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Abstract

This paper examines the out of sample forecasting performance of
the New Keynesian dynamic general equilibrium model of Smets &
Wouters (2007). In particular, we assess the forecasting performance
of the Smets & Wouters (2007) model vis-a-vis two variants of Real
Business Cycle models that lack nominal frictions. Thus we are able to
quantify the contribution of nominal frictions to the forecasting per-
formance with regard to real variables. We find that some nominal
frictions are indeed helpful to forecast real variables while indexation
to lagged inflation in the price and wage setting process seems to add
little to the forecasting performance of these models.
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1 Introduction

New Keynesian dynamic general equilibrium models feature prominently
in macroeconomic research at central banks and in academic circles. Re-
cent vintages of these models are often found to have similar success in
forecasting macroeconomic variables as do leading statistical models such
as vector autoregressions (see for example Smets & Wouters (2003)). The
model in Smets & Wouters (2007) builds on earlier work such as Christiano,
Eichenbaum & Evans (2005) who build dynamic equilibrium models that
incorporate numerous frictions, both nominal and real, helping the model
fit the data and giving monetary policy an important role in these models
by breaking the Pareto optimality of equilibrium allocations. In addition to
those frictions this class of models usually features a relatively large number
of shocks, which besides improving fit also allows researchers to use more
observable variables when estimating the model using likelihood-based esti-
mation. A number of papers have explored the forecasting performance of
DSGE models. Besides Smets & Wouters (2004), other papers that focus
(at least in part) on forecasting issues are Del Negro & Schorfheide (2004)
and Wang (2009), among others.
This paper examines how nominal frictions introduced in the New Key-
nesian framework contribute to the out of sample forecasting performance
of real variables, namely real investment, real GDP and real consumption.
The results are then compared to two stripped down versions of the Smets-
Wouters model, one without the nominal frictions and one without nominal
and most real frictions. All models are estimated using Bayesian methods.
As a side product, we are also able to draw some conclusions on how impor-
tant real frictions are when forecasting real variables, namely by comparing
the forecasting performances of the two benchmark models.
Thus, the the main difference in focus between this paper and others in the
literature is that here we focus on the relative merits of different structural
models when it comes to forecasting, in contrast to exploring the forecasting
performance of those models relative to purely statistical time series models.
This paper is also related to research that investigates the role of different
frictions in dynamic equilibrium models and how those frictions help the
model to replicate VAR impulse responses, such as Christiano et al. (2005).
Given that there is a close relation between impulse responses and forecast-
ing 1 our results could be useful in that context as well. Another paper
focusing on the relative importance of different frictions is Kano & Nason

1An impulse response analysis forecasts the response of the model after a certain shock
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(2008), which compares model-implied spectra to spectra estimated using a
statistical model.
An advantage of focusing on forecasting performance is that different metrics
to measure that performance are readily available and easily interpretable.
Furthermore, forecasting performance is interesting in its own right, in par-
ticular since models of the class we consider here are now regularly used
at central banks for both policy evaluation and forecasting. Throughout
this paper we focus on the out of sample forecasting performance of models.
While there is considerable discussion among economists about whether or
not in-sample or out-of-sample forecast measures should be used (Inoue &
Kilian 2002), we follow most of the applied forecasting literature in focusing
on the latter.
Section 2 introduces the models used in this paper, section 4 explains the
measure of forecasting accuracy, section 3 gives a short summary of the
Bayesian estimation procedure and section 5 gives the results. The last
section concludes.

2 Models

This section provides the log-linearized equilibrium conditions of the models
used in the paper. For the Smets & Wouters (2007) model a more detailed
exposition can be found in the original paper.
All variables are log-deviations from the steady state balanced growth path.
Starred variables are steady state (balanced growth path) values.

2.1 A medium-scale New Keynesian model - Smets & Wouters

Let cy, iy,gy and ky denote the steady state ratios of consumption, invest-
ment, exogenous government spending and capital to output. Steady state
variables that are not ratios are denoted by a ∗. We define zy = Rk∗ky where
Rk∗ is the steady state rental rate of capital.
The aggregate resource constraint in the economy is given by:

yt = cyct + iyit + zyzt + εgt (1)

εgt denotes an exogenous spending shock. cy is given by 1 − gy − iy. The
representative household chooses the path of real consumption to satisfy the
following Euler Equation:

ct = c1ct−1 + (1 − c1)Etct+1 + c2(lt − Etlt+1) − c3(rt − Etπt+1 + εbt) (2)
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where

c1 = (λ/γ)/(1 + λ/γ) (3)

c2 = [(σc − 1)W h
∗ L∗/C∗]/[σc(1 + λ/γ)] (4)

c3 = (1 − λ/γ)/[(1 + λ/γ)σc] (5)

γ is the steady state growth rate of the economy which enters the model as
a deterministic growth rate to labor productivity. λ governs the strength of
the first-order external habit formation in the representative agent’s utility
function. σc is the inverse of the intertemporal elasticity of substitution.

Investment is determined by another Euler Equation:

it = i1it−1 + (1 − i1)Etit+1 + i2qt + εit (6)

The no arbitrage condition for the value of capital qt is given by:

qt = q1Etqt+1 + (1 − q1)Etr
k
t+1 − (rt − Etπt+1) + εbt (7)

where

i1 = 1/(1 + βγ1−σc) (8)

i2 = i1γ
2ϕ (9)

q1 = βγ−σc(1 − δ) (10)

β is the representative agent’s discount factor, δ is the appreciation rate
for capital in the model economy and ϕ is the steady-state elasticity of
the capital adjustment cost function. orientation The aggregate production
function follows a standard Cobb-Douglas specification except for φp, which
is one plus the share of fixed costs in production. α is the share of capital
in production.

yt = φp(αk
s
t + (1 − α)lt + εat ) (11)

Determination of capital services is given by the equation below:

kst = kt−1 + zt (12)

where
zt = [(1 − ψ)/ψ]rkt (13)

and ψ is a parameter that takes values between 0 and 1 and measures the
elasticity of the capital utilization adjustment cost.

rkt = −(kt − lt) + wt (14)
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Installed capital follows the law of motion:

kt = k1kt−1 + (1 − k1)it + k2ε
i
t (15)

where

k1 = (1 − δ)/γ (16)

k2 = (1 − (1 − δ)/γ)(1 + βγ1−σc)γ2ϕ (17)

Prices are given as a mark up µpt over marginal cost:

µpt = mplt − wt = α(kst − lt) + εat − wt (18)

Monopolistic competition and exogenous sluggish price adjustment a la
Calvo leads to the following New Keynesian Phillips Curve:

πt = π1πt−1 + π2Etπt+1 − π3µ
p
t + εpt (19)

π1 = ιp/(1 + βγ1−σcιp) (20)

π2 = βγ1−σc/(1 + βγ1−σcιp) (21)

π3 = 1/(1 + βγ1−σcιp)[(1 − βγ1−σcξp)(1 − ξp)/ξp((φp − 1)εp + 1)] (22)

Prices are indexed to inflation according to the following scheme: prices
of firms that can not reoptimize their price in a given period are changed by
the factor π

ιp
t−1π

ιp
∗ .

The degree of price stickiness is given by ξp.
Wages are set as a mark-up µwt over marginal cost, similarly to prices:

µwt = wt −mrst = wt −
(
σllt +

1

1 − λ/γ
(ct − λ/γct−1)

)
(23)

σl is the elasticity of labour supply with respect to the real wage. Real wages
are determined by

wt = w1wt−1 +(1−w1)(Etwt+1 +Etπt+1)−w2πt+w3πt−1−w4µ
w
t +εwt (24)

where the parameters in the equation above are given by

w1 = 1/(1 + βγ1−σc) (25)

w2 = (1 + βγ1−σcιw)/(1 + βγ1−σc) (26)

w3 = ιw/1 + βγ1−σc (27)

w4 = 1/(1 + βγ1−σc)[(1 − βγ1−σcξw)(1 − ξw)/(ξw((φw − 1)εw + 1))] (28)
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ιw and ξw are defined analogously to their counterparts in the price setting
equations. Monetary policy is determined by a Taylor-type rule where the
relevant output variables are deviations from potential output. Potential
output is the level of output in the case of flexible prices and wages and
without the two mark-up shocks.

rt = ρrt−1+(1−ρ)(rππt+ry(yt−ypt ))+r∆y[(yt−ypt )−(yt−1−ypt−1)]+εrt (29)

The exogenous variables are determined by the following processes:

εbt = ρbε
b
t−1 + ηbt (30)

εat = ρaε
a
t−1 + ηat (31)

εit = ρiε
i
t−1 + ηit (32)

εrt = ρrε
r
t−1 + ηrt (33)

εgt = ρgε
g
t−1 + ηgt + ρgaη

a
t (34)

εpt = ρpε
p
t−1 + ηpt − µpη

p
t−1 (35)

εwt = ρwε
w
t−1 + ηwt − µwη

w
t−1 (36)

All η’s are independent of each other and across time. We assume they are
normally distributed with standard deviations σb, σa, σi, σr, σg, σp and σw.

2.2 A RBC model with real frictions

Next we strip the Smets-Wouters model of its nominal aspects to arrive at
a RBC-type model with real frictions. Variables are defined as in the Smets
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& Wouters (2007) model above.

yt = cyct + iyit + zyzt + εgt (37)

ct = c1ct−1 + (1 − c1)Etct+1 + c2(lt − Etlt+1) − c3(rt + εbt) (38)

it = i1it−1 + (1 − i1)Etit+1 + i2qt + εit (39)

qt = q1Etqt+1 + (1 − q1)Etr
k
t+1 − rt + εbt (40)

yt = φp(αk
s
t + (1 − α)lt + εat ) (41)

kst = kt−1 + zt (42)

zt = [(1 − ψ)/ψ]rkt (43)

kt = k1kt−1 + (1 − k1)it + k2ε
i
t (44)

rkt = −(kt − lt) + wt (45)

0 = wt −
(
σllt +

1

1 − λ/γ
(ct − λ/γct−1)

)
(46)

0 = α(kst − lt) + εat − wt (47)

To summarize differences between the RBC model and the New Keynesian
model in their log-linearized representation: in the RBC model we are re-
moving the Calvo price and wage stickiness and shutting down the market
power in both the labor and intermediate goods markets. Hence, there is no
New Keynesian Phillips Curve, and the monetary authority plays no role.
On the real side of the model, there are only minor changes compared to
the New Keynesian models. The equations (37)-(45) are almost the same
as (1)-(18), except that expected inflation is dropped from the consumption
Euler equation (38) and the no arbitrage condition of the real value of capital
(40). A big difference between the models is the wage setting process. Since
both price and wage mark ups are zero, the real wage is simply equal to the
marginal rate of substitution and the marginal product of labor given by
equations (46) and (47). 2 Regarding the exogenous shocks, the price mark
up, the wage mark ups, and the monetary policy shock disappear in the
RBC model. Thus, the number of exogenous shocks reduces to four. The
stochastic specification for the remaining shocks are otherwise the same as
in the New Keynesian model.
In the figures below this model is called the flex RBC model.

2 An alternative would have been to allow non-zero real wage and price mark-ups, i.e.
to retain the assumption of monopolistic competition. We chose not to do so to bring this
model closer in line with other RBC models used in the literature.
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2.3 A simple RBC model

We then go on to remove all real frictions from the RBC model to arrive
at a textbook version of that model. This model will help us assess how
important those real frictions are for forecasting.
The following equations characterize the equilibrium for this model:

ct = ct−1 +
(σc − 1)W∗L∗C∗

σc
(lt − lt+1) − 1

σc
rt (48)

rt =
(
1 − βγ−σc (1 − δ)

)
rkt+1 (49)

yt = αkst + (1 − α) lt + εat (50)

kt =
1 − δ

γ
kt−1 +

(
1 − 1 − δ

γ

)
it (51)

kst = kt−1 (52)

rkt = − (kst − lt) + wt (53)

εat = αrkt + (1 − α)wt (54)

wt = σllt + ct (55)

yt = cyct + iyit + εgt (56)

A New Keynesian model without indexation to lagged infla-
tion

This model is essentially the same as the New Keynesian model with index-
ation except for the following modifications (with the reduced form param-
eters formed using indexation parameters that are set to 0):

πt = π2Etπt+1 − π3µ
p
t + εpt (57)

wt = w1wt−1 + (1 − w1)(Etwt+1 + Etπt+1) − w1πt − w4µ
w
t + εwt (58)

3 Estimation Procedure and Data

3.1 Estimation

The estimation procedure we follow has been used quite extensively in the
macroeconomics literature during the last decade. We only sketch the algo-
rithm and provide the additional information necessary to be able to repro-
duce our results. For a detailed exposition of these methods we refer to An
& Schorfheide (2007).
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The log-linearized equilibrium conditions given in the preceding section form
a system of expectational difference equations. These can be jointly solved
for a state space system like (59)-(60) via a number of algorithms, e.g. Sims
(2002).

yt = Axt +But (59)

xt = Cxt−1 +Dvt (60)

This state space system (consisting of the vector of observables yt and
the vector of generally unobserved states xt) is then used in conjunction
with the Kalman Filter to evaluate the density of observables given a vec-
tor of parameters. The time series used in our estimations are quarterly.
We use independent priors for each structural parameter and combine those
with the likelihood function computed with the Kalman Filter to arrive at a
posterior distribution, the object of interest in Bayesian statistical inference.
The priors we choose are identical to those of Smets & Wouters (2007). As
we move from the New Keynesian model to the variants of the RBC model,
we keep the priors for those parameters that also appear in the respective
RBC Models. The prior distributions are given in the appendix. Since the
mapping from structural parameters to the entries of the parameter vectors
in (59)-(60) is in general non-linear we use the Metropolis-Hastings algo-
rithm to generate 1000000 draws that approximate draws from the desired
posterior. We use a random walk proposal density with mean zero normal
innovations and a scaled version of the inverse Hessian at the posterior peak
as covariance matrix. We estimate our models and generate forecasts using
the Dynare package of Juillard et al.

3.2 Data

We use the following observables in our estimation exercises 3:

1. ∆ logGDP , the log difference of real GDP per capita

2. ∆ logC, the log difference of real consumption per capita

3. ∆ log INV , the log difference of real fixed private domestic investment
per capita

4. ∆ logW , the log difference of real wages per hour in the non-farm
sector

3This is the same data set used in Smets & Wouters (2007). All series are seasonally
adjusted.
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5. ∆ logP , the log difference of the GDP implicit price deflator

6. logH, the log of average non-farm hours times civilian employment
per capita

7. logR, the log of the Federal Funds Rate divided by 4

For the Smets & Wouters (2007) model and the New Keynesian model
without indexation we use all of the observables above, while for the RBC
model with real frictions we use observables 1 through 4 and for the textbook
RBC model we use observables 1 and 2 only to avoid stochastic singularity
when calculating the likelihood function. This choice might be criticized
since we give the New Keynesian models more data to work with, but we
see that as a way of disciplining the estimation. If we let all models use
the same observables all nominal variables in the New Keynesian model are
unobserved (some of them will be unobserved state variables). Those state
variables can then take on highly improbable values to improve in sample
fit, while out-of sample fit of the real variables could suffer substantially
(remember that the unobserved states are crucial in forecasting via the state
space system and also that we are not interested in forecasting nominal
variables). Since we are interested in realistic forecasting exercises such
as those undertaken by central banks we view our approach as reasonable
enough. All real variables are obtained by using the GDP deflator. Per
capita variables are calculated by dividing by the size of the population 16
years and older. Hours and wages are obtained from the Bureau of Labor
Statistics and all other variables besides the Federal Funds Rate are from
the Bureau of Economic Analysis. The sample starts in the first quarter of
1965 and ends in the fourth quarter of 2001. We actually have data until
the last quarter of 2004, but we set those values aside for our forecasting
exercises.

4 Formation of Forecasts and Measure of Forecast
Performance

For the out-of-sample forecasting experiments, we use rolling estimations
with sample size R = 100. While this is a small number for models of
the size we use we had to strike a balance between individual sample size
and the number of samples we could use to measure forecast performance.
Forecast horizons h up to 12 quarters are considered. The first estimation
sample starts in 1965:1 and ends in 1989:4 so that the first forecasting date
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is 1990:1. After all models have been estimated, the first set of out-of-
sample forecasts is computed. Then, sample range shifts one-step forward
to 1965:2-1990:1 in order to compute the second set of forecasts. All models
are fully re-estimated for each rolling sample with the estimation procedures
described earlier. The estimation is performed S = 49 times to obtain a
series of forecasts for each forecast horizon and each model. The last sample
is 1977:1-2001:4 and the last forecasting date is 2004:4.

We measure the forecast performance of the different models by compar-
ing them to naive forecasts using the entire sample mean of each variable as
the predictor. For each rolling sample we thus calculate the average of the
observables we are interested in and denote that average ys where s = 1, ..., S
For our DSGE models the forecasts are formed using the state space system
(59)-(60), by iterating on the last estimate of the unobserved state using the
state equation (60) and then backing out the corresponding value for the
observable using the measurement equation (59). We do this for a subset
of the parameter draws obtained using the Metropolis-Hastings algorithm 4

Let T = R+s−1 be the end of each rolling sample s. We denote the h-step
ahead point forecasts of model i and sample s at time T as ỹi,sT+h|T

5. Thus

for the mean forecast we have ỹmean,sT+h|T = ys. The root mean squared forecast
error of model i at forecast horizon h is given by:

RMSFE(h, i) =

√√√√ 1

S

S∑
s=1

(yT+h − ỹi,sT+h|T )2 (61)

We then look at the percentage gains or losses in the RMSFE’s when we use
a DSGE model relative to the naive mean forecast:

rRMSFE(h, i) = 1 − RMSFE(h, i)

RMSFE(h,mean)
(62)

rRMSFE(h, i) is often referred to as the forecast content function. If
the model i forecast is considered informative, its rRMSFE(h, i) should
be larger than zero. In the figures below rRMSFE(h, i) is reported as a
percentage.

4Since the draws generated by the Metropolis-Hastings algorithm are highly correlated
using uniformly drawn parameter values from the original sample increases efficiency with-
out losing too much information to obtain the posterior forecast distribution. The mean of
the posterior forecast distributions is taken as the point forecast of the relevant variable.
This distribution only takes into account parameter uncertainty.

5We assume that only the most recent finished subsample is used to form forecasts.
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5 Results

5.1 Estimation Results of DSGE Models

Figure 1 reports posterior means of selected parameters with associated 90%
highest posterior density intervals (HPDI) over the rolling subsamples of the
New Keynesian model and the RBC model with real frictions.6 First, our
estimated parameters of the New Keynesian model are very similar to those
of Smets & Wouters (2007). Second, the estimated parameters of the RBC
model are, with minor exceptions, mostly in line with the New Keynesian
model. There are moderate differences in estimates of the production fix
cost and the standard deviation of the productivity shock between these
two models. However, the HPDIs of nearly all parameters of the RBC
model with real frictions overlap in large part with those from the New
Keynesian model. This indicates that estimates of parameters governing
real behavior are robust against different specifications of the nominal side
of the economy. Regarding the evolution of the estimates, the estimated
technology growth rate is increasing over time for both models, indicating
an acceleration of technology growth over the past 20 years. Otherwise,
the estimated real frictions and other behaviour parameters remain fairly
stable over subsamples. Finally, an important observation is the decline of
the estimated volatilities of the structural shocks. Both productivity and
government spending shock volatilities fall substantially over time.

Figure 2 reports the estimation results of some selected parameters which
only appear in the New Keynesian model and represent the nominal side of
the model. In terms of monetary policy, it is interesting to note that both the
estimated central bank response to inflation and the interest rate smooth-
ing parameter have hardly changed over time, whereas the response to the
output gap has declined somewhat. At first glance, these results seem to
contradict those of Clarida, Gali & Gertler (2000) where substantial dif-
ferences in the Taylor rule have been estimated between the Pre-Volcker
(1960:1-1979:2) and Volcker-Greenspan (1979:3-1996:4) periods. However,
our sample selection is quite different from theirs. Our first subsample starts
in 1965:1 and ends in 1989:4 which encompasses the Volcker disinflation pe-
riod and covers the beginning of Greenspan’s tenure. Hence, our results are
only loosely connected with the notion of different monetary policy regimes.

Regarding the nominal frictions on prices and wages, we can observe a
large increase in the Calvo price parameter over time, while no significant
movement of the Calvo wage parameter can be seen. Initially, wages are

6Figures for all estimated parameters can be provided by the authors upon request.
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much stickier than prices with degree of stickiness around 0.7 against 0.55,
respectively. By the end of the sample, price and wage stickiness are almost
equal. The degrees of price and wage indexation to lagged inflation have
fallen only slightly. These results are in line with the estimates from Smets
& Wouters (2007). Most importantly, the standard deviations of aggregate
nominal shocks - like in case of real shocks - have dropped considerably over
time.

Overall, our results capture in part the transition of the economy from
periods of high volatility towards the so-called ”Great Moderation” where
the aggregate volatilities are much lower. The rolling estimates indicate
that the driving force behind the transition is the decline in volatilities of
aggregate shocks. This is also in line with Wang (2009) where subsample
estimates of a small-scale New Keynesian model are reported.

5.2 Forecasting Results

In our out-of-sample forecasting experiments, we focus our attention on
three key real variables: output growth, investment growth and consump-
tion growth. We also include VAR models to disentangle two different pos-
sible sources of forecast improvements. The first one is whether including
nominal variables in the VAR alone helps to predict real variables. The
second one is whether restrictions derived from economic theory per se help
to improve forecasts. In other words, we want to find out whether any im-
provement in forecasts stems from the theoretical restrictions we impose or
from the statistical information contained in the nominal variables we con-
sider. Hence we consider two different VAR specifications. The first VAR
model is a seven-variable VAR incorporating the same observables as the
New Keynesian model, and the second VAR model is a four-variable VAR
with the same observables as in the RBC model. In addition to the unre-
stricted VAR models, we also consider Bayesian VARs (BVAR) and impose
atheoretical restrictions in the form of priors. Following Smets & Wouters
(2007) we use a Minnesota prior, which assumes that individual variables
in the VAR follow random walks. Hence, the BVARs are estimated in level
in contrast to the unrestricted VARs. Both VAR and BVAR models are re-
estimated at each rolling sample like their DSGE counterparts.7 The focus

7We follow the specification of Smets & Wouters (2007) and set the lag length of unre-
stricted VARs to one and BVARs to four. The estimation procedure and prior specification
follow Lütkepohl (2005). We also experiment with various hyperparameter specifications
of the BVARs. Setting the ”own lags” tightness parameter to 1 and ”other lags” to 0.01
seems to yield overall the best forecasting performance for the BVARs.
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of this paper however is not to find the best forecasting model per se but to
link the forecasting ability of structural macroeconomic models to certain
properties of those models that have a clear macroeconomic interpretation.

Figure 3 shows the rRMSFE(h, i) of the New Keynesian model, the
RBC model with real frictions and the two unrestricted VAR models. In
terms of output growth, the New Keynesian model dominates other com-
peting models and is able to provide informative forecasts for all forecast
horizons considered. The RBC model with real frictions can only outperform
the New Keynesian model at the one-quarter-ahead horizon and is generally
not informative beyond the two quarter horizon. The four-variable VAR
has nearly the same forecasting performance as the RBC model, whereas
the seven-variable VAR has uniformly the worst predictive ability for out-
put growth. Regarding investment growth, all models can generate fairly
informative forecasts at short horizons. The New Keynesian model remains
the dominating forecasting model. The RBC model with real frictions is
able to outperform the corresponding four-variable VAR when it comes to
investment, indicating that the underlying structural restrictions imposed
on the RBC model indeed have some predictive content, at least for invest-
ment. In terms of consumption growth, none of the model considered can
generate informative forecasts.The RBC model is especially bad in this re-
gard, yielding forecasts which have more than 20 percent higher root mean
squared forecast errors than the unconditional mean forecasts.8

Figure 4 shows the rRMSFE(h, i) of the same DSGE models as in fig-
ure 3 and the associated BVAR models. First, the four-variables and the
seven-variables BVAR have almost the same predictive performance. This
is likely due to the tight prior specification of our BVARs. The use of of the
Minnesota prior greatly improves the predictive performance of the large
seven-variables VAR in terms of consumption and output growth. In con-
trast to the unrestricted VAR, the seven-variable BVAR is able to provide
informative short-horizon output growth forecasts, whereas the predictive
performance of the smaller four-variable BVAR is similar to that of the 4
variable VAR estimated using a frequentist approach. Nevertheless, the the
New Keynesian model and the RBC model are still able to outperform their
BVAR counterparts for output and investment growth. Summing up, at
least for output growth and investment, it seems that the structural restric-
tions imposed by economic theory lead to better out-of-sample forecasting

8We checked the sensitivity of our results by increasing the prior standard deviations
of the DSGE models. In particular, all priors standard deviations except beta priors are
increased by 50 percent. All beta priors are set to be symmetric with mean 0.5 and
standard deviation 0.25. The overall results remain very similar.
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performance. Increasing the number of variables in the VAR alone does not
improve forecasts, except in combination with reasonable restrictions on the
parameter space. Using structural restrictions based on economic theories
tends to provide better forecasts than atheoretical restrictions like the Min-
nesota prior. Moreover, introducing nominal rigidities tends to improve
forecasts of real variables, given that the New Keynesian model is superior
to the RBC model in terms of the forecasts presented here. 9

5.3 Impact of different specifications

In this subsection, we further examine the impact of different structural
restrictions on the predictive ability of the DSGE models. We consider the
two special cases of our models described in section 2: The first model is
the baseline RBC model without real frictions (denoted plain flex RBC in
the figures). It is essentially the same RBC model as in sections above but
without all real rigidities. It should serve as an assessment of the predictive
content of the real rigidities on the real variables. Second, in Smets &
Wouters (2007), it is documented that the price and wage indexations to
lagged inflation are empirically quite unimportant in-sample. Therefore,
the second model is the same New Keynesian model as in sections above
but without the price and wage indexations to evaluate their impact out-of-
sample. Figure 5 reports the rRMSFE(h, i) of all DSGE models.10

From the figure, it is obvious that price and wage indexations to lagged
inflation are irrelevant in terms of forecasting real variables. Forecasts of
the New Keynesian model both with and without price and wage indexa-
tions to lagged inflation have virtually the same performance for all variables
and forecast horizons. Turning to the results of the RBC models, on the
one hand, it seems that the real frictions can help improve short horizons
forecasts of output and investment growth (up to approximately the three
quarter horizon). On the other hand, albeit still uninformative, the baseline

9One might wonder why the VAR models do poorly in our forecasting exercises. Note
that we use a small sample size, which could be a culprit for performance of the VARs.
Also, it is worth noting that our results on the forecasting performance of VARs vs. DSGE
models are in line with the results in Smets & Wouters (2007).

10Details of the specifications of the VARs are given in an technical appendix available
upon request. The prior specifications remain unchanged and all models are re-estimated
at each subsample with the procedure described in section 3. Figure 5 does not include
the rRMSFE(h, i) for investment in the case of the plain RBC model since investment is
not an observable variable when we estimate that model. We could still calculate forecasts
for investment with that model, but since investment is not included as an observable this
would not be a fair comparison.
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RBC model is clearly superior to the model with real frictions in consump-
tion growth forecasts. We argue that the results confirm our view that nom-
inal frictions add useful information when forecasting real variables, since
both RBC models are inferior to the New Keynesian models in terms of
RMSFE.

5.4 Forecast dynamics and uncertainty

In previous sections, we have demonstrated the usefulness of nominal fric-
tions to predict real variables. In order to assess the reason for this phe-
nomenon, we take a closer look at the forecasts dynamics of the underlying
models. Figure 6 shows the out-of-sample forecasts of few selected subsam-
ples for output growth. The means of the posterior forecasts of the models
are plotted against the actual values. The pictures show that real frictions
seem to help little to predict output growth. The h-step ahead forecasts of
the baseline RBC model are almost flat, hence, miss all out-of-sample dy-
namics. By introducing real frictions, we can observe little additional short
run persistence in the forecasts that help to capture the dynamics of output
growth out-of-sample. It is the nominal frictions which are really successful
in generating enough persistence in the forecasts, thus mimicking the actual
movements of the variables. Our results are in line with the impulse re-
sponses analyses of New Keynesian models such as Christiano et al. (2005)
where standard RBC models fail to provide adequate empirical responses af-
ter fundamental shocks. Our results seem to confirm that nominal frictions
have merits in out-of-sample forecasting.

Thus far we have focused on point forecasts. Naturally a researcher
would also be interested in the uncertainty associated with the forecast gen-
erated by a certain model. As is usually the case in econometric applications
a researcher is faced with a trade-off between bias and variance when choos-
ing an estimator. However in our case the inclusion of nominal frictions did
not change the standard deviation of forecasts considerably so as a first step
we focus on mean forecasts. This is illustrated in figure 7, where we report
the 90% HPDIs (dashed lines) of posterior forecasts from the upper left sub-
plot of figure 6. The forecast uncertainty (the width of the HPDI) of the
baseline RBC model is somewhat smaller than the New Keynesian model
and the RBC model with real frictions, whereas the degree of uncertainties
of the latter models are very similar. The 90% HPDIs we report here only
take into account parameter uncertainty, but not the uncertainty associated
with future shocks and the uncertainty associated with the last estimated
unobserved state we condition our forecasts on (we follow the dynare package
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in using the last available smoothed estimate of the state for each parameter
draw). Thus those confidence bands are confidence bands for the minimum
mean squared error forecast conditional on a particular value for the state
xt.

Naturally, this pattern could be a consequence of our decision to esti-
mate the New Keynesian models with more variables than the RBC model.
Otherwise the uncertainty associated with the forecasts coming form the
New Keynesian model should be larger since it is a larger model.
As a robustness check we re-estimate the New-Keynesian model with the 4
observables from the RBC specification (∆ logGDP , ∆ logC, ∆ log INV ,
and ∆ logW ). Figure 8 shows the error bands from Figure 7 and the corre-
sponding error band for the 4 variable New Keynesian model. Clearly, the
New Keynesian model with only 4 observables has more uncertainty associ-
ated with it than the same New Keynesian model with more observables and
the smaller RBC model with the same observables. To confirm this point
we calculate the width of the error bands for output growth across time and
forecasting horizons for our models and plot them in Figure 9.

6 Conclusion

This paper tries to shed some light on what specific features of modern
macroeconomic models contribute to their forecasting performance. To do
so we use a standard medium scale macroeconomic model as our workhorse
and show that nominal frictions are indeed important when it comes to
forecasting real economic variables. However our results indicate that while
nominal frictions are helpful, this is not true uniformly across all real vari-
ables and nominal frictions included in the Smets & Wouters (2007) model.
In particular, price and wage indexation to lagged inflation seem to con-
tribute little to the (real) forecasting ability of the Smets & Wouters (2007)
model. Furthermore, all economic models considered here do not provide a
substantial improvement over a naive mean forecast when it comes to real
consumption.

By focusing on a subset of variables and a well-known forecasting statis-
tic (RMSFE) we take a narrower approach to model fit comparison than the
standard marginal likelihood comparison. The marginal likelihood encodes
all the information of the one step ahead forecasting density for all observ-
ables. We think by concentrating on a subset of observables and one statistic
of the forecasting distribution a researcher can gain additional insights that
are blurred by the amount of information contained in the marginal likeli-
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hood.
While our results are obviously partly driven by our choice of models and
forecasting variables we think that our approach can nonetheless highlight
how nominal features of macroeconomic models contribute to the forecasting
performance of those models, which is hopefully of interest to researchers in
both academia and at central banks.
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A Prior Distributions

Parameter distribution mean standard deviation
γ Normal 0.40 0.10
h Beta 0.70 0.10
σc Normal 1.50 0.37
σl Normal 2.00 0.75

100β−1 Gamma 0.25 0.10
δ Normal 0.025 0.00
gy Normal 0.18 0.00
ϕ Normal 4.00 1.50
φp Normal 1.25 0.25
α Normal 0.30 0.05
ψ Beta 0.50 0.15
ιp Beta 0.50 0.15
ξp Beta 0.50 0.10
ξw Beta 0.50 0.10
ιw Beta 0.50 0.15
ρ Beta 0.75 0.10
ry Normal 0.12 0.05
rπ Normal 1.50 0.25
r∆y Normal 0.12 0.05
π Gamma 0.62 0.10

L Normal 0.00 2.00
σa Inverse Gamma 0.10 2.00
σb Inverse Gamma 0.10 2.00
σi Inverse Gamma 0.10 2.00
σg Inverse Gamma 0.10 2.00
σw Inverse Gamma 0.10 2.00
σr Inverse Gamma 0.10 2.00
σp Inverse Gamma 0.10 2.00
ρa Beta 0.50 0.20
ρb Beta 0.50 0.20
ρi Beta 0.50 0.20
ρg Beta 0.50 0.20
ρw Beta 0.50 0.20
ρr Beta 0.50 0.20
ρp Beta 0.50 0.20
ρga Beta 0.50 0.20
µp Beta 0.50 0.20
µw Beta 0.50 0.20
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Figure 1: Parameter estimates over subsamples: real side

1965:1 − 1989:4 1977:1 − 2001:4
0.7

0.75

0.8

0.85

0.9
Interest rate smoothing

1965:1 − 1989:4 1977:1 − 2001:4
1.6

1.8

2

2.2

2.4

Response to inflation

1965:1 − 1989:4 1977:1 − 2001:4
0

0.05

0.1

0.15

0.2
Response to output gap

1965:1 − 1989:4 1977:1 − 2001:4
0.5

0.6

0.7

0.8

0.9
Calvo price

1965:1 − 1989:4 1977:1 − 2001:4
0.5

0.6

0.7

0.8

0.9
Calvo wage

1965:1 − 1989:4 1977:1 − 2001:4
0

0.2

0.4

0.6

0.8
Price indexation

1965:1 − 1989:4 1977:1 − 2001:4

0.4

0.5

0.6

0.7

0.8
Wage indexation

1965:1 − 1989:4 1977:1 − 2001:4
0.2

0.25

0.3

0.35

0.4
Std of monetary shock

1965:1 − 1989:4 1977:1 − 2001:4
0.1

0.15

0.2

0.25
Std of price mark−up shock

Figure 2: Selected parameter estimates over subsamples: nominal side

21



1 2 3 4 5 6 7 8 9 10 11 12
−10

0

10

20

∆logGDP

 

 

7−series−VAR

4−series−VAR
Full NK

Flex RBC

1 2 3 4 5 6 7 8 9 10 11 12
−50

0

50

∆logC

1 2 3 4 5 6 7 8 9 10 11 12
−20

0

20

40

∆logINV

Figure 3: Forecasting performance of DSGE and VAR
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Figure 4: Forecasting performance of DSGE and Bayesian VAR
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Figure 5: Forecasting performance of different DSGE specifications
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Figure 6: Illustration of forecasting performance: output growth
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Figure 7: Illustration of forecast uncertainty: output growth
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Figure 8: Illustration of forecast uncertainty with 4 variable New Keynesian
model: output growth
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Figure 9: Width of error bands across time and forecasting horizons

25


	Introduction
	Models
	A medium-scale New Keynesian model - Smets & Wouters
	A RBC model with real frictions
	A simple RBC model

	Estimation Procedure and Data
	Estimation
	Data

	Formation of Forecasts and Measure of Forecast Performance
	Results
	Estimation Results of DSGE Models
	Forecasting Results
	Impact of different specifications
	Forecast dynamics and uncertainty

	Conclusion
	Prior Distributions

