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1 Model averaging when models involve different
variables

Suppose that two models involve distinct lists of variables, Y1 and Y2, respectively.
For model averaging, we want posterior model probabilities p(M1|Y ) and p(M2|Y )
for some conditioning set Y . In order for this comparison to be meaningful, the
probabilities must be conditioned on a common list of variables. In principle, we can
arrive at a common variable list either by taking the union of variables across models
or the intersection. However, conditioning on the union of variables is problematic
because ill-defined nuisance terms appear in various places. For that reason, we
develop a strategy for working with the intersection of model variables.
Let X represent the intersection of variables across models, and suppose that Xi

represents variables that appear in model i but not in the other model. Then Yi =
[X,Xi].Also, letMi index model i and let θi represent its parameters. Finally, suppose
that φ represents Taylor-rule parameters and that l(φ|θi,Mi) represents expected loss
conditional on model i and a calibration of its parameters θi.
One coherent approach would be to condition the entire analysis on the intersec-

tion of variables X. A downside is that precision is lost when estimating parameters.
I.e., the posterior p(θi|X,Mi) conditioned on the smaller set of common variables is
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likely to be more diffuse than the posterior p(θi|Yi,Mi) conditioned on the complete
list of observables for model i. For policy, it is desirable to estimate parameters as
well as possible. Thus, we outline a strategy for using the full set of variables Yi for
estimation and the smaller set of common variables X for model averaging.
For estimation, the posterior p(θi|Yi,Mi) for each model and the marginal data

density p(Yi|Mi) can be calculated via standard methods. For a given φ, the model-
specific expected loss is

l(φ|Yi,Mi) =
R
l(φ|θi,Mi)p(θi|Yi,Mi)dθi. (1)

Assuming an evenly-weighted sample from p(θi|Yi,Mi), this can be approximated as

l(φ|Yi,Mi) ≈ N−1PN
j=1 l(φ|θij,Mi), (2)

where θij is the jth draw in the Monte Carlo sample and N is the total number of
draws. To condition down from Yi to X, we use importance sampling. Thus, consider

l(φ|X, θi,Mi) =
R
l(φ|θi,Mi)

p(θi|X,Mi)

p(θi|Yi,Mi)
p(θi|Yi,Mi)dθi, (3)

≈ N−1PN
j=1 l(φ|θij,Mi)w(θij),

where w(θij) ≡ p(θi|X,Mi)/p(θi|Yi,Mi). Expected loss conditioned on X can be
calculated by taking weighted averages using posterior draws for the big information
set Yi. Thus, there is no need to re-simulate the posterior for the smaller set X.
We can make further progress by noting that

p(θi|X,Mi)

p(θi|Yi,Mi)
=

p(X|θi,Mi)p(θi|Mi)/p(X|Mi)

p(Yi|θi,Mi)p(θi|Mi)/p(Yi|Mi)
=

p(X|θi,Mi)

p(Yi|θi,Mi)

p(Yi|Mi)

p(X|Mi)
. (4)

After the second equality, the first term is the ratio of likelihoods and the second is
a ratio of marginalized likelihoods. The latter are unnecessary at this stage because
they are independent of θi and wash out when normalizing importance weights so
that they sum to 1. Thus, consider the unnormalized importance weights

w̃(θi) =
p(X|θi,Mi)

p(Yi|θi,Mi)
. (5)

Since the normalizing constants p(X|Mi) and p(Yi|Mi) are independent of θi, it follows
that w̃(θi) = kw(θi) for some constant k. Hence, after re-normalizing,

w̃(θij)P
j w̃(θij)

= w(θij). (6)

The advantage of working with w̃(θi) follows from the fact that the numerator and
denominator of (5) are easy to calculate. For a log-linearized system in state-space
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form, w̃(θi) can be evaluated using the prediction-error decomposition of the two
likelihood functions and two passes of the Kalman filter.
The other ingredient needed for model averaging are the posterior model proba-

bilities, p(Mi|X). Suppose that p(Mi) is the prior probability on model i. According
to Bayes’ theorem, the posterior model probability is

p(Mi|X) ∝ p(X|Mi)p(Mi), (7)

where

p(X|Mi) =

Z
p(X|θi)p(θi|Mi)dθi. (8)

Thus we need to calculate the marginal data density p(X|Mi) for the common variable
set. As stated above, p(Yi|Mi) can be approximated using standard methods. To
condition down from Yi toX, we apply a change of variables and integrate numerically.
Start by re-writing (8) as

p(X|Mi) =

Z
p(X|θi)
p(Yi|θi)p(Yi|θi)p(θi|Mi)dθi, (9)

=

Z
w̃(θi)

p(Yi|θi)p(θi|Mi)

p(Yi|Mi)
p(Yi|Mi)dθi,

= p(Yi|Mi)

Z
w̃(θi)p(θi|Yi,Mi)dθi.

Hence the ratio of the small- and big-information set marginal data densities can be
expressed as the posterior mean of unnormalized importance weights,

p(X|Mi)

p(Yi|Mi)
=

Z
w̃(θi)p(θi|Yi,Mi)dθi, (10)

where the expectation is taken with respect to the big-information posterior. This
can be approximated as

p(X|Mi)

p(Yi|Mi)
≈ N−1PN

j=1 w̃(θij). (11)

In fact, this is proportional to the denominator in (6), so no new calculations are
involved. To transform from p(Yi|Mi) to p(X|Mi), we just multiply the former by the
mean of the unnormalized importance weights,

p(X|Mi) ≈ p(Yi|Mi)
PN

j=1 w̃(θij)/N. (12)

Unnormalized model probabilities are found by substituting p(X|Mi) into (7). To
normalize, we sum the right-hand side of (7) across models and divide by the result,

p(Mi|X) = p(X|Mi)p(Mi)P
i p(X|Mi)p(Mi)

. (13)
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All the ingredients for model averaging are now at hand. To account for model
uncertainty, we average the model-specific losses l(φ|X,Mi) using posterior model
probabilities as weights,

l(φ) =
X

i
l(φ|X,Mi)p(Mi|X). (14)

A policy rule robust to both model and parameter uncertainty can be found by
choosing φ to minimize l(φ).
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