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1 Model averaging when models involve different
variables

Suppose that two models involve distinct lists of variables, Y; and Y5, respectively.
For model averaging, we want posterior model probabilities p(M;|Y") and p(Ms|Y)
for some conditioning set Y. In order for this comparison to be meaningful, the
probabilities must be conditioned on a common list of variables. In principle, we can
arrive at a common variable list either by taking the union of variables across models
or the intersection. However, conditioning on the union of variables is problematic
because ill-defined nuisance terms appear in various places. For that reason, we
develop a strategy for working with the intersection of model variables.

Let X represent the intersection of variables across models, and suppose that X;
represents variables that appear in model ¢ but not in the other model. Then Y; =
[ X, X;]. Also, let M; index model i and let 6; represent its parameters. Finally, suppose
that ¢ represents Taylor-rule parameters and that [(¢|0;, M;) represents expected loss
conditional on model ¢ and a calibration of its parameters 0;.

One coherent approach would be to condition the entire analysis on the intersec-
tion of variables X. A downside is that precision is lost when estimating parameters.
Le., the posterior p(0;| X, M;) conditioned on the smaller set of common variables is
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likely to be more diffuse than the posterior p(6;|Y;, M;) conditioned on the complete
list of observables for model ¢. For policy, it is desirable to estimate parameters as
well as possible. Thus, we outline a strategy for using the full set of variables Y; for
estimation and the smaller set of common variables X for model averaging.

For estimation, the posterior p(6;|Y;, M;) for each model and the marginal data
density p(Y;|M;) can be calculated via standard methods. For a given ¢, the model-
specific expected loss is

Assuming an evenly-weighted sample from p(6;]Y;, M;), this can be approximated as
WY, Mi) = NVSD L U103, M), (2)

where 0;; is the jth draw in the Monte Carlo sample and N is the total number of
draws. To condition down from Y; to X, we use importance sampling. Thus, consider
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where w(6;;) = p(6:|X, M;)/p(0;|Yi, M;). Expected loss conditioned on X can be
calculated by taking weighted averages using posterior draws for the big information
set Y;. Thus, there is no need to re-simulate the posterior for the smaller set X.

We can make further progress by noting that

p(0i| X, M;) _ p(X |63, M;)p(0:| M;) /p(X|M;) _ p(X|0i, M;) p(Yi|M;) (4)
p(ei’Yi, Mz) p(YE|9i, Mz)p<91‘Mz)/p<Y;|Mz) p(Y¢|0¢, Mz) p(X|M¢)'
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After the second equality, the first term is the ratio of likelihoods and the second is
a ratio of marginalized likelihoods. The latter are unnecessary at this stage because
they are independent of #; and wash out when normalizing importance weights so
that they sum to 1. Thus, consider the unnormalized importance weights
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Since the normalizing constants p(X |M;) and p(Y;|M;) are independent of 6;, it follows
that @(0;) = kw(6;) for some constant k. Hence, after re-normalizing,
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The advantage of working with @(6;) follows from the fact that the numerator and
denominator of (5) are easy to calculate. For a log-linearized system in state-space

= w(by). (6)
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form, w(0;) can be evaluated using the prediction-error decomposition of the two
likelihood functions and two passes of the Kalman filter.

The other ingredient needed for model averaging are the posterior model proba-
bilities, p(M;|X). Suppose that p(M;) is the prior probability on model i. According
to Bayes’ theorem, the posterior model probability is

p(M;| X) oc p(X|M;)p(M;), (7)

where
p(X|M,) = / p(X16:)p(6] M;)do (s)

Thus we need to calculate the marginal data density p(X|M;) for the common variable
set. As stated above, p(Y;|M;) can be approximated using standard methods. To
condition down from Y; to X, we apply a change of variables and integrate numerically.
Start by re-writing (8) as

p(X10:)

p(X[M;) = /mﬁ(meim(eﬂj\/fi)d@u (9)
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Hence the ratio of the small- and big-information set marginal data densities can be
expressed as the posterior mean of unnormalized importance weights,
p(X|M;) / -
—— = [ w(0:)p(0:]Yi, M;)db;, 10
i) = [ Pew ... 00 (10)
where the expectation is taken with respect to the big-information posterior. This
can be approximated as
p(X|M;) N
—— = N> w(b). (11)
p(Yi|M;) = !
In fact, this is proportional to the denominator in (6), so no new calculations are
involved. To transform from p(Y;|M;) to p(X|M;), we just multiply the former by the
mean of the unnormalized importance weights,

p(X|M;) = p(Y;|M;) 7L, @0(0,5) /N (12)

Unnormalized model probabilities are found by substituting p(X|M;) into (7). To
normalize, we sum the right-hand side of (7) across models and divide by the result,

. p(X|Mi)p(Mi)
P = S I (13)
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All the ingredients for model averaging are now at hand. To account for model
uncertainty, we average the model-specific losses [(¢|X, M;) using posterior model
probabilities as weights,

U(d) =D USLX, My)p(M;|X). (14)

A policy rule robust to both model and parameter uncertainty can be found by
choosing ¢ to minimize [(¢).



