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Abstract

Should policymakers and applied macroeconomists worry about the difference
between real-time and final data? We tackle this question by using a Bayesian
VAR with time-varying parameters and stochastic volatility to show that the dis-
tinction between real-time data and final data matters for the impact of monetary
policy shocks: The impact on final data is substantially and systematically dif-
ferent (in particular, larger in magnitude for different measures of real activity)
from the impact on real-time data. These differences have persisted over the last
40 years and should be taken into account when conducting or studying monetary
policy.

Keywords: real-time data, time-varying parameters, stochastic volatility, impulse
responses

*We would like to thank Fabio Canova, Tim Cogley, and Dean Croushore as well as participants
at the 2015 IAAE conference and the Cirano workshop on real-time data in Montreal for their com-
ments. Miki Doan, Marisa Reed and Daniel Tracht provided excellent research assistance. The views
expressed in this paper are those of the authors and do not necessarily reflect those of the Federal
Reserve Bank of Richmond or the Federal Reserve System.

1



1 Introduction

When monetary policymakers evaluate the effects of their most recent policy deci-
sions (say, to prepare for the next round of monetary policy decisions) they only have
access to preliminary real-time estimates of macroeconomic data that have been col-
lected after the policy decision they want to evaluate. Is the difference between real-
time and final macroeconomic data important enough to be considered when analyz-
ing and conducting monetary policy? We revisit this question asked by Croushore &
Evans (2006) in light of recent evidence (Aruoba (2008)) that the measurement errors
in macroeconomic data are far from satisfying the properties of classical measure-
ment errors and evidence that there is substantial time variation in the dynamics
of U.S. macroeconomic time series, as emphasized by Cogley & Sargent (2005) and
Primiceri (2005).

We use a Bayesian vector autoregression (VAR) with time-varying parameters and
stochastic volatility estimated on data that includes real-time and final releases of
macroeconomic data to uncover substantial time variation in the dynamics of mea-
surement errors: We find that the measurement errors are significantly correlated
for some variables, feature substantial changes in volatility and can be different from
zero for long periods of time with magnitudes that are economically meaningful. We
use a model with time-varying parameters and stochastic volatility because time
variation in the dynamics and volatility of final data has been identified as impor-
tant for (final) U.S. data by Cogley & Sargent (2005), Primiceri (2005), and Canova
& Gambetti (2009), among others. Our paper shows that these features carry over
to real-time data as well.

By using sign restrictions to identify a monetary policy shock, we establish that pol-
icymakers should indeed care about measurement errors. Differences between the
impulse responses of real-time and final data on measures of real activity are signif-
icant and persist over time. As these differences are persistent over time, policymak-
ers should take them into account.

Our work is related to the literature on time variation in macroeconomic dynamics

such as Cogley & Sargent (2005), Primiceri (2005), and Gali & Gambetti (2009). The



model we use to analyze time variation in our data is borrowed from those papers.”
As pioneered by Canova & Nicolo (2002), Faust (1998) and Uhlig (2005), we use sign
restrictions to identify monetary policy shocks. Canova & Gambetti (2009) use sign
restrictions to identify monetary policy shocks in a VAR with time-varying parame-
ters and stochastic volatility, but they do not consider real-time data.

Croushore & Evans (2006) tackle issues similar to ours, though in the context of a
fixed coefficient VAR using either recursive or long-run restrictions. Their model of
measurement error is less general than ours. For example, their models not only use
fixed coefficient models, but also do not allow for biases (non-zero intercepts) in the
relationship between different vintages of data. We find that these features matter,
reinforcing the results by Aruoba (2008), and beyond that establish that measure-
ment errors feature stochastic volatility and are correlated across variables.

In contrast to our work and Croushore & Evans (2006), the large majority of papers
on real-time data focuses on statistical models of measurement error that do not
identify effects of structural shocks. Jacobs & van Norden (2011) are motivated by
the evidence in Aruoba (2008) and build a flexible model for a univariate measure-
ment error series. In contrast to us, they model intermediate data releases, but do
not consider the relationship of measurement errors across variables, time variation
in the parameters, or stochastic volatility. Just as the model used in Jacobs & van
Norden (2011), our model is general enough to allow for measurement errors that are
correlated with either only final data ('news’) or correlated only with the real-time
data ('noise’) as well as intermediate cases, as we show in the model section. Jacobs,
Sarferaz, van Norden & Sturm (2013) build a multivariate version of Jacobs & van
Norden (2011), but still abstract from stochastic volatility and time-varying param-
eters. Both Jacobs & van Norden (2011) and Jacobs et al. (2013) do not study the
response of the economy to structural shocks, which is our main focus.

D’Agostino, Gambetti & Giannone (2013) use a VAR with time-varying parameters
and stochastic volatility on real-time data to study the forecasting ability of models

in this class.

LAn overview of this literature is given in Koop & Korobilis (2010).



Fixed-coefficient VARs using various vintages of real-time data have previously been
used to improve forecasting ability by Kishor & Koenig (2009) and Carriero, Clements
& Galvao (2015), for example.

The issue of mismeasured data is also of utmost importance when studying long-run
historical data. While scholars using historical data usually do not have access to
revised data for the entire sample, they sometimes explore overlapping data sources
- Cogley & Sargent (2014) do this in a model for US inflation that features stochastic
volatility for true data, but in contrast to our approach their model does not feature
stochastic volatility for the measurement error.

Croushore & Sill (2014) estimate a dynamic stochastic general equilibrium (DSGE)
model on final data and then use the approach of Schorfheide, Sill & Kryshko (2010)
to link real time data to the state variables of the estimated DSGE model. Similar to
our findings, their findings show both that there are substantial differences between
real-time and final data responses and that final data responses tend to be larger in
absolute value.

In the next section we describe our model. We then turn to results for our benchmark

specification.?

2 The Model

We jointly model the dynamics of the first release of any data point published - we
call this real-time data - and the latest vintage available at the time of the writing of

this paper - which we use as a proxy for final data. Throughout this paper, we study

2In an online appendix, we show that our findings are robust to alternative specifications: (i) using
an alternative measure of real activity, employment growth, (ii) using an alternative identification
scheme to identify monetary policy shocks, (iii) using an alternative definition of final data (iv) impos-
ing sign restrictions on both real-time and final data, and (v) using the Wu & Xia (2016) shadow rate
instead of the Federal Funds rate. The online appendix also discusses how our VAR can be motivated
by a DSGE model with asymmetric information.



the dynamics of vectors of the following form:

ye=| ape (1)

where 7, denotes inflation, i, the nominal interest rate, and x; a measure of real
activity. In our benchmark, z; will be GDP growth, but in the online appendix we
also study employment growth.® A superscript real denotes real time data, whereas
the superscript final denotes final data. Throughout the paper real-time data refers
to the first available release of a data point. We want to recover the joint dynamics
of real-time and final data and ask what those dynamics tell us about the effects
of monetary policy shocks on both real-time and final data. The dynamics of y; are

given by

L

Ye = phe + Z Ajiyi—j + e (2)

j=1

where the intercepts 1, the coefficients on lagged observables A, ;, and the covariance
matrix €, of ¢; are allowed to vary over time. Following most of the literature that
has used these models on quarterly data such as Del Negro & Primiceri (2015) and
Amir-Ahmadi, Matthes & Wang (2016), we set the number of lags L = 2.

By writing down a model for real-time and final versions of the same data series, we

have also implicitly defined a model of the measurement errors n and 7;:

T real final
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- l - final - Syt (3)
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3Jointly modeling the dynamics of real-time and final inflation, GDP growth, employment growth,
and the nominal interest rate leads to issues of numerical instabilities in the Gibbs sampler we use
to estimate the model. We thus study different variants of the model including one indicator of real
activity at a time. We could have reduced the lag length, but that would have made our results less
comparable to others in the literature. Similar issues are documented in Benati (2014), for example.
For the same reason we also refrain from including intermediate data revisions as observables.
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where S is a selection matrix.? We thus use a flexible time series model for the
measurement errors that does not impose strong restrictions on the measurement
errors - they can be correlated, have non-zero means, and feature substantial time
variation in conditional moments.® This is important since Aruoba (2008) has found
that data revisions are not necessarily well behaved.

To see that our model can capture measurement errors that feature both 'news’ and
‘noise’ components (i.e. the measurement errors can be correlated with both final and
real-time data), we can use a toy version of our model for a generic scalar variable ¢,

without time variation, stochastic volatility, or any dynamics:

inal
C{ma el

=6t = 7 (4)

Cy €2¢

where ¢, ~ N(0,9°). The measurement error n¢ = ¢ — ¢/ is then defined as

ear — e1. Consider as an example the following model for e,:
€1t = Wy

and

€2t = W + Uy
where w; and v; are independent Gaussian random variables. Then we have 7{ = v,
which is independent of the final data ¢/ = w,. Reversing the roles of ¢/ and ¢}
shows that measurement error can be independent of real-time data in our frame-
work. To see an intermediate case where the measurement error is correlated with
both real-time and final data, assume that e, ; = w;, as before, but now ey, = 2w, + v,

so that n{ = w; + v;, which is correlated with both real-time and final data.

To concisely describe the model we use to study time variation in the parameters

1 -1 0 0 0
S‘(oo1—10>

5The measurement errors inherit these features from the variables in the VAR.
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of the model, we define X, = I ® (1,y,_,...,5,_;) and rewrite (2):5:

yr = X0, + e 5)
Qt = 9t71 + U (6)

Following Primiceri (2005), it is convenient to break the covariance matrix of the

reduced-form residuals into two parts as implied by the following equation:
er = N, 'S (7)

where ¢, is a vector of independently and identically distributed (iid) Gaussian inno-
vations with mean 0 and covariance matrix /. A, is a lower triangular matrix with
ones on the main diagonal and representative non-fixed element \.. ¥; is a diago-
nal matrix with representative non-fixed element ¢7. Those elements vary over time

according to:

logo! =logal_, +v! 9)

All innovations are normally distributed with covariance matrix V', which, follow-

ing Primiceri (2005), we restrict as follows:

¢ I 0 0 O
U 0 0 0
V =Var ‘ = @ (10)
s 0 0T 0
L\ v /] 0O 0 0 W

T is further restricted to be block diagonal, which simplifies inference. (; and 1,
are vectors that collect the corresponding scalar innovations described above. We

estimate this model using the Gibbs sampling algorithm described in Del Negro &

6] denotes the identity matrix.



Primiceri (2015)%.

We follow Primiceri’s choice of priors, adjusted for the size of our training sample.
The Gibbs sampler we use is outlined in detail in Del Negro & Primiceri (2015). In
contrast to Cogley & Sargent (2005), we do not impose any restrictions on the eigen-
values of the companion form matrix of the VAR. We do so both on empirical grounds
(in Amir-Ahmadi et al. (2016) we show that there is a substantial probability of tem-
porarily explosive dynamics in US data) and theoretical grounds (Cogley, Matthes &
Sbordone (2015) show that temporarily explosive dynamics can emerge naturally in
micro-founded dynamic equilibrium models when agents are learning).

In order to ascertain whether or not monetary policy shocks affect real-time and fi-
nal data differently and if those effects have changed over time, we identify monetary
policy shocks using our VAR models. As our benchmark, we use sign restrictions. An
identification scheme of this sort has been used in time-varying parameter VARs
with stochastic volatility by Benati & Lubik (2014), Canova & Gambetti (2009), and
Amir-Ahmadi et al. (2016), among others.

Structural models used by macroeconomists give us a good sense of the signs of the
effects of monetary policy shocks on final data. The corresponding effects on real-
time data are less clear, and depend on the specifics of any particular DSGE model
with both real-time and final data (we present one such model in the next section).
This consideration leads us to only use sign restrictions on final data, not on real-time
data. We are thus not imposing any restrictions on the impulse response functions of
real-time data. We restrict the nominal interest rate to not decrease after a positive
monetary policy shock and both final inflation and final GDP growth to not increase
after a positive monetary policy shock. We impose those restrictions on impact and
for the first two periods after impact - this is the same number of periods as chosen by
Benati (2010), for example. While Uhlig (2005) did not impose restrictions on output
in his application of sign restrictions, it is by now commonplace in the literature to

impose restrictions on output or output growth as well (see, for example, Canova &

"We use 250,000 posterior draws, out of 200,000 are used as burn-in. We then keep every 10th draw
of the remaining 50,000, resulting in 5000 stored draws. We have assessed and ensured convergence
of the Markov Chain using the standard diagnostics.



Gambetti (2009)).

The equation for the nominal interest rate that is recovered using our identification
scheme gives, by construction, the nominal interest rate as a function of lagged real-
time and final data. The lagged final data is not directly observable by the central
bank when it makes its decisions every period. As such, we do not directly interpret
the nominal interest rate equation as a monetary policy rule (in contrast to Canova &
Gambetti (2009)), but instead interpret it as the central bank responding to observ-
ables such as survey and forecast data, which in turn depend on both real-time and
final data. This assumption can be justified by referring to micro-founded structural
models where the private sector has an informational advantage and thus knows the
final data before the central bank does. The online appendix describes one DSGE
model with these features. That model shares features with work by Aoki (2003),
Nimark (2008), Lubik & Matthes (2014), and Svensson & Woodford (2004), for exam-
ple.B

Given that, for computational reasons, we can not include additional observables
such as intermediate data releases, the only viable alternative would have been to re-
strict the central bank to only react to lagged real-time (i.e. first release) observables.
This approach would have substantially underestimated the information available to
the central bank. We think our approach better approximates the actual (large) in-

formation sets considered by central banks when making their decisions.®

8To keep their models tractable, those papers either assume relatively simple stochastic processes
for the measurement error that can not match our findings on the properties of measurement errors,
or they assume that the true realization of the data is observed by the central bank, but only with a
lag.

91n future work, we plan to relax this assumption and instead of using final’ data use the latest
available vintage of data each quarter as new data becomes available. We view this as a separate
project since in such a VAR we could no longer study the joint dynamics of real time and final data,
which is our main goal in the current paper.



3 Data

As our benchmark, we use the Philadelphia Fed’s real-time database (Croushore &
Stark (2001)) to construct a sample of annualized quarterly real-time and final infla-
tion (based on the GNP/GDP deflator) and annualized quarterly real-time and final
real GNP/GDP growth™. Real-time growth rates are calculated using all available
data when an estimate of the latest level of the corresponding series is first available
- the growth rate of GDP over the last year at any point in time is defined as the ratio
of the latest real GDP release to the most current available vintage of real GDP one
quarter earlier, for example.

As a proxy for final data, we use the most recent vintage available to us. Other ap-
proaches are certainly possible - Aruoba (2008) defines the final data as the vintages
available after a fixed lag (for most variables 3 years). In the online appendix we
present additional results that use this alternative definition of final data.

The real-time data is available starting in the fourth quarter of 1965. The last vin-
tage we use is from the second quarter of 2014 (incorporating data up to and includ-
ing the first quarter of 2014). We use 40 observations to initialize the prior for our
time-varying-VAR model. For the nominal interest rate (which is measured without
error), we use the average effective Federal Funds rate over each quarter.™

Figure 0 plots the real-time data and the measurement error as defined in the pre-
vious section. To get the final data, we have to subtract the measurement error from
the real-time data - positive measurement error implies that the real-time measure-
ment is higher than the final data. To convince yourself that the difference between
real-time and final data can be meaningful, it suffices to look at the mid-1970s: Real-
time GDP growth actually was lower than in the most recent recession, but there
were substantial revisions to that data later on - the measurement errors associated

with those errors is negative, meaning that data was revised upward substantially.™

0From now on we will refer to this variable as GDP growth.

HTn the appendix, we also present a version of the model that uses the shadow rate from Wu & Xia
(2016).

2L ubik & Matthes (2014) use a learning model to model the choices of a central bank that only
has access to real-time data as it makes its decisions. Just as Orphanides (2002), they highlight that
mis-measured data had a big impact on U.S. monetary policy in the 1970s. In the current paper, we
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In the following section we will analyze the time series properties of the measure-
ment errors and check how their behavior has changed over time. We will see that it
is indeed important to allow for time variation in the dynamics of these series.

Inflation
15 T T T

Real Time
Measurement error

_l 1 1 1 1 1 1 1 1 1
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Figure 1: Real-time data and measurement error

4 Results

4.1 The Time-Varying Properties of Measurement Errors

First, we want to describe how the properties of the measurement errors in inflation
and GDP growth have changed over time. Cogley & Sargent (2005) have pioneered
the use of ’local to time # moments to study changes in the dynamics of VARs with
time-varying parameters and stochastic volatility. In short, they calculate (uncondi-
tional) moments of the data governed by equation B at each point in time assuming
that the coefficients will remain fixed over time. That way they recover a sequence

of moments over time. This is feasible in their setup because they impose restric-

instead focus on the impact of monetary policy shocks on both real-time and final data.
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tions on the eigenvalues of the companion form matrix of the VAR. We, on the other
hand, do not impose any such restrictions for the reasons mentioned before. Instead,
we study forecasts from our model based on smoothed or full-sample parameter es-
timates (assuming, similar to Cogley & Sargent (2005), that the coefficients will not
change in the future) and calculate the moments of forecasts of the measurements
errors. It is important to emphasize that we use these moments of forecasts as low-
dimensional summary statistics that capture the dynamics of our model. We can
think of these moments as finite horizon versions of the summary statistics used by
Cogley & Sargent (2005). We focus here on one-year ahead forecasts. Increasing the
forecast horizon substantially would increase the uncertainty surrounding the esti-
mated forecast moments exactly because we do not impose any restrictions on the
dynamics of the VAR.

Figure 2 plots the median and 68 % posterior bands for the one-year ahead forecasts

Forecast of Measurement Error in Inflation

0 |
N PO P N W A a

1 1 1 1
1980 1985 1990 1995 2000 2005 2010

Forecast of Measurement Error in GDP Growth

| | |
> & N O N »N O ®

L L L L
1980 1985 1990 1995 2000 2005 2010

Figure 2: One-year ahead forecasts of measurement errors

of the measurement error based on the model with GDP growth.™ Our model pre-

13The date on the x-axis represents the date of the conditioning information.
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dicts substantial measurement errors one year in advance. We can think of these
one-year ahead forecasts as a proxy for trends or more generally the persistent parts
of the measurement errors.™ Our results confirm those in Aruoba (2008), who finds
that measurement errors in many variables do not have a mean of zero. Throughout
most the 1980s the one-year ahead forecast in the measurement error of inflation is
positive, of an economically meaningful size, and borderline statistically significant -
inflation was initially overestimated during that period. During the 1990s and up to
the financial crisis, inflation instead tended to be initially underestimated. During
the financial crisis, inflation was substantially overestimated initially.

The measurement error in real GDP growth is negative during the 1980s (meaning
that GDP growth was initially estimated to be lower than the final data suggests), be-
fore turning statistically insignificant during the 1990s. From 2000 to the financial
crisis we see an initial overestimation of GDP growth (with a substantial overesti-
mation during the financial crisis).

We now turn to higher moments of the forecasts. Figure B plots the volatilities of the
one-year ahead forecasts of measurement errors and the associated correlation be-
tween the forecasted measurement errors. Both volatilities share a similar pattern™
- high volatility in the 1970s and early 1980s, a decline afterward and a noticeable
uptick in volatility during the recent financial crisis. Interestingly, the correlation
between the measurement errors is significantly negative throughout our sample,
but has an upward trend for most of our sample that is only broken during the early
2000s. A negative correlation implies that an increase in the measurement error of
GDP growth (real-time GDP growth becomes larger relative to final GDP growth)
is associated with a decrease in the measurement error in inflation (final inflation
becomes larger relative to the real-time measurement), so that an initial overesti-
mation of GDP growth tends to be associated with an underestimation of inflation.

Since the magnitude of the correlation decreased substantially over time, this pat-

“Interpreting forecasts as trends has a long tradition in empirical macroeconomics going back to
Beveridge & Nelson (1981).

151t is common in models of the type we use here, used in conjunction with the type of data that we
analyze, that the volatilities of the variables in the VAR share a similar pattern - see for example Del
Negro & Primiceri (2015).
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(a) Volatility of Measurement Error in Inflation (b) Volatility of Measurement Error in GDP Growth
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Figure 3: Volatility and correlation of forecasted measurement errors

tern has become weaker over time. To summarize, a simple model of measurement
errors that models them as being independent across variables and having constant

innovation variance can miss important features of observed measurement errors.

4.2 The Effects of Monetary Policy Shocks Over Time

We first show impulse responses for different periods. We follow the standard ap-
proach in the literature to construct these impulse responses: For each time period,
we draw parameters from the posterior distribution for that period and then keep
these coefficients fixed as we trace out the effects of a monetary policy shock. We fo-
cus on impulse responses at short horizons because that is where we find the largest
difference between real-time and final data. Since we are interested in the differ-
ences between the effects on real-time and final data (rather than changes in the

impulse responses functions over time per se), we use one standard deviation shocks,
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where the standard deviation changes over time. This will give us a sense of how
the impact of a usual shock has changed over time. Figure @ plots the evolution of
the nominal interest rate to such a shock. The black line gives the pointwise median
response and the gray bands cover the area from the 15th to the 85th percentile of
the response with each of the 5 shades of gray covering the same probability. We can
see that there are differences on impact over time (in particular, the standard devi-
ation of monetary policy shocks decreases), but the overall median pattern remains
stable over time. In contrast, there is substantial time variation in the uncertainty
surrounding the median response. At some points in time there are some draws that

imply explosive behavior of the nominal interest rate.

IRFin 1976:Q4 IRFin 1979:Q4 IRFin 1984:Q4

IRF in 1989:Q4 IRFin 1994:Q4 IRFin 1999:Q4

IRF in 2004:Q4 IRF in 2009:Q4 IRFin 2013:Q4

0.15 0.2

0.1
0.1
0.05 0.1
0.05
o
o———— 0
-0.05
-0.05

Figure 4: Impulse response functions for the nominal interest rate to a one standard
deviation monetary policy shock.

Figure H plots the responses of real-time and final inflation to the same monetary

15



policy shock. The black line and gray areas correspond to the median and the 15th
to 85th percentiles of real-time data responses, whereas the red lines represent the
responses of final data. The bold red line is the median and the outer dashed red
bands correspond to the same percentiles as the outermost error bands for real-time
data (the 15th and 85th percentiles). For the most part the responses of real-time and
final inflation are very similar, especially after 4 to 5 periods. The sign restrictions
are mostly satisfied by responses of real-time inflation even though we do not impose
those restrictions.™ Nonetheless, we do find significant differences. For example, in
1979 the median impact response of real-time inflation is twice as large as that of
final data. Broadly speaking, we see a larger difference (on impact) for the first part
of our sample (through the 1980s). Substantial differences in the responses between
real-time and final inflation are present in the late 1970s to the late 1980s.

The impulse responses for GDP growth in figure B show a different pattern with
more pronounced differences. On impact and for the first few periods after the shock
hits, final GDP growth is lower than real-time GDP growth. This pattern is most
pronounced in 1984 and 1989, but persists throughout our sample. The magnitude
of those differences is economically significant - it matters if the response to a con-
tractionary monetary policy shock on impact is a reduction of 0.25 percentage points
in annualized GDP growth or 0.75 percentage points (these are roughly the magni-
tudes in 1984:Q4). We can also see that the sign restrictions we impose on final data
are also met for most draws of the real-time data response.

So far we have studied the marginal distributions of the impulse responses to
real-time and final data and compared them to each other. We are also interested
in the evolution of the joint distribution of impulse responses across real-time and
final data. Our estimation algorithm allows us to study the joint posterior of impulse
responses for a given horizon at each point in time. For each of those time/horizon
pairs, we calculate an estimate of the joint posterior of real-time and final impulse
responses (for each horizon and date this can be thought of as a scatterplot). We call

real,i

r;“"(j) the impulse response at horizon j of real-time variable i (i € {m, GDP,emp})

16Tn the online appendix we show that our results also hold of we impose sign restrictions on both
real-time and final data.
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IRF in 1976:Q4 IRFin 1979:Q4 IRF in 1984:Q4

IRF in 1989:Q4 IRF in 1994:Q4 IRFin 1999:Q4

Figure 5: Impulse response functions for real-time (gray/black) and final (red) infla-
tion to a one standard deviation monetary policy shock.

final,i

calculated using a draw of VAR coefficients at time ¢ and 7; (7) the response of the
corresponding final variable (both calculated using the same parameter draw).

We first plot the median and the 15th and 85th percentile bands for the difference
between final data and real-time impulse responses of GDP growth™ on impact (i.e.
at horizon 0): /PP (0) —**-“PP () A negative number means that the final data
response is smaller than the corresponding real-time response. Figure [l reveals that
the median difference has been negative throughout our sample with a maximum of
-0.1 and a minimum of -0.5 percentage points,” meaning that the response of final

data is larger in magnitude than the response of real-time data as the final response

1"The median difference for inflation is centered at 0 for most of the sample, so we omit it here. This
finding is also evident from figure B.
18Remember that we use annualized values throughout this paper.
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IRF in 1976:Q4 IRFin 1979:Q4 IRF in 1984:Q4

Figure 6: Impulse response functions for real-time (gray/black) and final (red) real
GDP growth to a one standard deviation monetary policy shock.

is restricted to be negative on impact and the real-time response is negative for most
draws. This again emphasizes that the differences are economically meaningful -
central banks would care about these magnitudes. The 85th percentile of the dif-
ference hovers around 0. Thus, there is a positive probability that the difference is
close to 0 at any point in our sample as can be seen by the point-wise error bands™.

However, the fact that the median difference is negative throughout and of a eco-

9Note that the error bands are calculated based on the marginal distribution of the differences each
period. They do not directly take into account information about the difference in the proceeding and
following periods (i.e. the joint distribution of the difference across periods). The bands based on the
marginal distribution only take into account information about other periods in an indirect fashion
since they are based on smoothed (full sample) parameter estimates. For fixed coefficient VARs with
sign restrictions, issues with pointwise error bands have been highlighted by Inoue & Kilian (2013),
for example. It is not clear how to extend their methods to VARs with time-varying coefficients and
stochastic volatility in general and to our question at hand in particular.

18



nomically significant magnitude leads us to believe that it is indeed important to
take the difference between real-time and final data seriously. Furthermore, policy-
makers regularly worry about worst case outcomes. We can see that the difference
between the impact response for final and real-time data could be substantially larger
in magnitude than what is suggested by the median numbers.

IRF Difference (Final GDP Growth,Real GDP Growth)

I I I I I I I
1980 1985 1990 1995 2000 2005 2010

Figure 7: Differences between GDP growth impulse responses on impact: The distri-
bution of r{ P (0) — #7**"“PP () over time.

For each period in our sample, we then regress the real-time responses at that

point in time on the final responses at the same point in time and a constant:
T;‘eal,i(o) _ ai + ﬁz‘r{inal,i(o) + uy (11)

Thus, each hypothetical scatterplot is summarized by two numbers, the constant
o! and the slope 3!. We focus on the contemporaneous response since the differences
are largest for small horizons. Since the sample size for each regression is given
by the number of draws we use to calculate the impulse responses, we do not report
standard errors for the coefficients - these standard errors would be tiny. If responses
based on real-time data are just a noisy version of the responses based on final data,

we would expect the intercept a! to be zero and the coefficient on the responses for
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final data 3} to be 1. Otherwise there is a bias in the real-time data responses rela-
tive to the responses based on final data that economists are actually interested in.
Figure 8 shows how the intercept and the coefficient on the final-data response vary
over time for the case of the contemporaneous response to a monetary policy shock.
The gray line represents the slope of the regression j3; (right axis) and the red line
represents the intercept o! (left axis). Both paths show a similar pattern: Until 1980
there is a clear bias. After 1980 the coefficients quickly move toward values that
imply no bias.
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Slope
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Figure 8: Relationship between inflation real-time and final data based impact im-
pulse responses over time. Intercept o] in red and slope 5] in gray.

Figure 9 shows the results for the same regressions in the case of the contempora-
neous response of real-time and final GDP growth. We see a broadly similar pattern
for the intercept that moves toward zero after 1980. There is no substantial shift in
the behavior of the slope, though. The slope is never as small as the minimum slope
for inflation, but it also does not substantially move toward 1 after 1980. Real-time
GDP growth responds differently than final GDP growth to a monetary policy shock
on impact in systematic fashion throughout our sample. We think of these results

as a cautionary tale about the information content of real-time data releases of GDP
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growth. It is important to remember here that we try to recover the true response
of real-time data to a monetary policy shock, not the response to a monetary policy

shock that can be recovered in real-time.
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Figure 9: Relationship between GDP growth real-time and final data based impact

impulse responses over time. Intercept a“P in red and slope %P in gray.

5 Conclusion

Measurement errors are pervasive in real-time macroeconomic data. We extend the
insights of Aruoba (2008) to incorporate time varying dynamics and document that
these measurement errors feature substantial time-varying volatility, can be cor-
related with a time-varying correlation, and are not centered around zero. Thus,
modeling real-time data as the sum of the final data and a simple independent noise
process can miss important features of the data.

We show that these facts are not a curiosity, but have policy implications: (i) These
differences between real-time data and final data manifest themselves in the sub-
stantially different ways that real-time and final data respond to monetary policy

shocks, and (ii) the real-time responses can be substantially biased. Furthermore,
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the responses of various measures of real activity are larger in magnitude for final
data. How does this directly affect policymakers? Policymakers must base their de-
cision on real-time data for the last few periods and can not run a VAR specification
with both real-time and final data that we use throughout this paper. Nonetheless,
the finding that final GDP growth reacts more strongly to a monetary policy shock
than real-time GDP growth can be used by policymakers: If real-time data points to a
response of GDP growth of a given magnitude to a monetary policy surprise®, policy-
makers should be aware that the actual response of final GDP growth will tend to be
larger in magnitude and plan their next policy decision accordingly. A policymaker
could even go further: Under the assumption that recent changes in real-time GDP
growth are mainly driven by a monetary policy surprise (so that other shocks do not
play a significant role), one could use recent estimates of the coefficients in equation
(11) (which links the response of real-time and final data) to get an estimate of the

associated response of final data.”®

20Whether or not a given policy action is a policy surprise can be deduced from measures of monetary
policy surprises that are available in real-time, see for example Kuttner (2001).

21There would be an approximation error because the estimates of the coefficients are not available
for the current period. It might be advisable then to use an average of the coefficients over the last
few available periods to smooth out any high frequency noise in the changes of those coefficients.
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