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1. Introduction1

Imagine a newly-appointed central bank governor who inherits high inflation from the2

past. The bank has no official inflation target and lacks the political authority unilaterally to3

set one, but it has some flexibility in choosing how to implement a vague mandate. Suppose4

that the new governor’s preferences differ from those of his predecessor and that he wants5

to disinflate. He seeks an optimal Taylor-type rule and takes learning into account when6

choosing policy parameters.7

Sargent (1982) studies an analogous problem in which the central bank not only has a8

new governor but also undergoes a fundamental institutional reform. He argues that by9

suitably changing the rules of the game, the government can persuade the private sector in10

advance that a low-inflation policy is its best response. In that case, the central bank can11

engineer a sharp disinflation at low cost. Sargent discusses a number of historical examples12

that support his theory, emphasizing the institutional changes that establish credibility.13

Our scenario differs from Sargent’s in two ways. We take institutional reform off the14

table, assuming instead just a change of personnel. We also take away knowledge of the15

new policy and assume that the private sector must learn about it. This is tantamount to16

assuming that the private sector does not know the new governor’s preferences.17

Our scenario is more like the Volcker disinflation than the end of interwar hyperinflations.18

Erceg and Levin (2003) and Goodfriend and King (2005) explain the cost of the Volcker dis-19

inflation by pointing to a lack of transparency and credibility. Erceg and Levin contend that20

Volcker’s policy lacked transparency, and they develop a model in which the private sector21

must learn the central bank’s long-run inflation target. In their model, learning increases22

inflation persistence relative to what would occur under full information, thereby raising the23

sacrifice ratio and producing output losses like those seen in the early 1980s.1 Goodfriend24

1Schorfheide (2005) also develops a model in which agents must learn about target inflation. In his

model, target inflation follows an exogenous Markov-switching process, and estimates confirm that learning

is important for fitting data from the early 1980s. Andolfatto and Gomme (2003) explain the Canadian
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and King claim that Volcker’s disinflation lacked credibility because no important changes1

were made in the rules of the game. Because the private sector was initially unconvinced2

that Volcker would disinflate, the new policy collided with expectations inherited from the3

old regime and brought about a deep recession.4

The analysis of Erceg, Levin, Goodfriend, and King is positive and explains why the5

Volcker disinflation was costly. In contrast, our question is normative and focuses on how6

learning alters the central bank’s choice of policy. Our problem is motivated by the Volcker7

disinflation, and a stylized version of that episode serves as the vehicle for our analysis,8

but our objective is not to explain the Volcker disinflation. On the contrary, our goal is to9

illustrate a force that arises when a new policy must be learned and to describe how it affects10

the bank’s choices.11

The problem is studied in the context of a dynamic new Keynesian model modified in12

two ways. Following Ascari (2004) and Sbordone (2007), target inflation need not be zero.13

In addition, Bayesian learning replaces rational expectations. The central bank commits to14

a simple Taylor-type rule whose functional form is known but whose coefficients are not.15

Private agents learn those coefficients via Bayesian updating. The bank chooses policy-rule16

parameters by minimizing a discounted quadratic loss function, taking learning into account.17

Our paper contributes to a literature on how to design monetary policy rules when agents18

are learning. Bullard and Mitra (2002) and Evans and Honkapohja (2003a,b) examine how19

to specify monetary policy rules so that learning converges to rational expectations and20

the rational-expectations equilibrium (REE) is determinate. In our model, both conditions21

are satisfied for the family of simple rules under consideration.2 We refine the analysis by22

considering how transition dynamics affect the choice of policy coefficients.23

Accounting for transition volatility substantially alters the bank’s choice. Compared with24

the old regime, the optimal simple rule under full information has a lower long-run inflation25

experience using a closely related model with high and low money-growth states.
2We have no theorem to this effect, but this is what happens in the simulations.
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target and a higher reaction coefficient on inflation. The optimal simple rule under learning1

reduces target inflation by almost as much but reacts much less aggressively to inflation.2

Indeed, the inflation reaction coefficient is only slightly higher than in the old regime.3

The reason why the bank’s choice differs under learning is that the equilibrium law of4

motion can be a temporarily explosive process, i.e. one that is asymptotically stationary5

but which has unstable autoregressive roots during the transition. When locally-unstable6

dynamics emerge, the transition is highly volatile and dominates expected loss. The central7

bank’s main challenge is to find a way to manage this transitional volatility.8

As in Eusepi and Preston (2010), uncertainty about policy feedback parameters matters9

more than uncertainty about target inflation.3 In our model, the bank always achieves low10

average inflation. Uncertainty about policy feedback parameters is more problematic because11

this is what creates the potential for temporarily-explosive dynamics. Locally-unstable dy-12

namics emerge when there is substantial disagreement between actual and perceived feedback13

parameters. It follows that one way for the bank to cope is to adopt a policy that is close to14

the private sector’s prior. By choosing feedback parameters sufficiently close to the private15

sector’s prior mode, the bank can ensure that the equilibrium law of motion is nonexplosive16

throughout the transition, sacrificing better long-term performance for lower transitional17

volatility. For the model described below, this approximates the optimal strategy.18

In this respect, our conclusions differ from those of Orphanides and Williams (2005).19

They and others examine new Keynesian models with adaptive learning and demonstrate20

that learning enhances inflation persistence.4 Orphanides and Williams emphasize that21

central banks should take steps to counteract this increase in persistence, reacting more22

3For a model with least-squares learning, Eusepi and Preston (2010) study various communications strate-

gies: the central bank credibly communicates (i) target inflation, (ii) the variables on which policy decisions

are conditioned, or (iii) the precise details of policy. They demonstrate that the Taylor principle plus strate-

gies (ii) or (iii) guarantees convergence to REE, while the Taylor principle plus (i) does not. Our scenario is

like case (ii): our agents know the form and arguments of the policy rule, and estimates of policy coefficients

converge to the true parameters.
4E.g., see Erceg and Levin (2003), Milani (2006, 2007), and Slobodyan and Wouters (2012).
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aggressively to inflation than they would under full information. Like us, Orphanides and1

Williams study optimal simple Taylor rules, but they only consider the consequences of2

alternative policies once the economy reaches its ergodic distribution.5 Our conclusions3

differ because our loss function also penalizes transitional volatility. Concerns about locally-4

explosive dynamics outweigh other considerations.5

Our approach to learning differs from much of the macro-learning literature, in partic-6

ular from the branch emanating from Marcet and Sargent (1989a, 1989b), Cho, Williams,7

and Sargent (2002), and Evans and Honkapohja (2001, 2003a,b). Models in that tradition8

typically assume that agents use reduced-form statistical representations such as vector au-9

toregressions (VARs) for forecasting and that agents update parameter estimates by recursive10

least squares. In contrast, the agents who inhabit our model build structural models of the11

economy and update beliefs via Bayes’ theorem. Our approach is useful for showing how a12

bank’s policy choice depends on agents’ priors, but otherwise it is not critical. Our insights13

are robust to other forms of learning.14

Hagedorn (2011) examines optimal disinflation in a new Keynesian model with perfect15

credibility and rational expectations. He stops short of characterizing optimal policy under16

learning, however, commenting that this would require solving a challenging signal-extraction17

problem. His notion of optimality is broader than ours, but we tackle the signal-extraction18

problem. The price of extending the model in this direction was narrowing the family of19

policies to Taylor rules. Embracing a broader notion of optimality would be an important20

extension.21

For a stylized, small-scale new Keynesian model, Gaspar, Smets, and Vestin (2006) show22

how to do this. They study optimal monetary policy in an environment where agents learn23

adaptively and the central bank takes the learning process into account when formulating24

its policy. The optimal rule shares some features of optimal policy under commitment25

5They consider a model with constant gain learning, so their agents never fully learn.
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and rational expectations, but commitment plays no role and the bank relies instead on its1

ability to influence estimated inflation persistence. Like Hagedorn, their notion of optimality2

is broader than ours, and they characterize the optimal policy by numerically solving a3

dynamic program. Although their approach is feasible in models with a low-dimensional4

state vector, it would run afoul of the curse of dimensionality in ours. We chose to enrich5

the economic environment at the expense of narrowing the focus to Taylor rules. Scaling6

their methods to larger models would be another important extension.7

2. A dynamic new-Keynesian model with positive target inflation8

We begin by describing the timing protocol, a critical element in learning models. Then,9

taking beliefs as given, we describe our behavioral assumptions and the model’s structure.10

A discussion of how beliefs are updated is deferred to section 3.11

2.1. The timing protocol12

Private agents enter period  with beliefs about policy coefficients inherited from  − 1.13

They treat estimated parameters as if they were known with certainty and formulate plans14

accordingly. FollowingMcCallum (1999), we assume that the central bank sets the systematic15

part of its instrument rule at the beginning of the period based on information inherited from16

−1. Then period  shocks are realized. Agents observe the central bank’s policy action and17

infer a perceived policy shock ̃ They also observe realizations of the private-sector shocks.18

Current-period outcomes are then determined in accordance with beginning-of-period plans.19

After observing those outcomes, private agents update their estimates of policy coefficients20

and carry them forward to + 1.21
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2.2. The model1

We work with a dynamic new Keynesian model in which agents form expectations using2

a subjective forecasting model that can differ from the equilibrium law of motion. Monetary3

policy is determined according to a Taylor-type rule that allows target inflation to differ4

from zero. Private-sector behavior is characterized by an intertemporal IS curve and an5

Ascari-Sbordone version of the new Keynesian Phillips curve. A log-linearized version is6

presented here. Details about how this representation was derived can be found in appendix7

A.68

2.2.1. Monetary policy9

We assume that the central bank commits to a Taylor rule in difference form,

 − −1 = (−1 − ̄) + (−1 − −2) +  (1)

where  is the nominal interest rate,  is inflation,  is log output, and  is an i.i.d. normal10

policy shock with mean zero and variance 2 . The policy coefficients are collected in a vector11

 = [̄   ]
0 where ̄ represents the central bank’s long-run inflation target and 12

and  are feedback parameters on the inflation gap and output growth, respectively.13

There are several reasons for specifying a policy rule of this form. Our paper is part of14

the literature on optimal simple rules, and Taylor-type rules are by far the most influential in15

this literature. A difference form was adopted because it seems promising for environments16

like ours. For instance, Coibion and Gorodnichenko (2011) establish that a rule of this17

form ameliorates indeterminacy problems in Calvo models with positive target inflation,18

and Orphanides and Williams (2007) demonstrate that it performs well under least-squares19

learning. More generally, a number of economists have argued that the central bank should20

engage in a high degree of interest rate smoothing (e.g. Woodford (1999)). In addition,21

6Appendices are posted online in the JME’s supplemental material archive.
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we agree with McCallum (1999) that monetary policy rules should be specified in terms of1

lagged variables because the Fed lacks good current-quarter information about inflation and2

output. Last but not least, Erceg and Levin (2003) contend that output growth, rather than3

the output gap, is more appropriate for estimated policy reaction functions for the U.S.4

Private agents know the form of the policy rule but not its coefficients. At any given

date, their perceived policy rule is

 − −1 = (−1 − ̄) + (−1 − −2) +e (2)

where  = [̄   ] represents the beginning-of-period  estimate of  and

̃ =  + ( − )−1 + ( − )∆−1 + ̄ − ̄ (3)

is a perceived policy shock. Private agents believe that ̃ is white noise, but it actually5

depends on lags of inflation and output growth and errors in estimates of policy coefficients.6

The central bank minimizes a discounted quadratic loss function,

 = 0
P

 
[2 + ( − )2 + ( − )2] (4)

that penalizes variation in inflation and the output gap, and deviations of the nominal7

interest rate from its steady state. The central bank arbitrarily sets  and optimizes with8

respect to ̄  and  taking private-sector learning into account.
7

9

2.2.2. Behaviorial assumptions10

The agents who inhabit the private sector are boundedly-rational DSGE modelers who11

know a lot about their environment but not quite as much as agents in a full-information12

7The central bank does not experiment because it knows everything. Private agents do not experiment

because they are atomistic and cannot unilaterally influence the bank’s actions. For both, the marginal cost

of experimentation would be positive and the marginal benefit zero.
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rational-expectations model. They understand the structure of the economy and the form1

of the monetary-policy rule, but they do not know its coefficients. They build a structural2

model of the economy and use it for forecasting, decision making, and learning.3

Their behavior is boundedly rational in three respects. Their first-order conditions take4

the form of nonlinear expectational difference equations that they cannot solve. Instead, they5

log-linearize around a steady state and work with the resulting system of linear expectational6

difference equations. Not knowing the economy’s true steady state, however, they expand7

around the perceived steady state in period . The true steady state ̄ is the deterministic8

steady state associated with the true policy coefficients  The perceived steady state ̄9

is defined as the long-horizon forecast associated with the current estimate  The private10

sector’s long-run forecast ̄ varies through time because changes in ̄ have level effects on11

nominal variables and on some real variables (Ascari 2004). Since perceptions of ̄ change as12

agents update their beliefs, so do their long-run forecasts. Although nonstandard, expanding13

around the perceived steady state better reflects the agents’ knowledge at date 14

Private agents also behave as anticipated-utility modelers, treating the current estimate15

 as if it were known with certainty (Kreps 1998). In the context of a single-agent deci-16

sion problem, Cogley and Sargent (2008) compare the resulting decision rules with exact17

Bayesian decision rules and demonstrate that the approximation is good as long as precau-18

tionary motives are not too strong. Like a log-linear approximation, this imposes a form of19

certainty equivalence, for it implies that decision rules are the same regardless of the degree20

of parameter uncertainty. The anticipated-utility approach is standard in the macro-learning21

literature.22

Last but not least, our agents adopt the posterior mode as their point estimate. In23

other words, they do not follow the full Bayesian decision-theoretic route of choosing a point24

estimate that minimizes an expected loss function implied by their utitility function. The25

choice of the posterior mode is somewhat arbitrary but seems quite plausible.26
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2.2.3. A new-Keynesian IS curve1

As usual, a representative household maximizes expected utility subject to a flow budget

constraint. The household’s period-utility function is

 =  log ( − −1)− 
1+



1 + 
 (5)

where  is consumption of a final good,  represents hours of work,  and  are preference

shocks, and  measures the degree of habit persistence in consumption. The first-order

condition is a conventional consumption Euler equation. After log-linearizing, agents obtain

a version of the new Keynesian IS curve,

 −  =  −  −∗
£
+1 −  − (+1 − )−

¡
+1 − 

¢
+  − +1 − 

¤
 (6)

where  is a transformation of the marginal utility of consumption,

 −  ≡ 1 ( − ) + 2
£
−1 −  − ( − ) + ∗

¡
+1 −  + +1 − 

¢¤
+  (7)

The parameter  is a subjective discount factor,  and  are steady-state values for the2

real-interest rate and the growth rate of technological progress, respectively, and  is the3

private sector’s beginning-of-period long-run forecast for output. The coefficients 1 and 24

are combinations of preference and technology parameters, and  and  are technology5

and preference shocks, respectively. Further details can be found in appendix A.6

This representation differs in three ways from standard IS equations. One concerns the7

expansion point. As mentioned above, agents expand around the perceived steady state 8

instead of the actual steady state  In addition, the anticipated-utility assumption implies9

that ∗ ̄+1 =  explaining the appearance of  on the right-hand side of equations (6) and10

(7). A second difference concerns the expectation operator ∗  which represents forecasts11
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formed with respect to the private sector’s perceived law of motion. In contrast, the central1

bank takes expectations with respect to the actual law of motion, which is denoted 
8

2

Finally, two shocks appear, a white-noise shock  and a persistent shock  to the growth3

rate of technology,  =
¡
1− 

¢
 + −1 + 4

2.2.4. A new-Keynesian Phillips curve5

A continuum of monopolistically competitive firms produce differentiated intermediate

goods that are sold to a final-goods producer. Following Calvo (1983), intermediate-goods

producers reset their prices at random intervals. We abstract from indexation or other

backward-looking pricing influences, in accordance with the estimates of Cogley and Sbor-

done (2008). Since pricing and supply decisions depend on the beliefs of private agents, they

again log-linearize around perceived steady states, obtaining the following block of equations,

̂ = ∗
©
[ + 1( − 1)]̂+1 + 1+1

ª
+ ̂ + ̂ − e̂ +  +  (8)

 = 2
∗
 [( − 1)̂+1 + +1] (9)

̂ = 1̂ + 2

³
̂ −∆

´
 (10)

where gap variables are defined as ̂ ≡  − ̄ ̂ ≡  −  ̂ ≡  −  and ̂ ≡  − 6

The NKPC parameters  1 2  e,  1 and 2 are defined in table 1.
7

Table 1 here
8

This representation differs in four ways from standard versions of the NKPC. First, the9

NKPC coefficients depend on deep parameters and estimates of target inflation ̄ The deep10

parameters are the subjective discount factor  the probability 1− that an intermediate-11

goods producer can reset its price, the elasticity of substitution across varieties  and the12

8We assume that the central bank knows the private sector’s prior over  Because the central bank’s

information set subsumes that of the private sector, the law of iterated expectations implies ∗ (+) =

∗ (+) for any random variable + and  ≥ 0 such that both expectations exist. Because the central
bank can reconstruct private forecasts, it also follows that (

∗
 +) = ∗ (+) But + 6= ∗ + 
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Frisch elasticity of labor supply 1 As Cogley and Sbordone (2008) emphasize, even though1

the deep parameters are invariant to changes in policy, the NKPC coefficients are not. The2

latter change as beliefs about ̄ are updated.3

Second, a variable

 ≡ ln
µZ 1

0

( () )
−



¶
 (11)

measuring the resource cost of cross-sectional price dispersion, has first-order effects on4

inflation and other variables. If ̄ were zero, this variable would drop out of a first-order5

expansion.6

Third, higher-order leads of inflation appear on the right-hand side of (8). To retain7

a first-order form, an intermediate variable  that has no interesting economic interpreta-8

tion is added along with equation (9). This is simply a device for obtaining a convenient9

representation.10

Finally, two cost-push shocks are present, a white-noise shock  and a persistent shock11

 that follows an (1) process,  = −1 + 12

2.2.5. Calibration13

Parameters of the pricing model are taken from estimates in Cogley and Sbordone (2008)14

and are set at  = 06  = 099  = 10 Preference parameters are calibrated as follows.15

The parameter 1 is the Frisch elasticity of labor supply. The literature provides a large16

range of values for this elasticity, typically high in the macro literature and low in the labor17

literature. We compromise between the two, setting the Frisch elasticity equal to 2 ( = 05).18

This seems reasonable, given that the model abstracts from wage rigidities. The parameter19

 that governs habit formation in consumption is calibrated to 07, a value close to those20

estimated in Smets and Wouters (2007) and Justiniano, Primiceri and Tambalotti (2010).21

The calibration of loss-function parameters is also standard. The central bank assigns22

equal weights to annualized inflation and the output gap. Since the model expresses inflation23
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as a quarterly rate, this corresponds to  = 116 The parameter  is set to 05, which1

implies that the weight on fluctuations of the annualized nominal interest rate is half the2

weights attached to fluctuations in annualized inflation and the output gap.3

Turning to parameters governing the shocks,  is set to 0 thereby abstracting from4

average growth. For the persistent shocks  and  estimates are taken from Cogley,5

Primiceri, and Sargent (2010),  = 04  = 00012  = 027  = 0005 Last but6

not least, the standard deviations of the white noise shocks  and  are set equal to7

 =  = 000258

3. Learning about monetary policy9

Everyone knows the model of the economy and the form of the policy rule, but private10

agents do not know the policy coefficients. Instead, they learn about them by solving a11

signal-extraction problem. If  entered linearly, they could do this with the Kalman filter.12

Because  enters non-linearly, however, agents must solve a nonlinear filtering problem. This13

section explains how this is done. We first describe the perceived law of motion (PLM) and14

then derive the actual law of motion (ALM) under the PLM. After that, we verify that15

the PLM is the perceived ALM. Having verified that private agents know the ALM up to16

unknown policy coefficients, the ALM can be used to derive a likelihood function. Agents17

estimate policy coefficients by combining this likelihood function with their prior.18

3.1. The perceived law of motion19

By stacking the IS equations, the aggregate supply block, exogenous shocks, and perceived

monetary-policy rule, the private sector’s model of the economy can be represented as a

system of linear expectational difference equations,

 = 
∗
 +1 + −1 +e (12)
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where  is the model’s state vector, e is a vector of perceived innovations, and   

and  depend on the model’s deep parameters (see appendix A.5). These matrices have

time subscripts because they depend on estimates of the policy coefficients . The PLM is

the reduced-form VAR associated with (12),

 = −1 +e (13)

where  solves 
2
 −  +  = 0 and  = ( −)

−1
 As in a conventional1

rational-expectations model, (13) serves two functions, describing agents’ current-quarter2

plans and how they forecast future outcomes.3

3.2. The actual law of motion4

To find the ALM, stack the actual policy rule (equation 1) with the equations governing

private sector behavior. This results in another system of expectational difference equations,

 = 
∗
 +1 + −1 + (14)

The state vector and the matrices   and  are the same as in (12). In addition, all5

rows of  agree with those of  except for the one corresponding to the monetary-policy6

rule. In that row, the true policy coefficients  replace the estimated coefficients  (see7

appendix A.5).8

Since outcomes are determined in accordance with agents’ plans (equation 13), they

depend on the perceived shocks ̃ A relation between perceived and actual innovations can

be found by subtracting (14) from (12),

̃ =  + ( − )−1 (15)
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Substituting this relation back into agents’ plans expresses outcomes in terms of actual

shocks,

 = −1 + (16)

where = +(−)
−1(−) The ALM depends on both actual policy coefficients,1

because that is what governs central bank behavior, and on perceived policy coefficients,2

because that is what guides private-sector behavior.93

3.3. The PLM is the perceived ALM4

The ALM and PLM are both  (1) processes with conditionally Gaussian innovations.

Under the ALM, the conditional mean and variance are10

|−1() = ()−1 |−1() = ()
0
 (17)

where () and () are the ALM conditional mean and variance arrays evaluated

at the true value  If the agents in the model were interviewed and asked their view of

the ALM, they would answer by replacing  in  with  thus obtaining  implying

̃|−1() = −1 ̃|−1() = ()
0
 (18)

These expressions coincide with the conditional mean and variance under the PLM. Hence5

the PLM is the perceived ALM. This is true not only asymptotically but for every date6

during the transition.117

9When there is a unique nonexplosive solution for ( ), the solution for  is also unique but not

necessarily nonexplosive. When multiple nonexplosive solutions for ( ) exist, there are also multiple

solutions for  and our programs would choose one of them. However, this kind of multiplicity never occurs

in our simulations.
10According to the timing protocol,  and  can be regarded either as beginning-of-period  estimates

or end-of-period − 1 estimates, which explains why it is legitimate to use them to calculate the conditional

mean and variance.
11Among other things, this implies that private-sector forecasts are consistent with contingency plans for

the future. For instance, for   0 log-linear consumption Euler equations between periods + and ++1
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3.4. The likelihood function1

The observables are stacked in a vector  = [    ]
0 =  where  is an

appropriately defined selection matrix (see appendix A.5). The other elements of  allow

us to express the model in first-order form but convey no additional information beyond

that contained in the history of  Using the prediction-error decomposition, the likelihood

function for data through period  can be expressed as

(|) =Q

=1 (|−1 ) (19)

Since private agents know the ALM up to the unknown policy parameters, they can use it to

evaluate the terms on the right-hand side of (19). According to the ALM,  is conditionally

normal with mean and variance


|−1() = ()−1  

|−1() = ()
0

0
  (20)

where () and () are the ALM conditional mean and variance, respectively, evaluated

at some value of  It follows that the log-likelihood function is

ln (|) = −1
2

P

=1 { ln | 
|−1()| + [ −

|−1()]
0 ¡ 

|−1()
¢−1

[ −
|−1()]}

(21)

3.5. The private sector’s prior and posterior2

Private agents have a prior () over the policy coefficients. At each date  they find the3

log posterior kernel by summing the log likelihood and log prior. Because of the anticipated-4

utility assumption, their decisions depend only on a point estimate, not on the entire posterior5

distribution. Among the various point estimators from which they can choose, they adopt6

hold in expectation at 
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the posterior mode,  = argmax (ln (
|) + ln ()) 1

Notice that agents take into account that past outcomes were influenced by past beliefs.2

Past estimates are bygones at  and are held constant when agents update the posterior mode.3

Notice also that the estimates are based not just on the policy rule but also on equations4

for inflation and output. The agents exploit all information about  taking advantage of5

cross-equation restrictions implied by the ALM.6

4. Quantitative analysis7

A new governor appears at date 0 and formulates a policy that becomes operative at8

date 1. After observing the private sector’s prior, the governor chooses the long-run inflation9

target ̄ and reaction coefficients   to minimize expected loss under the new policy,10

with the standard deviation of policy shocks  being set exogenously. We initially assume11

that  = 0001 (10 basis points per quarter) and later examine what happens when  = 0.12

4.1. Initial conditions13

The economy is initialized at the steady state under the old regime. To create a scenario14

like the end of the Great Inflation, the old regime is calibrated to match estimates of the15

policy rule for the period 1966.Q1-1981.Q1. We assume that the policy rule for that period16

had the same functional form as in equation (1) and estimate ̄   and 2 by OLS.17

Point estimates and standard errors are reported in table 2.18

Table 2 here19

The estimate for ̄ implies an annualized inflation target of 4.6 percent. The reaction20

coefficients are both close to zero, with  being slightly larger than . Policy shocks are21

large in magnitude and account for a substantial proportion of the variation in the nominal22

interest rate. Standard errors are large, especially for . The economy is initialized at the23
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steady state associated with this policy rule, 0 = 00116 0 = −00732 and 0 = 002171

where inflation and nominal interest are expressed as quarterly rates.2

4.2. Evaluating expected loss3

If the model fell into the linear-quadratic class, the loss function could be evaluated and4

optimal policy computed using methods developed by Mertens (2009a, 2009b). Learning5

makes the model nonlinear, however, so expected loss is evaluated numerically. A grid of6

values is specified for ̄  and  Then, for each node on the grid, 100 sample paths are7

simulated, with private-sector estimates  updated by numerical maximization at each date.8

The sample paths are each 25 years long, and the terminal continuation value is set to zero,9

representing a decision maker with a long but finite horizon. Realized loss is calculated for10

each sample path, and expected loss is the cross-path average of realized loss. The optimal11

rule among this family is the node with smallest expected loss.12

4.3. A full-information benchmark13

To highlight the role of learning, we begin by describing the optimum under full informa-14

tion. When private agents know the new policy coefficients, the optimized Taylor rule sets15

̄ = 0  = 105 and  = 011. Figure 1 depicts average responses of inflation, output,16

and nominal interest gaps, which are defined as deviations from the steady state of the new17

regime.1218

Figure 1 here19

The nominal interest rate rises at date 1, causing inflation to decline sharply and over-20

shoot the new target. After that, inflation converges from below. This rolls back the price21

level, partially counteracting the effects of high past inflation. As Woodford (2003) explains,22

12Inflation and nominal interest gaps at date 0 coincide because the steady-state real interest rate is the

same under the two regimes.
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a partial rollback of the price level is a feature of optimal monetary policy under commitment1

because a credible commitment on the part of the central bank to roll back price increases2

restrains a firm’s incentive to increase its price in the first place. Under full information, the3

optimal simple rule shares this property.4

The initial increase in the nominal interest rate causes the output gap to fall below zero.5

Since inflation and output are below target at date 1, the central bank cuts the interest6

rate at date 2, damping the output loss and initiating a recovery. Convergence to the7

new steady state is rapid, with inflation, output, and interest gaps closing in about a year.8

After 4 quarters, inflation is close to its new target, which is 4.6 percentage points below9

the old target. The cumulative loss in output is approximately 2.6 percent. The sacrifice10

ratio, defined as the cumulative loss in output divided by the change in target inflation, is11

0.56 percent. The sacrifice ratio is small under full information because the model has no12

indexation, making inflation weakly persistent. The absence of indexation also explains why13

the bank seeks a substantial rollback in the price level.14

Figure 2 here15

Under full information, the economy is highly fault tolerant13 with respect to policies16

away from the optimum. Figure 2 portrays iso-expected loss contours as a function of ̄ 17

and . Each panel involves a different setting for ̄, ranging from 0 to 3 percent per annum,18

and  and  are shown on the horizontal and vertical axes, respectively. Expected loss19

is normalized by dividing by the loss under the optimal rule so that contour lines represent20

gross deviations from the optimum. The diamond in the upper left panel depicts the optimal21

simple rule. Expected loss increases slowly as policy moves away from the optimum. For22

instance, when ̄ = 0 relative loss remains below 2 for most combinations of  and  and23

rises above 10 only when  approaches zero. Although expected loss is higher for higher24

13Levin and Williams (2003) introduced the term “fault tolerance” to describe the extent to which expected

loss increases as policies move away from the optimum.
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values of ̄ the surface remains relatively flat. Later we contrast this with an absence of1

fault tolerance under learning.2

4.4. A Taylor rule optimized for learning3

Private agents initially anticipate a continuation of the old regime, and their priors are4

calibrated using the estimates of policy coefficients for 1966.Q1-1981.Q1 shown in table 2. We5

assume that their priors are independent across coefficients and that they adopt truncated6

normal priors for ̄  and  and a gamma prior for 
2
  For ̄   the mean and7

standard deviation of an untruncated normal density are set equal to the numbers in table 2.8

To enforce nonnegativity, the unrestricted priors are truncated at zero and renormalized so9

that transformed priors integrate to unity. For 2  hyperparameters are chosen so that the10

implied mode and standard deviation match the numbers in table 2. The results are shown11

in figure 3.12

Figure 3 here13

Priors for  and  concentrate slightly to the right of zero, and little mass is assigned14

to values greater than 0.25. On the other hand, priors for ̄ and  spread across a broad15

range of values. According to this specification, private agents are open to persuasion about16

̄ and  but are skeptical that the central bank will react aggressively to inflation or output17

growth. Overcoming that skepticism will be a major challenge for the central bank.18

Figure 4 portrays iso-expected loss contours as a function of ̄   As before,  is19

held constant at 10 basis points per quarter. The left-hand column depicts the results of a20

broad search over a coarse grid, while the column on the right portrays calculations based21

on a finer grid that focuses on the low expected-loss region of the policy-coefficient space.22

Expected loss is again normalized by dividing by the loss for the rule optimized for learning.23

Figure 4 here24
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In the left-hand column, regions of low expected loss concentrate in the southwest quad-1

rant of the panels, near the prior mode for  and  Expected loss increases rapidly as the2

feedback coefficients move away. Indeed, in the northeast quadrant, expected loss is more3

than 100 times greater than under the optimal simple rule. The optimal simple rule under4

full information is marked by an asterisk and lies in the high-loss region.5

The reason why the economy loses fault tolerance under learning is that the equilibrium6

law of motion can be a temporarily explosive process, i.e. one that is asymptotically station-7

ary but which has explosive autoregressive roots during the transition. The agents in our8

model want to be on the stable manifold, but they don’t know where it is. Their plans are9

based on the PLM, which depends on , but outcomes are governed by the ALM, which10

involves  The eigenvalues of  are never outside the unit circle but the eigenvalues of 11

can be explosive even when those of  are not. Thus, actions that would be stable under12

the PLM can be unstable under the ALM.13

The matrices  and  differ because of disagreement between the actual policy 14

and the perceived policy . The eigenvalues of  are close to those of  (hence are15

nonexplosive) when  is close to  Explosive eigenvalues emerge when there is substantial16

disagreement between  and  On almost all simulated paths, the private sector eventually17

learns enough about  to make explosive eigenvalues vanish, but the transition is highly18

volatile and dominates expected loss when the initial disagreement is large and/or learning19

is slow.20

The shaded area in figure 5 depicts the region of the policy-coefficient space for which the21

eigenvalues of 1 are nonexplosive. Since the nonexplosive region is similar for all settings22

of ̄ the figure just shows the ̄ = 0 case This region is sensitive to  and  however,23

and concentrates near the prior mode. The central bank can move ̄ far from the private24

sector’s prior mode without generating locally-unstable dynamics, but moving  and/or 25

far from their prior modes makes the transition turbulent.26
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Figure 5 here1

To locate the optimum under learning, we search on a finer grid in the southwest quadrant2

of the ( ) space. Isoloss contours are shown in the right column of figure 4, and the3

optimum is marked by a diamond, ̄ = 001  = 025 and  = 015. Relative to the full-4

information solution, target inflation is slightly higher, and the reaction to output growth is5

a bit more aggressive. The main difference, however, is that the central bank responds less6

aggressively to inflation. Since the full-information optimum  = 105 lies in the explosive7

region, the transition would be initially very turbulent. Furthermore, since the private8

sector is prejudiced against large values of , explosive eigenvalues would remain active for9

a long time. For these reasons, the optimal policy puts  and  only slightly outside the10

nonexplosive region. The bank can adjust ̄ more freely, however, thereby achieving low11

average inflation.12

Because the location of the nonexplosive regions depends more on  and  than on ̄,13

uncertainty about reactions coefficients is more problematic than uncertainty about target14

inflation. As shown in appendix B, when uncertainty about   and  is deactivated and15

̄ is the only uncertain policy parameter, the initial nonexplosive region expands to fill most16

of the ( ) space. Since the ALM becomes nonexplosive for most policies, the economy17

becomes highly fault tolerant, and private agents learn ̄ very quickly. For these reasons, the18

model behaves much as it does under full information. The optimal policy is similar, and19

impulse response functions resemble those in figure 1. In contrast, when uncertainty about ̄20

is deactivated and   and  are uncertain, the results are qualitatively similar to those21

shown here. Uncertainty about feedback parameters is more costly because it activates22

locally-explosive dynamics.23

A second loss of fault tolerance emerges in the right column of figure 4. For small24

values of , estimates occasionally stray too close to zero, pushing the PLM close to the25

indeterminacy region. Outcomes are volatile when this occurs, causing expected loss to26
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rise. For an effective stabilization, the bank must choose a value for  that guards against1

estimates straying too closely to zero during the transition.2

Figure 6 portrays impulse response functions for inflation, output, and nominal interest3

gaps for the optimal simple rule under learning. The transition is longer and more volatile4

than under full information. Inflation again declines at impact, overshooting ̄ and partially5

rolling back past increases in the price level, but now inflation oscillates as it converges to6

its new long-run target. The transition takes about two and a half years, with inflation7

remaining below target for most of that time.8

Figure 6 here9

There is also a shallow but long-lasting decline in output. The output gap reaches a10

trough of -0.9 percent in quarter 5 and remains negative for 3 years. The cumulative output11

gap during this time is -6.6 percent. Since inflation falls permanently by 3.6 percentage12

points, the sacrifice ratio amounts to 1.8 percent of lost output per percentage point of in-13

flation, 3 times larger than under full information. As shown in appendix C, the sacrifice14

ratio under learning is comparable to that in a version of our model with adaptive expecta-15

tions. Under monetary policies optimized for that environment,14 inflation falls permanently16

by amounts ranging from 2.6 to 4.6 percent, depending on how the adaptive expectations17

operator is calibrated, with cumulative output losses of 4.5 to 6.7 percent, implying sacrifice18

ratios of 1.4 to 1.7. According to Ascari and Ropele (2013), estimates of the sacrifice ratio19

for a wide range of disinflations lie between 0.5 and 3, so those under learning and adaptive20

expectations are in the right ballpark.21

Figure 7 portrays mean estimates of the policy coefficients, again averaged across 10022

sample paths. The true coefficients are shown as dashed lines while average estimates are23

14A comparison that holds monetary policy constant across the two models is difficult because policies

optimized for one environment work badly in the other. This is why we compare sacrifice ratios under policies

optimized for each. The sacrifice ratios therefore differ not only because of the expectations mechanisms but

also because of the policy rule. See appendix C for further details.
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portrayed as solid lines. The estimates move quickly toward their respective true values and1

are not far off after 10 quarters. Rapid convergence of  and  are crucial for eliminating2

locally-explosive dynamics. Beliefs about target inflation and the policy shock variance also3

quickly approach neighborhoods of their respective true values, but this seems secondary for4

transitional volatility.5

Figure 7 here6

4.5. Intuition about transition dynamics7

To develop intuition, we turn to a stripped-down example that can be solved by hand,

 = ∗ +1 +  +  (22)

 = −−1 +  (23)

 = −1 +  (24)

Equation (22) is a stylized version of the NKPC, with  representing an abstract policy8

instrument, equation (23) is a policy rule, and equation (24) is the law of motion for the9

cost-push shock. The innovations  and  are iid normal with mean zero and variances 
2
10

and 2 respectively. The perceived policy is  = −−1+ ̃ where  again represents a11

beginning-of-period  estimate of  and the perceived policy shock is ̃ = +(−)−112

Agents believe that ̃ is iid normal with mean zero and variance 
2
13

As shown in appendix D, the PLM is a  (1) for ( )⎡⎢⎣ 



⎤⎥⎦ =
⎡⎢⎣ 1


2(1−2)

0 

⎤⎥⎦
⎡⎢⎣ −1

−1

⎤⎥⎦+
⎡⎢⎣ 1

2

1
2(1−2)

0 1

⎤⎥⎦
⎡⎢⎣ ̃



⎤⎥⎦  (25)

where 1 and 2 are reciprocals of the roots of (1−−1−−1
2) = 0 The eigenvalues

of the PLM autoregressive matrix are 1 and  By construction, both lie inside the unit
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circle. The ALM is also a  (1) for ( )⎡⎢⎣ 



⎤⎥⎦ =
⎡⎢⎣ 1 +

−
2


2(1−2)

0 

⎤⎥⎦
⎡⎢⎣ −1

−1

⎤⎥⎦+
⎡⎢⎣ 1

2

1
2(1−2)

0 1

⎤⎥⎦
⎡⎢⎣ 



⎤⎥⎦  (26)
The eigenvalues of the ALM autoregressive matrix are 1 = 1+(−)2 and 2 = 1

The latter always lies inside the unit circle, but the former might lie inside or outside,2

depending on the difference between  and .3

To illustrate the model’s properties, we plug in some numbers. To represent a scenario in4

which the old regime involved weak feedback to inflation, 0 is set to 01 As before,  = 0995

and  = 04. These values imply 10 = −009 and 20 = 11.6

Figure 8 depicts responses of inflation to a unit cost-push shock for various choices of7

. Solid curves portray what would happen if  were known at date 0. Under full infor-8

mation, the response of inflation becomes more muted as  increases, largely because policy9

guides expectations. When price setters expect a strong countervailing action against future10

inflation, their incentive to raise prices today is diminished. Thus, the impact effect of a11

cost-push shock declines as  increases. Furthermore, to the extent that an inflation gap12

does open, a stronger countervailing action would close it more quickly, making inflation less13

persistent.14

Figure 8 here15

Dashed and dotted lines depict impulse responses under the PLM and ALM, respectively,16

for the initial estimate 0 Although both will change shape as  is updated, we temporarily17

freeze beliefs in order to build intuition.18

Impulse responses under the PLM differ in two respects from those under full information:19

the impact effect is greater, and the impulse response function decays more slowly. Both20

follow from the fact that the expectations-management channel that is so important under21
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full information is initially inoperative under learning. The PLM depends on 0 not 1

and since 0   agents initially expect a weaker countervailing policy response. It follows2

that their incentive to raise prices today is greater, amplifying the initial rise in inflation.3

Beyond lag zero, the impulse response function under the PLM can be interpreted as the4

revision of the private sector’s inflation forecast in response to a cost-push shock. Because5

price setters systematically underestimate future policy reactions, their inflation forecasts6

are higher. Hence price setters expect the inflation gap to remain open longer.7

A wedge also appears between ALM and PLM. This emerges because a cost-push shock8

endogenously creates perceived policy shocks, ̃ = (0 − )−115 Because price setters9

do not anticipate future ̃, perceived policy shocks do not affect the PLM, but they do10

matter for the ALM. When the difference between 0 and  is small, as in the top row of11

figure 1, the resulting policy shocks are also small and their consequences are minor. Their12

effects are more apparent when |0 − | is greater. For instance, in the lower left panel,13

the negative local feedback between lagged inflation and perceived policy shocks creates a14

damped oscillation. Inflation rises at impact. At date 1, the central bank reduces  by more15

than the private sector expects, causing inflation to fall sharply. Because 1 is negative, the16

central bank increases 2 by more than the private sector expects, causing inflation to rise.17

With positive inflation at date 2, the bank tightens sharply in period 3, causing inflation18

to fall, and so on. When |0 − | is sufficiently large, this negative feedback can be strong19

enough to create an explosive oscillation, as shown in the lower right panel. Thus, inflation20

is negatively autocorrelated, and explosive dynamics emerge when  and 0 are sufficiently21

far apart.1622

From the private sector’s point of view, the central bank behaves like a madman in a23

15For these impulse response functions, the true policy shocks are zero.
16Since 0   10 is farther below zero than 10When |0−| is small, |10−10| is also small, and the

ALM is close to the PLM. As |0 − | increases, 10 increases in absolute value and imparts more negative
autocorrelation to inflation. The oscillations are damped as long as 10 remains inside the unit circle, but

10 can fall below -1 if  is sufficiently far above 0 making the oscillations explosive. Because | − | is
small in the neighborhood of the REE, locally-explosive dynamics vanish in that neighborhood.
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shower, dialing the temperature control all the way down when the water is too hot, then1

all the way up when the temperature is too cold. As beliefs are updated, they learn that the2

bank is behaving systematically, and the expectations-management channel comes gradually3

into play. But during the transition, endogenous perceived policy shocks account for high4

volatility and negative autocorrelation.5

5. Perturbations to the baseline learning model6

To highlight aspects of the baseline model, we now turn to a number of perturbations.7

For the sake of brevity, the main points are summarized here, and a full presentation is8

relegated to a series of appendices.9

5.1. McCallum’s information constraint10

McCallum’s information constraint plays a critical role in our analysis. To highlight its

importance, appendix E contrasts the backward-looking Taylor rule in equation (1) with one

involving contemporaneous feedback to inflation and output growth,

 − −1 = ( − ̄) + ( − −1) +  (27)

Because actual central banks cannot observe current quarter output or the price level, they11

could not implement this policy. We examine it here in order to isolate the consequences of12

lags in the central bank’s information flow.13

As shown in appendix E, locally-explosive dynamics vanish in this case, and the learning14

economy becomes highly fault tolerant. The model therefore behaves more like its full-15

information counterpart than did the economy with a backward-looking rule. For instance,16

while the full-information optimum sets ̄ = 0  = 24 and  = 01, the rule optimized17

for learning sets ̄ = 0,  = 14 and  = 01 The learning rule has the same inflation18

target and reaction coefficient on output growth as under full information, but it responds19
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to inflation gaps a bit less aggressively. Compared with the baseline model, however, the1

central bank is less constrained by initial beliefs and freer to adjust its reaction coefficients.2

The transition is shorter and less volatile than under the backward-looking rule, and the3

sacrifice ratio is about the same.4

Expectations are still sticky, and that is why the contemporaneous rule optimized for5

learning differs from the full-information optimum. The difference between outcomes under6

the contemporaneous and backward-looking rules illustrates the quantitative force of locally-7

explosive dynamics. Sticky expectations and temporarily-explosive dynamics are both im-8

portant ingredients in the baseline model.9

5.2. Policy shocks10

The baseline calibration for  reflects a tension between two considerations. On the one11

hand, estimated policy reaction functions never fit exactly, implying   0 On the other,12

a fully optimal policy would presumably be deterministic, implying  = 0 The baseline13

specification compromises with a small positive value ( = 10 basis points per quarter).14

If  were zero and known with certainty, the signal extraction problem would unravel,15

with agents perfectly inferring the other three policy coefficients after three periods. This16

does not happen in our model because agents are uncertain about  and this is enough17

to preserve a nontrivial signal-extraction problem. Appendix F confirms that the optimized18

rule in a  = 0 economy is similar to that in the benchmark specification. That agents19

entertain a belief that policy shocks are present is critical. Whether actual policy shocks are20

small or zero is secondary.21

5.3. A two-tier approach22

In the baseline model, the central bank introduces two reforms at once, reducing target23

inflation and strengthening stabilization by responding more aggressively to inflation and24
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output growth. Appendix G contrasts this with a two-tier approach that separates the1

reforms, with policymakers first switching to a rule designed to bring target inflation down2

and thereafter changing feedback parameters to stabilize the economy around the new target.3

Alas, the two-tier approach prolongs the transition and makes matters worse. Delaying4

the second reform postpones but does not circumvent the problem of coping with locally-5

explosive dynamics. This challenge now emerges at the end stage 1 rather than the beginning6

of the disinflation, but it does not go away. A separation of reforms also retards learning by7

allowing beliefs about  and  to harden around old-regime values during stage 1. Less8

obviously, the separation of reforms also retards learning about target inflation in stage 1.9

Wherever ̄ appears in the likelihood function it is multiplied by  Since  remains close10

to zero during stage 1, ̄ is weakly identified and hard to learn about. One of the purposes11

of a simultaneous reform is to strengthen identification of ̄ by increasing 12

As shown in appendix G, target inflation is slightly higher than for simultaneous reforms,13

the inflation response is a bit weaker, and reaction to output growth is about the same.14

Learning is slower, the transition is longer and more volatile, and expected loss is higher.15

5.4. Single-equation learning16

Agents in the baseline model exploit cross-equation restrictions on the ALM when esti-17

mating policy coefficients. This places a heavy computational burden on decision makers who18

are supposed to be boundedly rational. Appendix H lightens their burden by assuming that19

agents estimate equation (1) by recursive least squares with either constant or decreasing20

gain. All other aspects of the baseline specification remain the same.21

Although estimates of policy coefficients sometimes differ from those in the baseline22

model, optimized Taylor rules are essentially the same. That the results are similar to those23

for full-system learning means that cross-equation restrictions are less informative than in24

a full-information rational-expectations model. Somewhat to our surprise, single-equation25
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learning is almost as good. Little is to be gained by exploiting cross-equation restrictions.1

6. Conclusion2

When the private sector must learn about a change in monetary policy, transitional3

volatility matters for policy design. In our model, a central bank commits to a Taylor rule4

whose form is known but whose coefficients are not. Private agents learn about policy pa-5

rameters via Bayesian updating. Under McCallum’s (1999) timing protocol, temporarily6

explosive dynamics can arise, making the transition highly volatile. The potential for lo-7

cally explosive outcomes dominates expected loss and materially alters the bank’s choice8

of policy coefficients relative to what would be chosen if operating under full information.9

Locally-unstable dynamics emerge when there is substantial disagreement between actual10

and perceived feedback parameters. The bank copes by choosing feedback parameters close11

to the private sector’s initial beliefs. Uncertainty about target inflation is secondary, and12

the bank can reduce average inflation substantially without generating much turbulence. Its13

ability to achieve greater stability by adjusting reaction coefficients is more limited.14

Although we believe our model has some relevance for understanding the Volcker disinfla-15

tion, we are reluctant to push it hard as a positive explanation of that episode. The central16

bank in our model knows the structure of the economy and how agents learn, and we suspect17

that the Fed under Volcker was not quite so knowledgeable or sophisticated. In addition,18

our analysis abstracts from features such as Carter’s credit controls and political economy19

factors that were important then. Instead, our contribution is to highlight the importance of20

accounting for transitional volatility when agents must learn about a new monetary-policy21

rule.22
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Table 1: NKPC parameters
1

 = (1 + ̄) 1 = ̄[1− (1 + ̄)
−1] 2 = (1 + ̄)

−1   = e
 = (1 + ) e e = [1−(1+̄)−1][1−(1+̄) ]

(1+̄)−1
1 =

̄(1+̄)
−1

(1−(1+̄)−1 2 = (1 + ̄)


2

Note: This table records the relationship between beliefs about trend inflation ̄ and the para-3

meters of the NKPC (equations 8-10). The deep parameters are the subjective discount factor4

 the probability 1−  that an intermediate-goods producer can reset its price, the elasticity of5

substitution across varieties  and the Frisch elasticity of labor supply 1
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Table 2: Estimates of Policy Coefficients before the Volcker Disinflation
1

̄    2

0.0116 0.043 0.12 0.0033 0.12

(0.013) (0.08) (0.04) (0.01)
2

Note: This table reports OLS estimates of a backward-looking Taylor rule in difference form (equa-3

tion 1). ̄ represents target inflation,  and  are feedback parameters on lagged inflation and4

output growth, and  is the standard deviation of the policy shock. The nominal interest rate is5

measured by the federal funds rate, and inflation and output growth are measured by the rates of6

change in the chain-weighted price index for personal consumption expenditures and in the real7

gross domestic product, respectively. The data are quarterly, and the sample covers the period8

1966.Q1-1981.Q1. OLS standard errors are shown in parentheses.9
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Figure 1: Responses of inflation, output, and interest rate gaps under full information.3

Values shown at date 0 depict differences between steady states in the old and new regimes.4

A Taylor rule optimized for full information is introduced at date 1.
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Figure 2: Iso-expected loss contours under full information. ̄ represents target inflation,3

and  and  are feedback parameters on lagged inflation and output growth. The black4

diamond in the upper left panel marks the full-information optimum. Contour lines measure5

the gross increase in expected loss relative to the optimum.
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Figure 3: Prior probability distributions on the policy coefficients. ̄ represents target3

inflation,  and  are feedback parameters on lagged inflation and output growth, and 4

is the standard deviation of the policy shock. These distributions are calibrated to match5

aspects of the estimates in table 2.
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Figure 4: Iso-expected loss contours under learning. ̄ represents target inflation, and  and3

 are feedback parameters on lagged inflation and output growth. The optimal coefficients4

under learning and full information are marked, respectively, by a black diamond and an5

asterisk. Contour lines measure the gross increase in expected loss relative to the optimum6

under learning.
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Figure 5: The gray region marks combinations of feedback pararmeters  and  on lagged3

inflation and output growth for which the ALM is nonexplosive at the beginning of the dis-4

inflation. Target inflation is set to zero. The black diamond marks the optimal coeffiecients5

under learning.
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Figure 6: Responses of inflation, output, and interest rate gaps under learning. Values shown3

at date 0 depict differences between steady states in the old and new regimes. A Taylor rule4

optimized for learning is introduced at date 1.
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Figure 7: Average estimates of policy coefficients. ̄ represents target inflation,  and3

 are feedback parameters on lagged inflation and output growth, and  is the standard4

deviation of the policy shock. Values for date 0 are prior modes, while those shown at date5

1 and after are cross-sample-path averages of posterior modes.
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Figure 8: Response of inflation in the stripped-down example to a unit cost-push shock. 3

is the reaction coefficient on lagged inflation in the abstract policy rule (equation 24). The4

prior mode for  is 0 = 01 the discount rate  is set to 0.99, and the autoregressive5

parameter for cost-push shocks is  = 04 The ALM and PLM are both based on initial6

beliefs.7


