Robustness for p = 4: impulse responses

A) Demand shock
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Note: The dotted line and shaded areas show the pointwise median and credible sets from the
baseline specification. The solid lines show the pointwise credible sets from the alternative spec-
ification.
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Figure G-23: Robustness for p = 4: forecast error variance decomposition

A) Demand shock
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Note: The dotted line and shaded areas show the pointwise median and credible sets from the
baseline specification. The dashed and solid lines show the pointwise median and credible sets
from the alternative specification.
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