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Abstract

This paper proposes a new method, Functional Approximation of Impulse Responses (FAIR),

to estimate the dynamic effects of structural shocks. FAIR approximates impulse responses

with a few basis functions and then directly estimates the moving average representation

of the data. FAIR can offer a number of benefits over earlier methods, including VAR and

Local Projections: (i) parsimony and efficiency, (ii) ability to summarize the dynamic effects

of shocks with a few key moments that can directly inform model building, (iii) ease of prior

elicitation and structural identification, and (iv) flexibility in allowing for non-linear effects of

shocks while preserving efficiency. We illustrate these benefits by summarizing the dynamic

effects of monetary shocks, notably their asymmetric effects, with a few key statistics.
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1. Introduction1

The impulse response function (IRF) is a popular tool to describe the dynamic effects2

of shocks on macroeconomic time series, and this paper proposes a new method, Functional3

Approximation of Impulse Responses (FAIR), to estimate IRFs.4

The FAIR methodology has two distinct features. First, instead of assuming the exis-5

tence of a vector autoregression (VAR) representation, FAIR directly estimates the vector6

moving-average (VMA) representation of the data, i.e., FAIR directly estimates the IRFs.7

This confers a number of advantages, notably the ability to impose prior information and8

structural identifying restrictions in a flexible and transparent fashion, as well as the possi-9

bility to allow for a large class of non-linear effects. Second, FAIR approximates the impulse10

response functions with a few basis functions. The approximation serves as a dimension11

reduction tool, which makes the estimation of the VMA feasible. While different families of12

basis functions are possible, Gaussian basis functions can be of particular interest for macro13

applications: a one Gaussian function approximation can summarize a monotonic or hump-14

shaped IRF with only three parameters, each capturing a separate and interpretable feature15

of the IRF: (a) the magnitude of the peak effect of a shock, (b) the time to that peak effect,16

and (c) the persistence of that peak effect. This ability to summarize a high-dimensional17

IRF with a few key parameters amenable to statistical inference can make FAIR helpful to18

evaluate and guide the development of successful models.19

After establishing the good finite sample properties of FAIR with Monte-Carlo simula-20

tions, we illustrate the benefits of FAIR by studying the effects of monetary shocks. FAIR21

can incorporate the different identification schemes found in the structural VAR literature,22

and we present results from three popular identification schemes: a recursive identifica-23

tion scheme, (ii) a set identification scheme based on sign restrictions, and (iii) a narrative24

identification scheme where a series of shocks has been previously identified (possibly with25

measurement error) from narrative accounts.26

First, we focus on linear models, and we illustrate how influential stylized facts about27
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the magnitude and dynamics of the effects of monetary shocks can be recast into statements28

about individual FAIR parameters. Second, we use FAIR to explore whether monetary29

shocks have asymmetric effects on unemployment, i.e., whether a contractionary monetary30

shock has a stronger effect (being akin to pulling on a string) than an expansionary shock31

(being akin to pushing on a string). While this question is central to the conduct of monetary32

policy, the evidence for asymmetric effects is relatively thin and inconclusive,1 in part because33

estimating the asymmetric effect of a monetary shock is difficult within a VAR framework.34

Consistent with the string metaphor, we find evidence of strong asymmetries in the effects35

of monetary shocks. Regardless of our identification scheme, a contractionary shock has36

a strong adverse effect on unemployment, while an expansionary shock has little effect on37

unemployment. The response of inflation is also asymmetric but in the opposite direction of38

unemployment: prices react less when unemployment reacts more and vice-versa.39

Our functional approximation of the IRFs has intellectual precedents in the distributed40

lags literature, notably Almon (1965), Jorgenson (1966), Hansen and Sargent (1981) and Ito41

and Quah (1989) approximation of the distributed lag function with polynomial or rational42

functions. More recently, Plagborg-Moller (PM, 2017) proposes a Bayesian method to di-43

rectly estimate the structural VMA representation of the data. Different from our functional44

approximation approach, PM reduces estimation variance by using prior information about45

the shape and the smoothness of the impulse responses.46

Section 2 presents our functional approximation of impulse responses and discusses the47

benefits of using Gaussian basis functions, Section 3 re-visits the linear effects of monetary48

shocks with FAIR; Section 4 extends FAIR to non-linear models; Section 5 studies the49

asymmetric effects of monetary shocks; Section 6 concludes.50

1For instance, while Cover (1992), Angrist et al. (2016) and Tenreyro and Thwaites (2016) find evidence
of asymmetric effects, Weise (1999), Ravn and Sola (2004) and Lo and Piger (2005) find nearly symmetric
effects.
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2. Functional Approximation of Impulse Responses (FAIR)51

We first introduce FAIR in univariate setting and then generalize it to a multivariate52

setting.53

2.1. Univariate setting54

For a stationary univariate data generating process, the IRF corresponds to the coeffi-55

cients of the moving-average model56

yt =
H∑
h=0

ψ(h)εt−h (1)

where εt is an i.i.d. innovation with Eεt = 0 and Eε2t = 1, and H is the number of lags,57

which can be finite or infinite. The lag coefficients ψ(h) is the impulse response of yt at58

horizon h to innovation εt.59

Since ψ(h) is a large (possibly infinite) dimensional object, estimation of (1) can be60

difficult. Instead, one can invoke the Wold decomposition theorem to re-write (1) as an61

AR(∞)62

A(L)yt = εt (2)

where A(L) = Ψ(L)−1 with Ψ(L) =
H∑
h=0

ψ(h)Lh and L the lag operator.63

Since estimating an AR(∞) is not possible in finite sample, in practice researchers esti-64

mate a finite order AR(p) meant to approximate the AR(∞), and the IRF is recovered by65

inverting that AR(p). In effect, the AR(p) approximation serves as a dimension reduction66

tool that makes the estimation of (1) feasible. For instance, an AR(1) approximates the67

coefficients of the MA(∞) as an exponential function of a single parameter.68

In this paper, we propose an alternative dimension-reducing tool (Functional Approxi-69

mation of Impulse Responses or FAIR), which consists in representing the impulse response70

function as an expansion in basis functions. Instead of estimating an intermediate model71

–the AR(p)– and then recovering the impulse response, FAIR directly estimates the object72

4



of scientific interest; the impulse response function. Specifically, a functional approximation73

of ψ consists in decomposing ψ into a sum of basis functions74

ψ(h) =
N∑
n=1

angn(h), ∀h ≥ 0 (3)

with gn : R→ R the nth basis function, n = 1, .., N .75

Different families of basis functions are possible, and in this paper we use Gaussian basis76

functions and posit77

ψ(h) =
N∑
n=1

ane
−(h−bn

cn
)2 , ∀h ≥ 0 (4)

with an, bn, and cn parameters to be estimated. Since model (4) uses N Gaussian basis78

functions, we refer to this model as a FAIRG of order N . In the appendix, we prove that any79

mean-reverting impulse response function can be approximated by a sum of Gaussian basis80

functions.81

A researcher can choose to use the basis function approximation (4) for h ≥ 0 or for82

h > 0. As we will see in the identification section, there are benefits of excluding h = 0,83

i.e., ψ(0), from the approximation, because it allows us to incorporate short-run restrictions84

into FAIR without overly restricting the IRF dynamics. Thus, for the rest of the paper, we85

will treat the elements of the impact coefficient ψ(0) as a free parameter, although there is86

nothing in our approach that requires us to make this choice.87

2.2. Multivariate setting88

While the discussion has so far concentrated on a univariate process, we can easily gen-89

eralize the FAIR approach to a multivariate setting. Consider the structural vector moving-90

average model of yt, a (k × 1) vector of stationary variables,91

yt = Ψ(L)εt, where Ψ(L) =
H∑
h=0

ΨhL
h (5)
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where εt is the vector of i.i.d. structural innovations with Eεt = 0 and Eεtε
′
t = I, and H is92

the number of lags, which can be finite or infinite. The matrix of lag coefficients Ψh contains93

the impulse responses of yt at horizon h to the structural shocks εt.94

Setting aside the issue of identification, the common strategy to recover (5) is identical to95

the univariate case: rewrite (5) as a VAR(∞) and then estimate its VAR(p) approximation.96

In this paper, we propose to use FAIR and directly estimate the impulse response func-97

tions by approximating each element of Ψh, denoted by ψ(h), as in (4). With k2 IRFs to98

approximate, the parameter vector is of dimension 3∗N ∗k2. If the contemporaneous impact99

matrix Ψh is left unrestricted, this adds another k2 terms to estimate.100

2.3. FAIR benefits101

We now argue that FAIR models with Gaussian basis functions (FAIRG) can be attractive102

in macro applications, and we will pay particular attention to the FAIR approximation with103

one Gaussian basis function, or FAIRG1 ,104

ψ(h) = ae−
(h−b)2

c2 (6)

illustrated in the top panel of Figure 1.105

Parsimony of FAIR106

A first advantage of using Gaussian basis functions is that a small number of Gaussians107

can already capture a large class of IRFs, that is Gaussian basis functions may offer an108

attractive dimension-reduction tool.109

To illustrate this point, Figure 2 plots the IRFs of unemployment, inflation and the fed110

funds rate to a shock to the fed funds rate estimated from a standard VAR specification with111

a recursive ordering, along with the IRFs approximated with Gaussian basis functions.2 For112

2We describe the exact VAR specification in section 5. In Figure 2, the parameters of the Gaussian
basis functions were set to minimize the discrepancy (sum of squared residuals) with the VAR-based impulse
responses. Importantly, this is not how we estimate FAIR models.
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unemployment and the fed funds rate we use a FAIRG1 . We can see that this simple model113

already does a good job at capturing the responses of unemployment and the fed funds114

rate implied by the VAR, while reducing the dimension of each IRF in Figure 2 from 25115

to only 3 parameters. To capture the oscillating pattern of inflation following a monetary116

shock, two Gaussian basis functions are necessary, and we can see in Figure 2 that the IRF117

approximated with two Gaussian basis functions (a FAIRG2) does a good job there as well.118

With a small number of Gaussian basis functions per IRF, directly estimating the VMA119

representation of the data becomes feasible.3 and this will allow us to estimate a VMA120

representation of the data.121

Interpretability and portability of FAIR coefficients122

A second advantage of using Gaussian basis functions is that the estimated coefficients123

can have a direct economic interpretation in terms of features of the IRFs. This stands in124

contrast to VARs where the IRFs are non-linear transformations of the VAR coefficients.125

The ease of interpretation is most salient in a FAIRG1 model (6) where the a, b and c126

coefficients have a direct economic interpretation, and in fact capture three separate charac-127

teristics of a hump-shaped impulse response. To see that graphically, the top panel of Figure128

1 shows a hump-shape impulse response parametrized with a one Gaussian basis function:129

parameter a is the height of the impulse-response, which corresponds to the maximum effect130

of a unit shock, parameter b is the timing of this maximum effect, and parameter c captures131

the persistence of the effect of the shock, as the amount of time τ required for the effect of132

a shock to be 50% of its maximum value is given by τ = c
√

ln 2. These a-b-c coefficients are133

generally considered the most relevant characteristics of an impulse response function and134

3For instance, for a trivariate model with three structural shocks, a FAIRG1 only needs 27 parameters
(9 impulse responses times 3 parameters per impulse response, ignoring intercepts) to capture the whole

set of impulse responses {Ψh}Hh=1. In the example of Figure 2 where the impulse responses of inflation are
approximated by a richer FAIRG2 , there would be 36 parameters (32 ∗ 2 + 6 ∗ 3 = 36). In comparison, a
quarterly VAR with 3 variables and 4 lags has 4 ∗ 32 = 36 free parameters, and a monthly VAR with 12 lags
has 12 ∗ 32 + 6 = 108 free parameters. Unlike VARs, the number of FAIR parameters to estimate need not
increase with the frequency of the data.
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the most discussed in the literature.135

With more than one basis function, the ease of interpretation of the estimated parameters136

is no longer guaranteed. However, in some cases a FAIRG model with multiple Gaussian-basis137

functions can retain its interpretability. For instance, consider an oscillating pattern as in138

the bottom panel of Figure 1, which is typical of the response of inflation to a contractionary139

monetary shock. In that case, the FAIRG parameters can retain their interpretability if140

the first Gaussian basis function captures the first-round effect of the shock, a positive141

hump-shaped response of inflation usually refereed to as the price puzzle (Christiano et al.142

1999), while the second Gaussian function captures the larger second-round effect, a negative143

hump-shaped effect. Going back to our VAR example from Figure 2, the two Gaussian basis144

functions used to match the impulse response of inflation show little overlap. In particular,145

one can summarize the 2nd-round effect of the shock (the main object of scientific interest146

in the case of the inflation response to monetary shocks) with the a-b-c parameters of the147

second basis function: in that case, the a2, b2 and c2 capture the peak effect, the time to148

peak effect, and the persistence of the 2nd-round effect of the shock.4149

Going beyond interpretation and ease of prior elicitation, the ability to summarize the150

dynamic effects of a shock makes FAIRG particularly helpful to evaluate and guide the de-151

velopment of successful models. IRFs are high-dimensional objects whose main features can152

be hard to summarize and assess statistically. And while researchers traditionally resort to153

large panels of IRF plots to represent the responses of many variables to different shocks154

(e.g., Amir-Ahmadi et al., 2016), the overload of information can blur the key implications155

4Formally, one can write a “no-overlap” condition as∫ ∞
h2

g1(h)dh ≤ ε ' 0 with h2 such that

∫ ∞
h2

g2(h)dh = α ' 1 (7)

with gn denoting the nth basis function. That condition is a restriction on the bn and cn coefficients that
ensures that the two basis functions g1 and g2 have limited overlap. Intuitively, for say ε = .05 and α = .9,
the condition states that the first Gaussian function (g1) –the first-round effect of the shock– has a negligible
(5 percent or less) overlap with 90 percent of the second Gaussian function (g2) –the second-round effect of
the shock–.
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for theoretical modeling and make comparison of IRF estimates across different schemes,156

different model specifications and/or different sample periods difficult. By providing inter-157

pretable and portable moments amenable to statistical inference, FAIR can facilitate the158

emergence of a set of robust findings.159

2.4. FAIR estimation160

FAIR models can be estimated using maximum likelihood or Bayesian methods. The161

computational cost is not as trivial as OLS in the case of VARs, but the estimation is simple162

and relatively easy thanks to modern computational capabilities.163

The key step in the estimation of FAIR models is the computation of the likelihood func-164

tion of a VMA model. Since we assume that the variables in our model are stationary, we165

can truncate the moving average model at a large enough horizon H and the approximation166

error due to this truncation will be negligible. To initialize the computation, we set the first167

H structural innovations {εj}0j=−H to zero. Conditional on a set of parameters, we can then168

recursively back out the sequence of one step ahead forecast errors from the FAIR model169

(5) and then compute the likelihood function. We can then use either a Metropolis-Hastings170

algorithm to approximate the posterior distribution, or use an optimization algorithm to171

maximize the likelihood function and obtain Maximum Likelihood estimates of the param-172

eters. More details are available in the Online Appendix.173

A potentially important problem when estimating moving-average models is the issue of174

under-identification: In linear moving average models, different representations (i.e., different175

sets of coefficients and innovation variances) can exhibit the same first two moments, so that176

with Gaussian-distributed innovations, the likelihood can display multiple peaks, and the177

moving average model is inherently underidentified (e.g., Lippi and Reichlin, 1994). By178

constructing the likelihood recursively using past observations, our algorithm will effectively179

estimate the fundamental moving-average representation of the data.5 In principle, one could180

5If our estimation algorithm chose parameter estimates that implied non-invertibility, our {εt} estimates
would ultimately grow very large, and this situation would lead to very low likelihoods, since we assume that
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remedy this limitation and estimate non-invertible moving-average representations by using181

the procedure recently proposed by Plagborg-Moller (2017),6 provided that one has enough182

prior information to favor one moving-average representation over the others.183

To choose N , the order of the FAIR model, the researcher can either choose to restrict184

himself to a class of functions if prior knowledge on the shape of the impulse response185

is available (for instance, using only one Gaussian basis function) or, similarly to a BIC186

criterion, use likelihood ratio tests/posterior odds ratios (assigning equal probability to any187

two models) to compare models with increasing number of basis functions. Finally, note that188

FAIR models can only be estimated for stationary series (so that the moving-average can189

be truncated). If the data are non-stationary, we can (i) allow for a deterministic trend in190

equation (5) and/or (ii) difference the data, and then proceed exactly as described above.7191

2.5. Imposing structural identifying assumptions192

To give a structural interpretation to the VMA innovations, researchers must use identi-193

fying assumptions. Given our later focus on the effects of monetary policy, we will discuss194

three popular approaches in the monetary literature: a recursive identification scheme, (ii) a195

narrative identification scheme where a series of shocks has been previously identified (pos-196

sibly with measurement error) from narrative accounts, and (iii) a set identification scheme197

based on sign restrictions. We also mention how FAIR could open the door for more general198

identification schemes based on shape-restrictions.199

Short-run restrictions and recursive ordering: Short-run restrictions in a fully200

the {εt} are standard normal. As a result, our estimation procedure will effectively estimate the invertible
representation.

6By using the Kalman filter with priors on the H initial values of the shocks {ε−H ...ε0}, Plagborg-Moller’s
procedure can handle the estimation of both invertible and non-invertible representations and thus does
not restrict the researcher to the invertible moving-average representation. However, unlike our proposed
approach, that procedure would be difficult to implement in non-linear models.

7The presence of co-integration does not imply that a FAIR model in first-difference is misspecified. The
reason is that a FAIR model directly works with the moving-average representation and does not require
inversion of the moving-average, unlike VAR models. After estimation, one can even test for co-integration

by testing whether the matrix sum of moving-average coefficients (
H∑
h=1

h∑
l=0

Ψl) is of reduced rank (Engle and

Yoo, 1987).
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identified model consists in imposing restrictions on the contemporaneous matrix Ψ0. For201

instance, a popular restriction based on a timing assumption is that a subset of the variables202

(ordered first in the vector yt) do not react on impact to that shock. As with VARs,203

this is ensured by setting the upper-right block of Ψ0 to zero. Note that since a FAIR204

approximation restricts the dynamics of the IRF, combining a FAIR approximation with a205

short-run restriction could overly restrict the dynamics of the IRF, as the short-run restriction206

at h = 0 would affect the whole path of the IRF. To avoid this implication, we can treat207

the elements of the initial impact matrix Ψ0 as free parameters and only use the FAIR208

approximation (4) for h > 0.209

Narrative identification: In a narrative identification scheme, a series of shocks has210

been previously identified from narrative accounts. For that case, we can proceed as with211

the recursive identification, because the use of narratively identified shocks can be cast as212

a partial identification scheme. We order the narratively identified shocks series first in213

yt, and we assume that Ψ0 has its first row filled with 0 except for the diagonal coefficient,214

which implies that the narratively identified shock does not react contemporaneously to other215

shocks. In other words, we are assuming that the narrative shocks are contemporaneously216

correlated with the true monetary shocks and uncorrelated with other structural shocks.8217

Sign restrictions: Set identification through sign restrictions consists in imposing sign-218

restrictions on the sign of the Ψh matrices, i.e., on the impulse response coefficients at219

different horizons. One can impose sign-restrictions on only the impact coefficients (captured220

by Ψ0, which could be left as a free parameter in this case) and/or sign restrictions on the221

impulse response. In a FAIRG1 model, the sign restriction applies for the entire horizon of222

the impulse response. With oscillating pattern and a higher-order FAIRG model, we can223

impose sign restrictions over a specific horizon by using priors on the location and the sign224

of the loading of the basis functions.225

8Our procedure allows the narrative shocks to contain measurement error, as long as the measurement
error is independent of structural shocks. This approach is similar to an external instrumental approach, in
the sense of Stock (2008).
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Identification restrictions through priors: When the FAIR parameters can be in-226

terpreted as “features” of the impulse responses, one can go beyond sign-restrictions and227

envision set identification through shape restrictions. Using the insights from Baumeister228

and Hamilton (2015), one could implement shape restrictions through informative priors on229

the a-b-c coefficients. For instance, one could posit priors on the location of the peak effect230

or posit priors on the persistence of the effect of the shock, among other possibilities.231

2.6. Assessing FAIR performances from Monte-Carlo simulations232

In this section, we summarize the findings of a set of Monte Carlo exercises that we use233

to asses the properties of our FAIR estimator in a linear context. Details can be found in234

the Online Appendix. We use two sets of data generating processes (DGP), one where the235

FAIR model is correctly specified and one where the true model is a VAR.236

In the first set of simulations where the DGP is a trivariate FAIRG1 model, we found that237

a correctly-specified FAIR model can generate substantially more accurate impulse response238

estimates (in a mean-squared error sense) than a VAR model, independently of whether the239

VAR includes many lags or is parsimoniously parametrized. To give a number, we found240

that, on average across Monte Carlo samples, the mean-squared error of the VAR is 150241

percent higher than that of the FAIR model with flat priors. Intuitively, the VAR can only242

approximate the DGP with a large number of lags, and in that case the VAR parameters are243

imprecisely estimated. In those situations, a FAIRG model can provide a useful alternative.244

In the second set of simulations where the DGP is a VAR, we found that a misspecified245

FAIR performs just as well (or even slightly better in a mean-squared error sense) than246

a well-specified VAR model. The reason for the superior performances of the misspecified247

FAIR is the fact that the estimated VAR often shows counterfactual oscillation patterns.248

Indeed, because VAR-based IRFs are linear combinations of damped sine-cosine functions,249

the estimated VAR-based IRFs can display counter-factual oscillations even if the true data250

generating VAR does not feature these fluctuations. With its tighter parametrization, a251

FAIRG with only a few basis functions avoids this problem. That being said, our goal is not252
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to claim that FAIR models are always superior to VARs. Instead, the simulations are meant253

to convey that FAIR models can provide a useful alternative to VARs.254

2.7. Relation to alternative IRF estimators255

VARs have been the main approach to estimate IRFs since Sims (1980), but an increasing256

number of papers are now relying on Local Projections (LP, Jorda 2005) –themselves closely257

related to Autoregressive Distributed Lags (ADL, e.g., Hendry 1984)– to directly estimate258

impulse response functions.259

FAIR aims to straddle between the parametric parsimony of VARs and the flexibility of260

LP. Indeed, while LP (or ADL in its naive form) is model-free –not imposing any underlying261

dynamic system–, this can come at an efficiency cost (Ramey, 2012), which can make infer-262

ence difficult. In contrast, by positing that the response function can be approximated by263

one (or a few) Gaussian functions, FAIR imposes strong dynamic restrictions between the264

parameters of the impulse response function, which can improve efficiency. Moreover, FAIR265

alleviates another source of inefficiency in LP, namely the presence of serial correlation in266

the LP regression residuals. By modeling the behavior of a system of key macroeconomic267

variables (similarly to a VAR), a multivariate FAIR model is effectively modeling the serial268

correlation present in LP residuals, and this can further improve efficiency. Naturally, all269

these statement are only valid under the assumption that IRFs can be well approximated by270

a few Gaussian functions. In this respect, FAIR is best seen as complementing the model-free271

nature of LP.272

Another benefit of FAIR over VAR and LP/ADL is the ease of prior elicitation and273

structural identification. In VARs, identification can be thorny and non-transparent (e.g.,274

Baumeister and Hamilton, 2015), because the impulse-responses are non-linear transforma-275

tions of the VAR coefficients. In LP/ADL, the scope for identification is more limited,276

because LP/ADL are univariate models, so that a series of previously identified shocks (or277

instruments) is typically required (e.g., Auerbach and Gorodnichenko, 2013).278

13



3. A FAIR summary of the linear effects of monetary shocks279

In this section, we illustrate the benefits of FAIR by summarizing stylized facts from the280

monetary literature with a-b-c parameters.281

We consider a model of the US economy in the spirit of Primiceri (2005), where yt282

includes the unemployment rate, the PCE inflation rate and the federal funds rate. We use283

one Gaussian basis function to parametrize the impulse responses of unemployment and the284

fed funds rate. For the response of inflation, we use two Gaussian functions to allow for the285

possibility of a price puzzle in which inflation displays an oscillating pattern.9286

To put our results in the context of the literature, we identify monetary shocks using three287

different schemes: (i) a timing restriction whereby monetary policy affects macro variables288

with a one period lag (e.g., Christiano et al., 1999), (ii) a narrative approach based on289

Romer and Romer (2004) and extended until 2007 by Tenreyro and Thwaites (2016), and290

(iii) sign restrictions. For the latter scheme, we posit that positive monetary shocks are the291

only shocks that (a) raise the fed funds rate and (b) lower inflation roughly two years after292

the shock. Specifically, with a two Gaussian basis function specification for the response of293

inflation, we impose that the loading on the second basis function is negative (aπ,2 < 0),294

while the first basis function (meant to capture a possible price puzzle) can load positively295

or negatively but is restricted to peak within a year (bπ,1 ≤ 4) with a “half-life” of at most296

a year (cπ,1
√

ln 2 ≤ 4). In words, our sign-restriction is that the price puzzle cannot last for297

too long, so that the response of inflation must be negative after roughly two years. In the298

appendix, we plot the prior IRF of inflation implied by these priors. To ensure the same299

sample period across identification schemes, the data cover 1969Q1 to 2007Q4.300

We first display our results in the usual way, and Figure 3 plots the impulse response301

9As priors, we use very loose Normal priors on the a-b-c coefficients that are centered on the values
obtained by matching the impulse responses obtained from the VAR and with standard-deviations σa = 10
ppt, σb = 10 quarters and σc = 20 quarters with the constraint c > 0 (in “half-life” units, this σc corresponds
to a half-life of about 4 years, a very persistent IRF). To illustrate that these are very loose priors, in the
appendix we show some corresponding prior IRFs.
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functions of unemployment, inflation and the fed funds rate to a 100 basis point monetary302

innovation, as in Coibion (2012). Figure 4 presents the same results but through the lens of303

the FAIR parameter estimates: the blue error bars show the 90% posterior distributions of304

the a-b-c parameters summarizing the IRFs of unemployment and inflation.10305

Peak effects of monetary shocks: the a parameter306

In an influential paper, Coibion (2012) first drew attention to the fact that Romer and307

Romer (R&R, 2002) obtained much larger effects of monetary shocks than implied by struc-308

tural VARs with a recursive ordering (e.g., Christiano et al., 2005).309

Since impulse responses are high-dimensional and difficult to compare, Coibion (2012)310

made his point by summarizing the IRFs to monetary shocks with their peak effects. In a311

FAIRG1 model, the peak effect is directly picked up by the a parameter, so that we can revisit312

Coibion’s findings in lights of our a parameter estimates. A benefit of FAIR in this context313

is that FAIR delivers a posterior distribution for the a parameters, which allows us to qualify314

Coibion’s findings with confidence intervals. Our estimated effects of monetary shocks are in315

line with Coibion (2012, Table 2), and the R&R shocks have a much larger effect than either316

recursively-identified or sign-identified shocks. For instance, a contractionary recursively-317

identified shock raises unemployment by arecu = .24
[.19,.30]

ppt at its peak whereas a Romer318

and Romer shock raises unemployment by anaru = .56
[.38,.79]

, where the main entry denotes319

the median value and the subscript entry denotes the 90 percent credible interval.11 Since320

the 90% credible interval for anaru excludes the credible intervals for arecu and asgnu , we can321

conclude like Coibion (2012) that R&R shocks do have a larger effects on unemployment. A322

similar result holds for the response of inflation.323

10For the impulse response of inflation, the a-b-c parameters of the second basis functions retain a useful
interpretation, because the “no-overlap” condition (footnote 4) is satisfied by more than 99% of MCMC
draws (taking with α = .9 and ε = .05). This can be seen graphically in the two median basis functions
plotted in Figure 3.

11While Romer and Romer (2002) report a slightly larger baseline estimate for the peak response of
unemployment (0.9 ppt), Coibion (2012) note that the R&R results are sensitive to the number of lags in
their ADL model. Using instead a number of lags consistent with an AIC criterion, Coibion (2012) estimates
a peak response of unemployment of 0.6ppt, in line with our results.
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As Coibion noticed, an important caveat to this conclusion is that the monetary impetus324

is different across identification schemes, and indeed we also find that the R&R shocks325

generate a much larger response of the fed funds rate, peaking at close to 200 basis points326

instead of 100bp for the other identification schemes (figure 3). A simple approach to address327

this issue is to normalize the impulse responses by the peak response of the fed funds rate, as328

opposed to the impact response of the fed funds rate. After rescaling, the impulse responses of329

the fed funds rate all peak at 100 basis points, implying more similar monetary impetus across330

identification schemes. In a FAIRG model, the normalization leaves the b and c parameters331

unchanged but rescales the a parameters capturing the peak effects. After constructing332

the posterior distributions of the rescaled a parameters (black error bars), we find that the333

point estimates for the peak effects of the R&R shocks are still slightly larger (especially for334

inflation), but the estimates are no longer significantly different: the error-bars for rescaled a335

show overlap across identification schemes. While Coibion (2012, figure 4) ultimately reached336

a similar conclusion, his conclusion was based on the IRF point estimates. In contrast, our337

conclusion is based on the posterior distribution of the peak effects of monetary shocks.12338

Dynamic effects of monetary shocks: the b and c parameters339

A second set of influential facts pertains to the dynamic effects of monetary shocks. In340

particular, three stylized facts that guided the development of New-Keynesian models (e.g.,341

Mankiw and Reis, 2002, Gali, 2008) are (i) unemployment (or output) and inflation respond342

in a hump-shaped fashion, (ii) the peak response of inflation is delayed compared to the peak343

response of unemployment, and (iii) real and nominal variables show persistent responses.344

These facts were based on visual inspections of the impulse response functions (e.g.,345

Christiano et al. 2005, p8), but they refer precisely to the b and c coefficients of a FAIRG346

model, and FAIR can make them more precise by providing confidence intervals around347

12A natural question is then why the R&R shocks imply larger changes in the fed funds rate than other
identification schemes. Coibion (2012) argues that the 1979-1982 period of non-FFR targeting, a period dur-
ing which the identification of shocks is particularly thorny for the R&R approach, is behind the discrepancy.
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them.348

The IRF of unemployment is indeed hump-shaped with a peak occurring after nine-349

to-eleven quarters with brecu = 9.6
[8.1,12.0]

, bnaru = 11.5
[9.8,13.4]

and bsgnu = 9.1
[7.0,10.8]

quarters.350

The IRF of inflation is also hump-shaped (bar the initial price puzzle) but with a peak351

occurring two-to-four quarters later than the unemployment peak with ∆π,ub
rec = 3.8

[1.0,7.1]
,352

∆π,ub
nar = 1.8

[−.1,3.0] and ∆π,ub
sgn = 3.1

[0.2,5.5]
where ∆π,ub = bπ − bu. One can even properly353

test fact (ii) that bu < bπ, figure 5 plots the joint posterior distribution of bu (x-axis) and bπ354

(y-axis). The dashed red line denotes identical peak times, so that the figure can be seen as355

a test of no difference in peak times: a posterior density lying above or below the red line356

indicates statistical evidence for different peak times. Across the three identification schemes,357

more than 96, 88 and 92 percent of the posterior probability lies above the dashed-red line,358

confirming that the peak of the unemployment response does indeed occur significantly before359

that of inflation.360

Regarding fact (iii) on persistence, for both inflation and unemployment the IRF returns361

to half of its peak value in four to six quarters with crecu
√

ln 2 = 4.7
[3.7,5.7]

, cnaru

√
ln 2 =362

4.9
[3.8,6.0]

and csgnu
√

ln 2 = 5.0
[4.2,5.8]

. While a casual observation of Coibion (2012)’s IRFs does363

suggest that dynamics are roughly consistent across schemes, providing confidence intervals364

around such statements is more involved with estimates from a VAR or LP/ADL framework.365

Our results show that while the peak effects are different across identification schemes, the366

dynamic effects of monetary shocks are consistent, as the posterior distributions of c overlap367

across the identification schemes.368

4. Non-linearities with FAIR: assessing the asymmetric effects of shocks369

The parsimonious nature of FAIR makes it a good starting point to explore the presence370

of non-linearities while preserving degrees of freedom. Different non-linear effects of shocks371

are possible, and in this section, we focus on extending FAIR to estimate possible asymmetric372

effects of shocks, whereby a positive shock can trigger a different impulse response than a373
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negative shock.374

4.1. Introducing asymmetry375

With asymmetric effects of shocks, the matrix of impulse responses Ψh depends on the376

sign of the structural shocks, i.e., we let Ψh take two possible values: Ψ+
h or Ψ−h , so that a377

model with asymmetric effects of shocks would be378

yt =
H∑
h=0

[
Ψ+
h (εt−h � 1εt−h>0) + Ψ−h (εt−h � 1εt−h<0)

]
(8)

with Ψ+
h and Ψ−h the lag matrices of coefficients for, respectively, positive and negative379

shocks and � denoting element-wise multiplication.380

Denoting ψ+(h), an element of Ψ+
h corresponding to a positive shock, a FAIRG model381

with asymmetry would be382

ψ+(h) =
N∑
n=1

a+n e
−
(
h−b+n
c+n

)2

, ∀h ∈ (0, H] (9)

with a+n , b+n , c+n parameters to be estimated. A similar expression would hold for ψ−(h).383

4.2. Estimation and structural identification384

The estimation of FAIR models with asymmetric impulse responses proceeds similarly to385

the linear case, but the construction of the likelihood involves one additional complication386

that we briefly mention here and describe in detail in the Appendix: one must make sure that387

the system Ψ0(εt)εt = ut has a unique solution vector εt given a set of model parameters and388

given some vector ut. With the contemporaneous impact matrix Ψ0 a function of εt, a unique389

solution is a priori not guaranteed. However, we show in the Appendix that there is a unique390

solution when we allow the identified shocks to have asymmetric effects in (i) the (full or391

partial) recursive identification scheme, (ii) the narrative identification scheme, and (iii) the392

sign-restriction identification scheme under the restriction that sgn(det Ψ+
0 ) = sgn(det Ψ−0 ).393
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4.3. Monte-Carlo simulations394

To assess how well a FAIR model can pick up on asymmetries in the data, we construct395

a moving average model with asymmetric responses to shocks by calculating the moving396

average representation of a trivariate VAR estimated on US data (details are in the Online397

Appendix) and then modifying this benchmark model to incorporate asymmetric responses398

to shocks for two of the three variables in our simulation study. Note that since the DGP399

is not based on Gaussian basis functions, the FAIR model is misspecified. We simulate 50400

samples of length 200 periods each. For the two variables that feature asymmetric responses401

to shocks, we find that across Monte Carlo samples the FAIR algorithm detects the presence402

of asymmetric responses 94 percent and 90 percent of the time.13 For the variable that403

reacts symmetrically to all shocks, the algorithm detects asymmetry in only 3 percent of the404

samples.405

4.4. Relation to alternative non-linear IRF estimators406

The economic literature has so far tackled the estimation of non-linear effects of shocks407

in two main ways: (i) LP (or ADL) combined with independently identified shocks or in-408

struments, and (ii) Markov switching VARs.409

LP can accommodate non-linearities in the response function, and a number of papers410

recently explored the asymmetric or state dependent effect of shocks using non-linear LP411

models (e.g., Auerbach and Gorodnichenko, 2013, Tenreyro and Thwaites, 2016). Relative412

to LP, the higher efficiency of FAIR can be of particular interest for non-linear models where413

degrees of freedom can decrease rapidly.14414

Regime-switching VAR models, notably threshold VARs (e.g., Hubrich and Terasvirta,415

2013) and Markov-switching VARs (Hamilton, 1989), can capture certain types of non-416

13We consider that the FAIR estimation detects asymmetry in a Monte Carlo sample if the 90 percent
posterior bands of the difference in the response to positive and negative shocks (centered at the median)
excludes 0.

14For instance, when we allow for asymmetric effects of a shock, the number of parameters to capture an
IRF until horizon 20 increases from 20 to 40 when using LP, but only from 3 to 6 when using a FAIRG1 .
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linearities, notably state dependence (whereby the value of some state variable affects the417

impulse response functions). However, unlike FAIR, regime-switching VARs cannot easily418

capture asymmetric effects of shocks (whereby the impulse response to a structural shock419

depends on the sign of that shock).15420

5. The asymmetric effects of monetary shocks421

We now extend the empirical application of Section 3 by allowing monetary shocks to422

have asymmetric effects.423

We can show our results in a standard fashion by displaying IRFs, and Figure 6 plots424

the IRFs obtained with a recursive ordering (results from the other identification schemes425

are left for the appendix). However, in the spirit of using a-b-c summary statistics, we will426

summarize our evidence for asymmetric effects with only one figure that focuses on the peak427

responses of inflation and unemployment to positive and negative monetary shocks.428

Specifically, Figure 7 plots the posterior distribution of au and aπ for expansionary mon-429

etary shocks (a−, x-axis) and contractionary shocks (a+, y-axis) that trigger a peak change430

in the fed funds rate of a 100 basis points. Recall that a− denotes the peak response to a431

decrease in the fed funds rate (an expansionary shock), while a+ denotes the peak response432

to an increase in the fed funds rate (a contractionary shock). The dashed red line denotes433

identical peak responses, i.e., no asymmetry, so that the figure can be seen as a test for434

the existence of asymmetric effects: a posterior density lying above or below the red line435

indicates statistical evidence for asymmetric impulse responses. The three rows plot the436

posterior distributions of au and aπ for respectively the recursive identification, the narrative437

identification, and the sign-restrictions identification. To ease comparison we report −a+π438

15We make this point formally in the appendix. Intuitively, with regime-switching VAR models, it is
assumed that the economy can be in a finite number of regimes, and that each regime corresponds to a
different set of VAR coefficients. However, if the true DGP features asymmetric impulse responses, a new
set of VAR coefficients would be necessary each period, because the behavior of the economy at any point
in time depends on all structural shocks up to that point. As a result, such asymmetric data generating
processes cannot be easily captured by threshold VARs or Markov-switching models that only handle a finite
(and typically small) number of state variables.
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and −a−π , so that the peak effects of inflation and unemployment share the same sign.439

Monetary shocks have asymmetric effects: For all three identification schemes, a contrac-440

tionary monetary shock increases unemployment whereas an expansionary monetary shock441

has little on effect on unemployment (and non-significantly different from zero). Taking442

estimation uncertainty into account, the evidence in favor of asymmetry is strong: for the443

three identification schemes we estimate a .98, .99 and .98 posterior probability that the peak444

response of unemployment is larger following a contractionary shock than following an ex-445

pansionary shock (i.e., that a+u > a−u ). In terms of magnitude, note that arec,+u = .22
[.16,.28]

ppt446

whereas anar,+u = .35
[.22,.43]

, so that Coibion’s (2012) finding that the R&R shocks have larger447

effects than recursively-identified shocks is also visible in the asymmetric impulse responses.448

The response of inflation also displays an asymmetric pattern: the price level appears449

more sticky following a contractionary shock than following an expansionary shock. The450

evidence for asymmetry in the response of inflation is also good, although slightly less strong451

than with unemployment: the posterior probability that a+π < a−π is 0.93, 0.87 and >0.99452

for the three identification schemes. In terms of magnitude, the sign-based identification453

points to a starker asymmetry in inflation that the other identification schemes. Notably,454

the response of inflation to a contractionary shock is estimated to be much more muted with455

sign restrictions (asgn,+π = −.03
[−.04,−.02]) than with the other two schemes (anar,+π = −.15

[−.34,.0]456

and arec,+π = −.08
[−.14,.0]).457

As a final point, note that the asymmetry in inflation is the mirror image of the asymme-458

try in unemployment: looking at Figure 7, most of the posterior mass is above the 45 degree459

line for the peak response of unemployment, but most of the posterior mass is below the 45460

degree line for the peak response of inflation. In other words, unemployment reacts less when461

prices react more, and vice-versa. Interestingly, this is the pattern that one would expect462

if (i) nominal rigidities were behind the real effects of monetary policy, and (ii) downward463

nominal rigidities were behind the asymmetric effects of monetary shocks on unemployment.464
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6. Conclusion465

This paper proposes a new method to estimate the dynamic effects of structural shocks466

by using a functional approximation of the impulse response functions.467

FAIR offers a number of benefits over other methods, including VAR and Local Projec-468

tions: (i) parsimony and efficiency, (ii) ability to summarize the dynamic effects of shocks469

with a few key moments that can directly inform model building, (iii) ease of prior elicitation470

and structural identification, and (iv) flexibility in allowing for non-linearities while preserv-471

ing efficiency. We illustrate these benefits by summarizing the dynamic effects of monetary472

shocks, notably their asymmetric effects, with a few key statistics.473

Although this paper studies the effects of monetary shocks, Functional Approximation474

of Impulse Responses may be useful in many other contexts, notably when the sample size475

is small and/or the data are particularly noisy. FAIR could also be used to explore the476

non-linear effects of other important shocks; notably where the existence of non-linearities477

remains an important and resolved question, such as fiscal policy shocks (e.g., Auerbach and478

Gorodnichenko, 2013) or credit supply shocks (Gilchrist and Zakrajsek, 2012).479
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Figure 1: Functional Approximation of Impulse Responses (FAIR) with one Gaussian basis function
(top panel) or two Gaussian basis functions (bottom panel).
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Figure 2: Approximating IRFs with Gaussian basis functions: IRFs of the unemployment rate (in
ppt), annualized PCE inflation (in ppt) and the federal funds rate (in ppt) to a 100bp monetary shock, as
estimated from a VAR or approximated using one Gaussian basis function (top and bottom panels) or two
Gaussian basis functions (middle panel). The two basis functions in the middle panel (dashed-green and
dashed-red lines) are appropriately weighted so that their sum gives the functional approximation of the
impulse response function (thick blue line). Estimation using data covering 1959-2007.
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Figure 3: FAIR Impulse Response Functions: IRFs of the unemployment rate (in ppt), inflation (in
ppt) and the federal funds rate (in ppt) to a 100bp monetary shock identified from a recursive ordering (left
column), a narrative approach (middle column), and sign-restrictions (right column). Shaded bands denote
the 5th and 95th posterior percentiles. Sample 1969-2007.
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Figure 4: A FAIR summary of the effects of monetary shocks: 90th posterior range (blue error bars)
of the a-b-c parameters for the IRFs of unemployment and inflation to a 100 bp monetary shocks identified
from a recursive ordering (“Rec.”), a narrative approach (“Narr.”), and sign-restrictions (“Sign”). The red
square marks the median value. The black error bars (with green square mark) denote the a parameter
estimates rescaled by the peak response of the fed funds rate. For the recursive and sign identification
schemes, the blue and black error bars coincide. Sample 1969-2007.
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Figure 7: A FAIR summary of the asymmetric effects of monetary shocks: posterior distribution
of the peak responses of unemployment (au, left panel) and negative inflation (−aπ, right panel) to a 100
bp monetary shock. a+ denotes the peak response to a contractionary shock (a +100bp shock to the fed
funds rate) and a− denotes the peak response to an expansionary shock (a −100bp shock). The dashed
red line denotes symmetric peak responses. Results from a recursive identification scheme over 1959-2007
(“Recursive”, top row), a narrative identification scheme over 1966-2007 (“Narrative”, middle row), and a
set identification scheme with sign restrictions over 1959-2007 (“Sign”, bottom row).
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