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Abstract

This paper describes a Markov Chain Monte Carlo algorithm that can
be used to perform likelihood-based inference in the frequency domain for
linear Gaussian state space models. Certain frequencies of the data and
the time series of observables implied by the model can be omitted, leading
to estimates based only on the likelihood for non-omitted frequencies. The
algorithm thus allows a model-consistent investigation of issues such as
seasonality and low frequency movements in economic time series. A
Monte Carlo study is carried out using a benchmark ’New Keynesian’
dynamic equilibrium model of Negro & Schorfheide (2004), which is log-
linearized to fit into the framework presented here.
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1 Introduction

This paper presents an extension the Metropolis-Hastings algorithm commonly
used in macroeconomics to estimate linear(ized) dynamic equilibrium models.
In contrast to the existing literature, the approach presented here is based on a
frequency domain representation of the likelihood function and thus lends itself
easily to study the influence of certain frequencies of the data on parameter
estimates. Thus, this algorithm can be seen as an alternative to common de-
trending procedures such as the HP-filter. Certain frequencies of the data can
explicitly be removed from the likelihood, thus making clear what frequencies
are still used to draw inferences about the model at hand. Also, one can com-
pare estimates from this algorithm to estimates obtained using the standard
time domain method and detrended data. This can serve as a check whether
or not inference based on detrended data is valid. Both Bayesian and Classical
(Maximum Likelihood) inference can be carried out within this framework. Fur-
thermore, one could use this approach to detect possible model misspecification
by comparing parameter estimates using different frequency bands. As an illus-
tration, I perform a Monte Carlo study using the model of Negro & Schorfheide
(2004) as a laboratory. In this Monte Carlo study I investigate the effect of
removing low frequencies from the likelihood on parameter estimates when the
model is correctly specified.

2 Related Literature

Bayesian estimation of dynamic equilibrium models using the Metropolis-Hastings
algorithm has become a standard approach in macroeconomics over the past
decade. One of the early contributions in this literature has been Smets &
Wouters (2003). The papers in this tradition usually restrict themselves to
analysis in the time domain, though. Previous studies who have estimated dy-
namic macro models in the frequency domain are Christiano & Vigfusson (2003)
and Diebold, Ohanian & Berkowitz (1998).
These papers do not use a Metropolis-Hastings algorithm though, and restrict
themselves to Maximum Likelihood estimation. Using a Metropolis-Hastings
algorithm leads to more robust inference since the entire shape of the posterior
is traced out.
Hansen & Sargent (1993) investigate asymptotical properties of the frequency
domain Maximum Likelihood estimator of a dynamic equilibrium model when
there is possible misspecification at seasonal frequencies. Cogley (2001) uses
the same approach to study the effect of detrending the series of observables
before estimation and finds that estimation of models that are misspecified at
low frequencies with detrended data leads to unsatisfactory estimates.
The frequency domain approximation to the Gaussian likelihood function was
originally developed by Peter Whittle and is commonly used in econometrics,
in particular in the study of long memory time series models, see for example
Hurvich, Moulines & Soulier (2005).
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3 The State Space Model

The following two sections follow Hansen & Sargent (2005). We are interested
in estimating the matrices A0, C, G, D and R in a model of the following form:

xt+1 = A0xt + Cwt+1 (1)
yt = Gxt + vt (2)
vt = Dvt−1 + ηt (3)

where wt ∼iid N(0, I) , ηt ∼iid N(0, R), xt is the vector of possibly unob-
served states and yt the vector of time t observables. The model is restricted
to belong to the class of models for which {yt} is asymptotically stationary.
For notational simplicity, the elements of the matrices A0, C, G, D and R are
collected in a n dimensional vector z.
The spectrum of this model can be calculated via the following formula:

Sy(ω) = G(I −A0e−iω)−1CC ′(I −A0′e+iω)−1G′ (4)
+(I −De−iω)−1R(I −D′e+iω)−1

with ω ∈ <∩ [−π, π]. While the spectrum characterizes second moments of the
model, we allow for non-zero expectation of yt

1:

E(yt) = µ (5)

4 Frequency Domain Representation of a Gaus-
sian Likelihood Function

Given a vector {yt}T
t=1 of observations 2 we can calculate the fourier transform

of frequency ω y(ω) and the periodigram Jy(ω)

y(ω) =
T∑

t=1

yte
−iωt (6)

Jy(ω) =
1
T

y(ω)y(ω)
′

(7)

These formulas now allow calculating a frequency domain approximation
to the log likelihood function of the state space system given by 1 to 3. This
approximate log likelihood is given by:3

1for the empirical part we will look at a state space system for demeaned variables and
calculate the mean only when computing the likelihood function

2T is assumed to be even
3For a derivation see Harvey (2003)
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log(L(z|{yt}T
t=1)) = −1

2
(T + Tp) log 2π −

T/2+1∑

j=1

log{det Sy(ωj)} −
T/2+1∑

j=1

trace[Sy(ωj)−1Jy(ωj)] (8)

−T

2
trace{Sy(0)−1[T−1

T∑
t=1

yt − µ][T−1
T∑

t=1

yt − µ]′}

ωj =
2πj

T
j = 1, ..., T

Let vj ∈ {0, 1}∀j be an indicator function for certain frequencies. Then the
contribution to the log likelihood of all frequencies for which vj = 1 has the
following form

log(L(z|{yt}T
t=1, {vj}T/2+1

j=1 )) = −1
2
(T + Tp) log 2π −

T/2+1∑

j=1

vj(log{detSy(ωj)})

−
T/2+1∑

j=1

vjtrace[Sy(ωj)−1Jy(ωj)]− T

2
trace{Sy(0)−1[T−1

T∑
t=1

yt − µ][T−1
T∑

t=1

yt − µ]′} (9)

Note that even though this approximation does not necessarily integrate to 1
this is not crucial for the algorithm presented in the next section since that
algorithm uses ratios of posteriors which includes the ratio of two likelihoods,
i.e. any normalizing constant that would need to be computed for the likelihood
to integrate to 1 will cancel.

5 The Algorithm

This section first describes the algorithm on a general level. The actual imple-
mentation is discussed later.
We combine the information coming from the likelihood L(z|{yt}T

t=1, {vj}T/2+1
j=1 )

with prior information summarized in a prior density p(z) to form the posterior
f(z)4:

f(z) ∝ L(z|{yt}T
t=1, {vj}T/2+1

j=1 )p(z) (10)

To form an estimate of the parameter vector we need to calculate an integral of
a function involving the posterior 5. In practice this integral has to be evaluated
using Monte Carlo integration, which requires draws from the posterior. It is in
general not possible to directly draw from the posterior. Markov Chain Monte

4Throughout this section, the dependence of f(z) and L(z|{yt}T
t=1, {vj}T/2+1

j=1 ) on data
and the frequencies included in the calculation of the likelihood is suppressed

5The actual form of the integral depends on what estimate one wants to report, which in
turn depends on the loss function a researcher chooses
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Carlo (MCMC) algorithms circumvent this problem by generating draws from
a Markov Chain whose stationary distribution is the posterior.

To start the algorithm, we need to fix the length of the chain M , a starting
value z0 and a proposal density q(·, ·) generating new candidate draws for the
algorithm. q is allowed to depend on the previous accepted draw from the pos-
terior, i.e. q(a, b) = q(a|b). The algorithm also gives an approximate Maximum
Likelihood estimate z∗. If M is large enough and the prior puts non-zero mass
on the ML estimate then z∗ will give a good approximation of the ML estima-
tor. If one is only interested in ML estimation, one can further pick a uniform
prior with large variance. Then the posterior will approximately resemble the
likelihood function.
The probability α of accepting a draw from the proposal density is defined as:

α (z, w) = min
{

f (w) q (w, z)
f (z) q (z, w)

, 1
}

(11)

The algorithm is then given by the following 5 steps:

1. Initialize the algorithm with z0 and M . Evaluate the likelihood at z0 and
set z0 = z∗ and L(z0) = L∗

2. Set j = 1.

3. Generate z∗j from q
(
zj−1, z

∗
j

)
and u from a uniform distribution U [0, 1].

4. If u ≤ α
(
zj−1, z

∗
j

)
then zj = z∗j , if u > α

(
zj−1, z

∗
j

)
then zj = zj−1. Note

that this step involves evaluating the posterior and as part of that the
likelihood. If L(z∗j ) > L∗ then set z∗ = z∗j and L∗ = L(z∗j )

5. If j ≤ M then j Ã j + 1 and go to 3.

{zj}M
j=1 can be used to carry out Monte Carlo integration with respect to

the posterior. For the Monte Carlo study below, I will pick a random walk
candidate density q(w, z) such that

w ∼ N(z, H) (12)

and H is picked to be the negative inverse Hessian at the mode of log f(·).

6 A Monte Carlo Study

6.1 The Model of Del Negro and Schorfheide

In this section I give a short summary of the model of Negro & Schorfheide
(2004).
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6.1.1 The Representative Agent

The representative agent maximizes the following objective function by choosing
{Ct,Mt, ht, Bt}∞t=0:

E0

[ ∞∑
t=0

βt (Ct/At)1−τ − 1
1− τ

+ χ log
Mt

Pt
− ht

]
(13)

where Ct is real consumption in period t, At is the level of technology at time
t, Pt is the price level, Mt nominal money holdings and ht hours worked. The
period t budget constraint is given by:

Ct +
Bt

Pt
+

Mt

Pt
+

Tt

Pt
= Wtht +

Mt−1

Pt
+ Rt−1

Bt−1

Pt
+ Dt (14)

where Rt−1 is the return on one period nominal government bonds, Tt is a lump
sum transfer from the government and Dt are dividends paid by the unit mass
of monopolistically competitive firms in the economy.

6.1.2 Firms

Firms face the following demand function:

Pt(j) = Pt

(
Xt(j)
Xt

)−1/ν

(15)

Each firm has access to a linear production technology:

Xt(j) = Atht(j) (16)

The evolution of the technology level At induces a stochastic trend into the
variables of the model:

log(At) = log γ + log(At−1) + z̃t (17)

z̃t = ρz z̃t−1 + εz,t (18)

Firm specific variables are indexed by j. Firms choose ht(j) and Pt(j) to maxi-
mize

E0

[ ∞∑
t=0

QtDt(j)

]
(19)

where current period dividends are given by:

Dt(j) =
Pt(j)
Pt

Xt(j)−Wtht(j)− φ/2
(

Pt(j)
Pt−1(j)

− π

)2

Xt(j) (20)

Dividend streams are discounted using a discount factor Qt which is equal to the
marginal utility of consumption of the representative agent. In this economy
firms face a quadratic adjustment cost if they want to change their price by
more or less than the economy wide rate of inflation π. Hours worked of the
representative agent ht is calculated by applying a CES aggregator function to
firm specific hours worked ht(j).
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6.1.3 Policy

Monetary policy in this model is conducted via the following interest rate rule:

Rt

R∗ =
(

Rt−1

R∗
)ρR

[( πt

π∗
)ψ1

(
Xt

Xt∗
)ψ2

]1−ρR

exp(εR,t) (21)

where R∗ is an interest rate target. π∗ an inflation target and Xt∗ potential
output at time t, which is normalized to At. Once this policy rule is log lin-
earized, it bears close resemblance to a standard Taylor rule.
The government consumes a fraction ζt of every good at time t. The law of
motion of ζt is given by:

gt = 1/(1− ζt) (22)
g̃t = log(gt/g∗) (23)

g̃t = ρg g̃t−1 + εg,t (24)

Fiscal policy is conducted subject to the government budget constraint:

ξtXt + Rt−1
Bt−1

Pt
+

Mt−1

Pt
=

Tt

Pt
+

Mt

Pt
+

Bt

Pt
(25)

6.1.4 The Log-Linearized System

First, define the log deviations of any variable Y from its trend value:

ỹt = log Yt − log Yt∗ (26)

Then a log-linear approximation to the equilibrium conditions of the model is
given by:

x̃t = Etx̃t+1 − τ−1(R̃t − Etπ̃t) + (1− ρg)g̃t + ρzτ
−1z̃t (27)

π̃t = βEtπ̃t+1 + κ[x̃t − g̃t] (28)

R̃t = ρRR̃t−1 + (1− ρR)(ψ1π̃t + ψ2x̃t) + εR,t (29)

The standard deviations of εz,t, εg,t and εR,t will be denoted σz, σg and σR.
The system of equations given by (27) to (29) can be solved numerically via a
number of available algorithms to obtain a law of motion for the state variables
of the system.
For this application, I have solved the system using the Gensys algorithm (Sims
2002). The law of motion for the states will form equation(1) of our state space
system. The mapping from states to observables (i.e. equation(2)) is given by:

∆ log Xt = log γ + ∆x̃t + z̃t (30)

∆ log Pt = log π ∗+π̃t (31)

log Ra
t = 4[log(γβ−1) + log π ∗+R̃t] (32)
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6.2 Simulated Data

I have simulated 200 observations of quarterly data from the model for the fol-
lowing parameter values 6

parameter value
100 log π∗ 1
100 log γ 0.4
100 log r∗ 0.5
κ 0.3
τ 2
φ1 1.5
φ2 0.125
ρR 0.5
ρg 0.8
ρz 0.3
100σz 0.875
100σg 0.63
100σR 0.251

Figure 1 shows the simulated time series. The log interest rate is scaled by
100.

6.3 Prior Distributions

For the estimation, I assume that the priors for each of the 13 parameters are
independently distributed. The parameter values are chosen such that the prior
distributions are centered at the true values.

6Just as in Negro & Schorfheide (2004) the first three parameters and the standard devia-
tions are scaled by 100 to convert them into percentages
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Figure 1: simulated data

parameter distribution parameter 1 parameter 2
100 log π∗ normal 0.5 0.25
100 log γ normal 1 0.5
100 log r∗ gamma 4 0.125
κ gamma 4 0.075
τ gamma 16 0.125
φ1 gamma 36 0.04
φ2 gamma 1.5625 0.08
ρR beta 1 1
ρg beta 1 1
ρz beta 1 1
σz inverse gamma 40 0.098
σg inverse gamma 40 0.05
σR inverse gamma 40 0.008

For the normal distributions, parameter 1 is the mean and parameter 2 the
standard deviation. The values are mostly taken from Negro & Schorfheide
(2004).

6.4 Estimation Results

The following part gives posterior estimates for the cases of

• no frequencies omitted
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• frequencies lower than 0.31 omitted (corresponding to cycles of one every
five years or longer)
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Figure 2: smoothed marginal posteriors, no frequencies omitted
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Figure 3: smoothed marginal posteriors, frequencies lower than 0.31 omitted
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6.4.1 Discussion

As one can see from the pictures, dropping frequencies lower than business cycle
frequencies, i.e. frequencies lower than 0.31, does not lead to substantially dif-
ferent posteriors, even though they are a bit wider. Further it should be noted
that estimates for the case where no frequencies are dropped is naturally very
close to the posterior estimates coming from a time domain estimation using
the Kalman filter.
Dropping further frequencies, though, leads to substantially increased uncer-
tainty (results not reported here). In general, one can see that while dropping
low frequencies from the likelihood increases uncertainty, it does not seem to
lead to biases in the means of the marginal posteriors.

7 Conclusion

This paper is proposing a variant of the Metropolis-Hastings based on the Whit-
tle frequency domain approximation to the Gaussian likelihood function. The
algorithm can be applied to issues such as checking the validity of inference
based on detrended data, checking for model misspecification, seasonal adjust-
ment and modelling of low frequency behavior of economic time series. These
are issues that will be addressed in future research. Since this approach nests
(an approximation to) the time domain estimation using the Kalman filter while
not requiring any kind of filtering, it should be useful also for researchers who
are interested in increasing the speed of their estimation routine (at the cost of
using an approximation to the likelihood function).
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