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1 Introduction

Although little discussed in Barnichon and Matthes (2016), an important advantage of GMAs is

the ease with which one can impose structural identifying assumptions. Since the coeffi cients

of the Gaussian mixtures are directly interpretable in terms of impulse response functions,

imposing restrictions on the GMA coeffi cients amounts to directly imposing restrictions on the

shape of the impulse response function. This is in contrast with standard VAR approaches,

where imposing constraints on the shape of the impulse responses can be diffi cult, because the

impulse responses are (non-trivial) non-linear transformations of the VAR parameters. In this

note, we describe how to implement the main structural identifying assumptions used in the

literature —(i) identification from short-run or long-run restrictions, and (ii) sign restrictions—,

but also how to impose more general forms of identifying restrictions that cannot be easily

imposed in traditional VAR settings. We describe the implementation of the restriction in

linear GMA models, but an implementation in more general non-linear models is also possible,

as shown in Barnichon and Matthes (2016) for the cases of recursive short-run identification

restrictions or sign restrictions.

As in Barnichon and Matthes (2016), we consider the structural moving-average model

Yt =

K∑
k=0

Ψkεt−k (1)

with εt = (.., εjt, ..)
′, i ∈ {1, ..,M}, the vector of structural shocks and Ψk =

(
ψk,ij

)
an

(M × M) matrix. For k > 0, the impulse response functions are modeled as mixtures of

Gaussian basis functions so that ψk,ij , the impulse response of variable i to shock εj at horizon

k, is given by

ψk,ij =
N∑
n=1

aij,ne
−
(
k−bij,n
cij,n

)2
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with {aij,n, bij,n, cij,n} parameters to be estimated.

2 Common identification schemes

All identifying schemes impose some restrictions on the parameters to be estimated. To imple-

ment parameter restrictions, we assign a minus infinity value to the likelihood whenever the

restrictions are not met.1 We now show how to implement popular identification schemes.

2.1 Short-run restrictions

In a just-identified model, short-run restrictions define M(M−1)
2 restrictions on Ψ0 with Ψ0 the

contemporaneous impact matrix of size (M ×M). A common restriction on Ψ0 is that Ψ0 is

lower triangular. However, other restrictions on Ψ0 are possible as long as Ψ0 is invertible.

Indeed, and as described in Barnichon and Matthes (2016), the only requirement to recursively

construct the likelihood at time t, is that that the system of equations from (1)

Ψ0εt = ut (2)

where ut = Yt−
K∑
k=0

Ψkεt−1−k has a unique solution vector εt . That is, that the shock vector

εt is uniquely determined given a set of model parameters and the history of variables up to

time t. This is ensured by having Ψ0 is invertible.2

For instance, in a partial recursive identification scheme, one can posit Ψ0 then has its

last column filled with 0 except for the diagonal coeffi cient, that is that the shock of interest

(ordered last) has no no contemporaneous effect on the other variables (this is assumption used

in Barnichon and Matthes, 2016). Then, the only restriction on Ψ0 necessary to construct the

likelihood is that the submatrix Ψ̃0 made of the first (M − 1) rows and (M − 1) columns of
Ψ0 is invertible.

2.2 Long-run restrictions

Long-run restrictions are often used in two-variable VARs where one of the variables is entered

in first-difference (e.g., Blanchard and Quah 1989, Gali, 1999). A popular example is for

instance

Yt =

(
d ln

(
yt
ht

)
Ut

)
, εt =

(
εat

εut

)
1Equivalently, in the MCMC stage, we reject all draws that do not satisfy the parameter restrictions.
2This is ensured by assigning a minus infinity value to the likelihood whenever Ψ0 is not invertible.

2



where yt
ht
is output per hours worked and Ut is the unemployment rate. εat is a technology

shock, and εut is a non-technology shock.

The identification assumption is that non-technology shocks have no long-run effect on

productivity. This means that
K∑
k=0

ψk,21 = 0

or

ψ0,21 = −
K∑
k=1

ψk,21.

This restriction can be easily implemented: we can draw the {an,21, bn,21, cn,21} GMA

parameters for
{
ψk,21

}
k>0

and impose that ψ0,21 = −
K∑
k=1

ψk,21. The other parameters from

Ψ0 being drawn in the usual fashion, only that one must discard draws for which Ψ0 is non-

invertible.

2.3 Sign restrictions

Since the coeffi cients of the Gaussian mixtures are directly interpretable in terms of impulse

response functions, imposing sign restrictions is very simple in GMA models, whether we want

to impose sign-restrictions on the impact coeffi cients (captured by Ψ0) and/or sign restrictions

on the post-impact coeffi cients Ψk,k>0. Since Ψk,k>0 is determined by the {an, bn, cn} GMA
coeffi cients, one can impose sign restrictions by imposing sign restrictions on the loading of

the different Gaussian basis functions, that is by imposing sign restrictions on the {an}Nn=1
coeffi cients.

More generally, and in line with the insights from Baumeister and Hamilton (2015), impos-

ing sign-restrictions would take the form of priors on the coeffi cients of Ψ0 or on the {an}Nn=1
coeffi cients in a GMA(N) model.

2.4 General identification schemes with a Bayesian formulation

More generally, because GMAs work directly with the structural moving-average representa-

tion, the parameters to be estimated can be easily interpreted as "features" of the impulse

responses and many set identification schemes can be easily implemented. Using the insights

from Baumeister and Hamilton (2015), one can (in addition to possible sign restrictions) posit

priors on the shape of the impulse responses, posit priors on the location of the peak effect,

posit priors on the persistence of the effect of the shock, among other possibilities.

For instance, in a GMA(1) model, one could impose that the impulse response function is
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monotonically decreasing by imposing b ≤ 0. Alternatively, if one believed that the peak effect
of a shock occurred between two and six quarters after a shock, one could impose that b has

a prior centered at 4 quarters with 90 percent of the mass between 2 and 6 quarters. If would

believed that the effect of a particular shock dies out rapidly, one could impose a prior for c

centered around a low value,3 etc...

In higher-order GMAs, similar interpretations apply to the different Gaussians used to

approximate the impulse response. Although deserving a much more thorough study outside

the scope of this short note, in a GMA(N) where the N Gaussian basis functions are chosen to

being approximately orthogonal (i.e., their inner product is close to zero), one can interpret an

impulse response function as being decomposed into a sum of N (approximately) independent

effects of the shock.4 With a GMA(N), the an, bn and cn coeffi cients of the nth Gaussian

basis function (n ∈ {1, ..., N}) are then respectively the magnitude, location and persistence
of the "nth effect" of the shock. One could achieve set identification by imposing priors on

the {an, bn, cn} coeffi cients. For instance, if a shock leads to an oscillating pattern, the N
Gaussian basis functions would capture the different waves of the impulse response, and one

could impose restrictions of the shape (e.g., location and duration) of each of these waves.

3Recall that the amount of time τ required for the effect of a shock to be 50% of its maximum value is given
by τ = c

√
ln 2.

4This interpretation is similar to B-splines smoothing, when one projects a function of interest on a small
set of approximately orthogonal B-splines (see Tibshirani et al., 2009).
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