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Abstract
The effects of monetary policy shocks are regularly estimated us-

ing high-frequency surprises in asset prices around central bank
meetings as an instrument. These studies assume a constant re-
lationship between the instrument and the monetary policy shock.
By allowing for time variation in this relationship, we show that only
a few distinct periods are informative about monetary policy shocks.
Therefore, we build a narrative for instrument-based identification
and ameliorate weak identification problems. For the instrument in
Gertler & Karadi (2015), the effect on the (log) price level is almost
50 percent larger than the standard specification would suggest.
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1 Introduction

Identifying impulse responses via external instruments has become com-

monplace in empirical macroeconomics over the past decade (Stock &

Watson 2012, Mertens & Ravn 2013, Gertler & Karadi 2015). These ex-

ternal instruments are interpreted as imperfect measurements of unob-

served structural shocks. An instrument-based approach mitigates the

issues that can arise when using standard sign restrictions to identify

monetary policy shocks, as highlighted by Wolf (2020).

A key assumption of studies that use this approach is that there is a

fixed, time-invariant relationship between the instrument and the shock

of interest. However, in this paper we present evidence that for a com-

mon application of external instruments—the study of monetary pol-

icy shocks using high-frequency variation in asset prices around cen-

tral bank announcements—there is actually substantial time variation

in this relationship. To see this, Figure 1 plots the surprises in the three-

month-ahead Fed Funds futures (FF4) in a 30-minute window around

meetings of the Federal Open Market Committee (FOMC), an instru-

ment popularized by Gertler & Karadi (2015) that we also use. The figure

shows that there are periods where the dynamics and volatility of this in-

strument are substantially different from the rest of the sample, mainly

the early 1990s, 2001, and during the Great Recession.

Building on this finding, we construct vector autoregressions (VARs)

that explicitly capture this time variation, using the Bayesian approach

for VARs with instruments (commonly called proxy VARs).1 We show that

the pattern observed in Figure 1 can be explained parsimoniously by mov-
1Time-varying identification strength is also a feature of the non-parametric frame-

work in Rambachan & Shephard (2021).
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Figure 1: Surprise in 3-month-ahead Fed Funds futures (Gertler &
Karadi 2015).

ing to a nonlinear measurement equation linking the instrument and the

structural shock of interest, while maintaining a linear and Gaussian

structure for the VAR itself to be comparable to the bulk of the litera-

ture.2 We introduce this nonlinearity by allowing either changes in the

volatility of the noise term or changes in the parameter multiplying the

unobserved shock of interest.3 These two assumptions translate changes

in the volatility of the instrument into time variation in identification

strength in opposite ways - volatile realizations of the instrument are

deemed informative when we use the time-varying parameter approach,

but are considered uninformative (i.e. a source of weak identification)

when we estimate a model with stochastic volatility in the noise term. We
2In theory, time-varying volatility of monetary policy shocks could also lead to the

pattern described here. We show in a Monte Carlo exercise in Section 4 that such a
data-generating process would lead to estimates of time-varying parameters that are
qualitatively very different to those obtained using U.S. data.

3Our approach comes at negligible additional computational cost relative to the pre-
vious literature.
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show that for our specific application, assuming changes in the volatility

of the noise term leads to results that most economists will find ques-

tionable. First, a standard VAR estimated via ordinary least squares

(OLS) delivers forecast errors that are highly correlated with the instru-

ment during periods where volatility is high, but not otherwise. Second,

the implied impulse responses in the case of stochastic volatility in the

noise term are estimated with a large amount of uncertainty and have

the wrong sign for the response of prices. Therefore, we interpret changes

in the volatility of the instrument through the lens of a model with time

variation in the parameter linking the instrument and the monetary pol-

icy shock instead.

We discuss what the implications of various types of misspecification4 are

on estimates obtained using our preferred specification. These implica-

tions are at odds with our estimates using US data, which we confirm

using Monte Carlo experiments.

Our approach yields two important insights. First, we can infer periods

where the instrument is most informative about monetary policy shocks,

thus helping to answer the question as to where identification comes from

and allowing us to develop a narrative for identification. As such, our

approach can be seen as complementing the narrative sign restrictions

approach of Antolín-Díaz & Rubio-Ramírez (2018), who impose identifi-

cation via sign restrictions (and related restrictions) for certain periods

only. In fact, as shown by Plagborg-Møller & Wolf (2021) and highlighted

by Giacomini et al. (2022), narrative sign restrictions can be recast as bi-

nary instruments. Our approach instead identifies informative periods

for a given instrument. We find, for a standard US instrument, that
4One source of misspecification we study is stochastic volatility in the monetary pol-

icy shock itself.
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high-frequency-based instruments for monetary policy shocks are only

relevant for a small number of distinct periods. We show that even when

we set 90 percent of the instrument observations for the standard Gertler

& Karadi (2015) instrument to zero (while keeping those periods our ap-

proach estimates to be the most informative), we can recover the same

impulse responses as when we use all available observations.

Second, because inference about monetary policy shocks is no longer con-

taminated by periods where the instrument is not actually informative

(our algorithm discounts information contained in the instrument from

these periods), we can gain a clearer picture of the effects of monetary

policy shocks. Using the same instrument as Gertler & Karadi (2015) in

our application yields, for example, effects on prices that are almost 50

percent larger after four years.

Error bands for impulse responses are generally not wider than their

fixed-coefficient counterparts. Even in applications where our approach

yields impulse responses similar to the benchmark fixed-coefficient ap-

proach (which is something that is not known a priori), the sharpening

of the identification narrative can be crucial for interpreting the results.

The use of instruments in macroeconomics to identify the effects of

monetary policy shocks was pioneered by Romer & Romer (2004), who

estimate a sophisticated monetary policy rule using real-time data and

obtain their instrument as the residual in that estimated monetary policy

rule. More recently, the focus has shifted toward using instruments that

are based on high-frequency variation in asset prices, first in event stud-

ies (Kuttner 2001, Gürkaynak & Wright 2013, Faust et al. 2007) and later

as an instrument incorporated into time series models (Gertler & Karadi

2015, Jarociński & Karadi 2020, Caldara & Herbst 2019, Miranda-Agrippino
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& Ricco 2020), building on the work of Stock (2008) and Mertens & Ravn

(2013), who introduced the proxy VAR framework.5 Other papers directly

use information from high-frequency variation in asset prices around

monetary policy decisions as a right-hand side variable for regressions

to estimate the effects of monetary policy shocks (Campbell et al. 2016,

Nakamura & Steinsson 2018).

Miranda-Agrippino & Ricco (2020) develop an instrument that is also

based on high-frequency-based asset price variation around FOMC meet-

ings, but further controls for information that the Federal Reserve had at

the time of its meeting as well as possible autocorrelation in the instru-

ment. We show in Section 3.4 that with this instrument, we also find rel-

atively rare spikes in instrument relevance. The differences between the

impulse responses using the standard approach and our method are sub-

stantially smaller with this instrument than with the Gertler & Karadi

(2015) instrument. In fact, the impulse responses obtained using this in-

strument are similar to those obtained with our approach and the Gertler

& Karadi (2015) instrument. However, our approach does not require

central bank forecasts to clean the original instrument and thus provides

a general purpose technology that can also be used for other instruments

and shocks.

Our work is related to (Abadie et al. 2023), who show that exploiting

heterogeneity in instrument strength in the first stage of a standard in-

strumental variable setting can substantially improve the mean squared

error of instrumental variables estimators. We present evidence that

exploiting heterogeneity across time can lead to improved estimators of

impulse responses in applied macro settings.
5The use of this type of identification is becoming more common. For example,

Känzig (2021) uses a high-frequency-based identification to identify oil shocks.
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Section 2 lays out our framework and discusses various modeling choices.

Section 3 discusses the results for the US, robustness with respect to the

instrument used, and the modeling assumptions linking the instrument

and the monetary policy shock. Section 4 discusses sources and conse-

quences of misspecification in our model using Monte Carlo experiments,

and Section 5 concludes.

2 A VAR Model to Study Changes in Instru-

ment Relevance

We set out to study the response of an n dimensional vector of observ-

ables yt to a monetary policy shock eMP
t , which is one element of the n

dimensional vector of structural shocks et.6 To estimate said response,

we use a structural vector autoregression (SVAR) in equation (1):

yt = c+
L∑
l=1

Alyt−l +Σet, (1)

where et ∼iid N(0, I).

The well-known identification problem in Gaussian structural VARs

(Canova 2011, Baumeister & Hamilton 2015, Kilian & Luetkepohl 2018)

implies that we need additional information to identify the column of

the response matrix Σ, which tells us how the elements of yt respond to

the monetary policy shock eMP
t . The additional information that we ex-

ploit, following a substantial fraction of the recent literature in empirical

macroeconomics, is an instrument mt for the monetary policy shock eMP
t .

There are various frequentist (Mertens & Ravn 2013, Stock & Watson
6We use boldface for vectors and matrices.

7



2018) and Bayesian (Arias et al. 2021, Caldara & Herbst 2019, Drautzburg

2020) approaches to incorporating such information in an SVAR anal-

ysis.7 Since our ultimate goal is to study possible changes in the re-

lationship between the observable instrument mt
8 and the unobserved

monetary policy shock, we explicitly model the relationship between the

instrument and the structural shock of interest. Within the standard

homoskedastic VAR framework in the literature (Mertens & Ravn 2013,

Caldara & Herbst 2019), there are two diametrically opposite assump-

tions that can generate the patterns observed in Figure 1.9 We introduce

these cases in Equations (2) and (3):

mt = βte
MP
t + σvvt. (2)

mt = βeMP
t + σv,tvt. (3)

vt is distributed independently and identically over time as N(0, 1) in ei-

ther equation. Equation (2) accounts for the observed patterns in the

instrument by allowing the coefficient on the monetary shock to change,

while Equation (3) allows for changes in the noise variance. These alter-

natives lead to very different interpretations of the observed data, as we

show below. Measurement equations of the kind we use are standard in

the literature dating back to Mertens & Ravn (2013), but the common

assumption is that βt = β∀t and σv,t = σv∀t.10

7Frequentist inference using proxies in dynamic factor models was introduced by
Stock & Watson (2012).

8Instead of one scalar instrument, we could use multiple instruments. In that case
we would, for example, need to make a decision about possible correlation in the error
terms of the measurement equations.

9Mumtaz & Petrova (2021) estimate time-varying parameter VARs with external
instruments, but in their application the relationship between the instrument and the
shock of interest is time-invariant.

10One exception is Mertens & Ravn (2013), where the authors allow for censoring of
the instrument (so that the entire right-hand side is multiplied by an indicator func-
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The key identification assumptions are twofold. First, we assume that vt

is independent of all other shocks in our model, both the vector of struc-

tural shocks et and any shocks determining the evolution of βt or σv,t,

generally denoted as wt.11 Second, the instrument is informative for the

monetary policy shock, meaning that at least for some periods, βt ̸= 0.

Our assumptions then imply

E [ej,tmt] = 0 for j = 2, . . . , n, (exogeneity) (4)

E [vtet] = 0 and E [vtwt] = 0, (5)

E
[
eMP
t mt

]
= βt ̸= 0 for some t, (relevance) (6)

where ej,t denotes the jth element of et.

Our Bayesian estimation approach is still valid even if βt = 0 ∀t in

Equation (2) or β = 0 in Equation (3), although in that case the instru-

ment will not aid identification of the shock of interest. Our approach

automatically approximates the posterior distribution of all time-varying

parameters and the associated instrument reliability for each time period

t. If those are always small (i.e., standard posterior bands include zero),

we can infer that the instrument is weak.12 We borrow the approach of

directly estimating the parameters of this measurement equation from

Caldara & Herbst (2019). Unlike in that paper, we allow for changes

in parameters that govern the systematic relationship between instru-
tion), which is conceptually distinct from the type of time variation we study.

11As is common in the literature on time-varying VAR (Cogley & Sargent 2002, Prim-
iceri 2005), we also assume that the structural shocks et are independent of innovations
to parameters wt.

12Our approach also assumes invertibility of the monetary policy shock. For our mon-
etary policy application, this seems to be a widely accepted assumption (Wolf 2020).
For recent work on the link between inference using instruments and invertibility, see
Miranda-Agrippino & Ricco (2022).
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ments and shocks.13

A useful summary statistic for assessing the strength of the instru-

ment in different periods is a time-varying version of the common relia-

bility (or relevance) statistic ρt:

ρt ≡


β2
t

β2
t+σ2

v
if Equation (2) holds

β2

β2+σ2
v,t

if Equation (3) holds
(7)

This statistic represents the squared correlation between the instrument

and the structural shock at time t and measures time-varying identifica-

tion strength.

Equations (2) and (3) provide different theories for changes in volatility

of the instrument mt. These different theories have opposite effects on

ρt: If an increase in volatility of mt is driven by an increase in βt this

will lead to an increase in ρt, whereas an increase in σv,t will lead to a

decrease in ρt. The first specification therefore interprets periods where

the instrument is volatile as more informative for the identification of the

effects of monetary policy shocks. The stochastic volatility specification

instead discounts these periods because it attributes these fluctuations

in the instrument to noise and instead identifies the effects of monetary

policy shocks using periods with low instrument volatility.

In Section 3.1, we first compare three different specifications for the time
13Following Caldara & Herbst (2019), we normalize the relevant column of Σ so that

the monetary policy shock increases interest rates on impact. Such a sign normalization
is necessary for any structural VAR identification scheme. In our specific application,
it also allows us to center the prior for βt or β at zero while still maintaining a standard
interpretation of the estimated monetary policy shock.
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variation in parameters:14

Constant: βt = β, σv,t = σv (8)

Time variation in Equation (2): βt = βt−1 + σβwt (9)

Time variation in Equation (3): log(σ2
v,t) = log(σ2

v,t−1) + σuwt (10)

In Equations (9) and (10), we assume that wt ∼iid N(0, 1). The first

specification is a constant parameter specification reminiscent of Caldara

& Herbst (2019) as a benchmark (equation (8)), the second specification

is a Gaussian random walk specification for βt in the tradition of the liter-

ature on time-varying parameters in state space models and VARs (Cog-

ley & Sargent 2002, Primiceri 2005, Stock & Watson 2007), and the third

specification is a standard specification for stochastic volatility, where

log volatility follows a random walk (Kim et al. 1998, Cogley & Sargent

2002, Primiceri 2005). We choose these specifications not only because

they are common in the literature, but, more importantly, because es-

timates obtained using these specifications can capture many patterns

of time variation even if the random walk specifications are misspecified

(see, for example, Amir-Ahmadi et al. (2020)).

To approximate the posterior of our model, which consists of equations

(1), (2), and one of the equations (8), (9), or (10), we modify the Metropolis-

within-Gibbs sampling framework of Caldara & Herbst (2019) (the spec-

ification with equation (8) is exactly their specification). An important

feature of our algorithm is that we do not require the same number of ob-

servations for the instrument mt as for the macro variables collected in
14We focus on these diametrically opposite cases here. One could entertain stochastic

volatility σv,t and time-varying βt jointly, but in that case the prior in the relative vari-
ability on βt and log(σv,t) would be crucial. More importantly, our choice of diametrically
opposite cases helps us interpret our findings.
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yt. Details about the algorithm can be found in Appendix A. In Appendix

B, we show how our approach is related to, but distinct from, identifica-

tion based on heteroskedasticity (Rigobon 2003).

3 Effects of Monetary Policy Shocks Iden-

tified Through High-Frequency Variation

in Asset Prices

Section 3.1 studies the effects of allowing for time-varying reliability us-

ing the specifications outlined above. Crucially, we will make our case for

modeling time variation in βt for this specific application and analyze fur-

ther variations of that specification. Section 3.2 uses a Markov-switching

approach to model time variation in βt for reasons that will become ob-

vious once we study the posterior of βt in our benchmark random-walk

specification. In Section 3.3, we highlight that indeed only a few periods

are informative for the effects of monetary policy shocks by estimating

our model with an instrument that is set to zero except for the most in-

formative periods. Finally, Section 3.4 estimates the effects of monetary

policy shocks with the Miranda-Agrippino & Ricco (2020) instrument,

the Bauer & Swanson (2022) instrument, and an alternative version of

the Gertler & Karadi (2015) instrument.

3.1 The Effects of Time-Varying Reliability

We first contrast the constant parameter specification with the random

walk specification for βt and the stochastic volatility in noise specifica-
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tion. Our application uses US data:15 yt consists of the log of the Con-

sumer Price Index (CPI), the log of industrial production (IP), the inter-

est rate on one-year government bonds i, and the excess bond premium

(EBP) (Gilchrist & Zakrajsek 2012). As Caldara & Herbst (2019) high-

light, including a measure of financial conditions such as the EBP in our

VAR is crucial in order to get the effects of monetary policy right. The

sample for yt runs from July 1979 to June 2012. We follow Gertler &

Karadi (2015) in our choice of instrument mt and use the surprise in the

three-month-ahead Fed Funds futures around FOMC meetings (the se-

ries depicted in Figure 1). The sample for mt is January 1991 to June

2012. We use 12 lags in all VARs estimated on US data in this paper.

To motivate our preference for the assumption of variation in βt, it is in-

structive to study the relationship between the instrument and various

forecast errors implied by a VAR. We estimate a version of our bench-

mark VAR via OLS to make sure that the estimation does not use any

information on the instrument (as it would when we estimate our bench-

mark model using Bayesian methods). We then compute the correlation

between the OLS-based one-step-ahead forecast errors for the variables

in our VAR and the Gertler & Karadi (2015) instrument, for both peri-

ods where, according to our models, the instrument is volatile and pe-

riods where it is not.16 Identification schemes for structural VARs gen-

erally posit a linear relationship between these forecast errors and the

structural shocks of interest. Thus, these are key correlations that are

exploited whenever researchers use an instrument for identification in
15In Appendix F, we apply our preferred specification to UK data, using the high-

frequency instrument of Cesa-Bianchi et al. (2020).
16More specifically, we use the periods that our model with time variation in βt iden-

tifies as informative as described in Section 3.3. Using the stochastic volatility model
to identify these volatile periods leads to very similar results.
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a structural VAR (as discussed before, standard proxy VARs assume a

time-invariant relationship, so this correlation should be constant across

subsamples).

Table 1 shows the correlation for each forecast error in a different col-

umn and each period in a different row. In periods where our approach

identifies the instrument as not volatile, the absolute value of the corre-

lation between the instrument and the (one-step-ahead) forecast errors

decreases by at least 70 percent and by as much as 82 percent, depending

on the variable.17 Furthermore, the absolute decrease in correlation is

meaningful (a decrease in correlation of 0.34 for inflation and EBP, for ex-

ample). Not only is the correlation between the instruments and forecast

errors stronger when the instrument is volatile, in periods where the in-

strument is volatile, the signs of the correlation between the instrument

and the forecast errors in the VAR are more in line with correlations im-

plied by standard New Keynesian theories: a contractionary shock raises

interest rates, but lowers prices. The sign of the correlation for IP might

seem unusual, but we will see a small initial positive impulse response

of IP to a monetary policy shock (confirming the sign of the correlation)

that quickly turns negative in our preferred specification below.

Table 1: Correlation between instrument and forecast errors in OLS ver-
sion of our VAR.

i CPI IP EBP
High volatility in mt 0.48 -0.34 0.10 0.46
Low volatility in mt 0.14 0.06 0.03 0.12
Percent reduction in (absolute) correlation 0.71 0.82 0.70 0.74

For the rest of the analysis, we use a Bayesian approach. The priors
17The slightly awkward use of the absolute value of the correlation is necessary be-

cause the correlation of the instrument with CPI forecast errors becomes positive when
the instrument is not informative.
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that we use throughout are standard in the literature and are described

in detail in Appendix A. We make the priors as comparable as possible

across the different specifications: The same parameters always have the

same priors. Furthermore, the prior for β in the fixed coefficient variant

is the same as the prior for β0 in the random walk specification. Estima-

tion results for models with time-varying coefficients can often be some-

what sensitive to the choice of prior for the innovation standard devia-

tions σβ and σvol in the law of motion for the parameter. This parameter

governs the amount of time variation. Sensitivity is less of an issue here

because (i) we only have one time-varying parameter (in contrast to pa-

pers where all VAR parameter can vary, such as Cogley & Sargent 2002

and Primiceri 2005), and (ii) we only have either time-varying parame-

ters or stochastic volatility in our models, which helps sharpen inference.

Nevertheless, to ensure that this is not an issue, we follow some of our

previous work (Amir-Ahmadi et al. 2020) and estimate the hyperparam-

eters that enter the priors for σβ and σvol. Details on the priors can be

found in Appendix A.

We first analyze the case of time variation in β. Figure 2 shows the

posterior path of βt and ρt. We plot the corresponding elements of the

fixed coefficient version in gray. We show the posterior median as well

as 68 percent equal-tail posterior bands.18 It is striking that there are

few short periods of high instrument relevance when allowing for time

variation in β.19 Three periods stand out, which we now discuss in turn.

The first period is the first half of the 1990s. It is useful to point out
18All posterior bands in this paper are 68 percent posterior bands.
19The posterior median reliability of our time-varying parameter specification is al-

most always larger than its fixed coefficient counterpart because the estimated variance
of the noise part is substantially larger in the fixed coefficient version—in the fixed co-
efficient case part of the time variation is soaked up in the noise term. This is also
evident from the posterior of βt.
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that the large posterior value of βt at the beginning of the sample for the

instrument is not driven by our prior, as our prior for the initial value of βt

is centered at zero. Instead, the first half of the 1990s was characterized

by relatively high inflation at the beginning, as well as a (mild) recession.

Our model highlights the period coming out of the 1990s recession, when

annual CPI inflation was still high in 1991 (4.2 percent) as a period where

the Federal Reserve was surprisingly accommodative (see Figure 1).

Figure 2: Posterior of βt and ρt (median and 68 percent posterior bands).

The second period that our model highlights is in 2001, driven by two

intermeeting rate changes in January and April of 2001.20 The third pe-

riod of high instrument relevance is the Great Recession around 2008.

Thus, our framework helps us to understand what information is con-

tained in the instruments. We next examine whether this time variation

in instrument relevance matters for impulse responses.

Figure 3 shows the impulse to a one standard deviation monetary
20The rate change around September 11th 2001 is not part of our instrument series

as most financial markets were closed until the rate change on September 17th 2001,
making it impossible to compute the changes in Fed Funds futures needed to construct
the instrument. We thank Eric Swanson for pointing this out to us.
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Figure 3: Impulse responses (median and 68 percent posterior bands) to
a one standard deviation monetary policy shock, time variation in β.

policy shock under the fixed coefficient (gray) and random walk (blue)

specifications. We plot the posterior median as well as the 68 percent

error bands. For bond yields, IP, and the EBP, the impulse responses are

similar. For log CPI, the differences are instead substantial. With fixed

coefficients, we see a price puzzle appearing, whereas this is not the case

at all for the posterior median of the impulse responses when we allow

for time variation in instrument relevance. Furthermore, the response

of log CPI is larger in magnitude—after four years, the posterior median

of the response is almost 50 percent larger when we allow for time varia-

tion in instrument relevance. Our approach discounts periods where the

instrument is not informative and can hence lead to substantially differ-

ent impulse responses. As mentioned before, in our example this does

not come at a cost in terms of the width of the error bands.

We now contrast these results with the case of stochastic volatility in the

noise term. Figure 4 shows that the same volatile periods that were pre-

viously identified as high βt periods are now identified as periods with

17



large noise volatility and basically zero reliability (ρt = 0). In light of the

correlation structure with VAR forecast errors that we analyzed above, it

is not surprising then that the resulting impulse responses, as displayed

in Figure 5, show no meaningful response in prices or Industrial Produc-

tion with the posterior median response for prices being positive for the

first three years. In light of these findings, we will focus on time variation

in β for the rest of the paper.

Figure 4: Posterior of σv,t and ρt (median and 68 percent posterior bands).

Modeling changes in βt means that volatile periods of the instrument

are interpreted as informative events; with stochastic volatility in the

noise term, they are be interpreted as noise. In most of our applications,

it turns out that the instruments are generally not very informative (low

ρt) except possibly for clearly delineated short periods of high instrument

volatility. Thus, using stochastic volatility in noise implies a prior that, in

these specific applications, puts very little faith in the instruments. This

stands in contrast to standard priors in the proxy VAR literature (Arias

et al. 2021, Caldara & Herbst 2019) that imply that the instruments are

indeed useful/reliable. Our preferred assumption of time-varying param-
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Figure 5: Impulse responses (median and 68 percent posterior bands) to
a one standard deviation monetary policy shock, time variation in σv.

eters instead of time variation in the volatility of the noise term σv can

thus also be seen as a context-specific prior choice that implies at least

some instrument reliability, in line with the previous literature.

3.2 A Markov-Switching Alternative

Recalling Figure 2, one possible criticism that could be raised is that

the estimated path for βt might be better characterized by a Markov-

switching model (Hamilton 1989, Sims & Zha 2006). We think of the ran-

dom walk as our benchmark exactly because it is flexible enough to ap-

proximate many patterns of time variation, including sudden changes as

observed in Figure 2. Nevertheless, we next estimate a two-state Markov-

switching specification and show that it yields very similar results. The

only difference between the Markov-switching specification and the ran-

dom walk benchmark is the law of motion for βt as detailed in equations
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(9) and (11), respectively.

Markov Switching in Equation (2): βt = βst , P r(st = i|st−1 = j) = pij.

(11)

Figure 6 shows the impulse response of log CPI to a one standard devia-

tion monetary policy shock in the two-state Markov-switching model for

βt. We focus here on the response of CPI because that is where the major

differences between fixed coefficient and time-varying parameter results

occurred in the previous section. This impulse response is very similar

to the random walk specification.

Figure 6: Impulse response of log CPI for Markov-switching specification
(median and 68 percent posterior bands).

Figure 7 illustrates instrument relevance for our benchmark random

walk specification in blue and the two-state Markov-switching model in

red. We can see that both specifications identify largely the same periods

of high instrument relevance. The random walk specification is some-

what conservative in that it has fewer spikes, but this does not lead to

any meaningful difference in impulse responses, as discussed above. The
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choice of a specific law of motion for β ultimately comes down to the appli-

cation in mind as well as preferences. We recommend the random walk

as the default choice because of its flexibility.
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Figure 7: Posterior reliability for Markov-switching and random walk
specifications (posterior median).

3.3 Shutting Down Periods Where the Instrument Is

Informative/Uninformative

To get a better sense of the role that periods with high instrument rele-

vance play in shaping the posterior distribution of the impulse responses,

we now carry out two diametrically opposite thought experiments. First,

we compute the posterior probability that βt = 0 for each time period

t, using the approach in Koop et al. (2010) and our original instrument

mt. We then create two instruments, m̃t and mt, from our instrument

according to the following two rules:

1. m̃t = mt if Pr(βt = 0) < 0.5, m̃t = 0 else

2. mt = mt if Pr(βt = 0) ≥ 0.5, mt = 0 else
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m̃t only keeps the original realizations of the instrument that our model

deems informative, whereas mt only keeps relatively uninformative real-

izations, thus exacerbating weak identification problems. The threshold

probability of 0.5 only selects the early 1990s and 2001 as informative

periods.

Figure 8 shows the results when we use m̃t as our instrument. For com-

parison, the fixed coefficient VAR in this figure uses our original instru-

ment mt. We see that our approach still estimates the same periods

to have high instrument relevance.21 The impulse responses (we high-

light CPI in this figure but show all responses in the Appendix) are very

similar to those in our original setting, making clear that it is indeed

only those high instrument relevance periods that inform the impulse

responses. Naturally, this result depends on the specific application.

Had the instrument relevance been reasonably high outside of the spikes

in the instrument relevance we document, the procedure in this section

would have led to a meaningful loss of information.

Figure 9 shows the corresponding results when we only keep the orig-

inal instrument if its relevance is low. Zero is now included in the 68

percent posterior bands for all horizons. Posterior instrument relevance

is low for all periods, implying that identification is weak throughout the

sample. This is true even though we keep 90 percent of the observations

from the original sample because there is little information contained in

those observations. In the Appendix (Figures A-9 and A-10), we show

impulse responses obtained with a fixed coefficient VAR and these modi-

fied instruments—the resulting impulse responses are basically indistin-

guishable from the responses obtained with a fixed coefficient VAR and
21To economize on notation, we also call this parameter βt, but it is a different object

from βt when we use the instrument mt.
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Figure 8: Results for m̃t (median and 68 percent posterior bands). The
fixed coefficient VAR is based on the original mt instrument.

our original instrument. In order to effectively exploit the instrument

when it is informative, we need to allow for time variation so that the

instrument is not used for identification when it is not informative.
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Figure 9: Results for mt (median and 68 percent posterior bands). The
fixed coefficient VAR is based on the original mt instrument.

3.4 Alternative Instruments

Our various observation equations that link mt and the unobserved mon-

etary shock all imply that mt is iid, borrowing from Caldara & Herbst

(2019). Other papers in the literature (Arias et al. 2021, Plagborg-Møller

& Wolf 2021) have posited more flexible relationships where the instru-

ment can be contaminated by past macro variables and/or lags of the

instrument. To assess whether this is an issue in our application, we

progress in two steps. First, we regress our instrument on two lags of

itself and the variables yt in the VAR. The key results are summarized

in Figure 10 and are very similar to our benchmark. The only difference

is that the spike in ρt and βt surrounding the Great Recession is less

pronounced. The impulse response of CPI is basically unchanged (other

impulse responses can be found in Appendix E).

We further use the instrument introduced by Miranda-Agrippino &

Ricco (2020). The authors start off with a high-frequency-based instru-

ment like our benchmark choice, but remove any autocorrelation and in-
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Figure 10: Results for the case of the modified instrument (median and
68 percent posterior bands).

formation available to the FOMC at the time of their meetings (as en-

coded in the Green Book). The sample for this instrument is from Jan-

uary 1991 to December 2009; it is shorter because of the need for Green

Book data, which is published with a lag. Figure 11 shows that, the

largest spike in βt by far appears around 2001 for this instrument. We

still see a clear tightening of the error bands for instrument reliability in

the early 1990s and around the Great Recession as well, but these move-

ments are less pronounced than in our benchmark.

Interestingly, the posterior median path of instrument reliability is

substantially higher than in our benchmark or in Figure 10. Since the

reliability does not fall as much between spikes as in our benchmark, it is

not surprising that the difference between the fixed coefficient version of

the impulse response of log CPI and its random walk counterpart are very

similar—and both are similar to the random walk–based results from our

benchmark instrument. While using our approach with the Miranda-
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Figure 11: Results for the Miranda-Agrippino & Ricco (2020) instrument
(median and 68 percent posterior bands).

Agrippino & Ricco (2020) instrument does not change the conclusions

in terms of impulse responses, it adds substantial interpretability. For

example, the most informative period (largest βt value and largest instru-

ment reliability) is around 2001.

As highlighted recently by Bauer & Swanson (2022), instead of control-

ling for forecasts contained in the Green Book, one can alternatively use

private sector forecasts. Figure 12 plots the corresponding results using

that instrument instead. Similarly to the results based on the Miranda-

Agrippino & Ricco (2020) instrument, we find little difference between

impulse responses based on a fixed coefficient VAR and the specification

with time-varying β.22 This is reassuring for users of those instruments,

but might lead some readers to wonder why they should consider our

method in the first place. Our method endogenously cleans instruments,

requires substantially less domain-specific knowledge to construct a valid

instrument, and data requirements are less strict (we don’t require spe-
22In contrast to the results based on Miranda-Agrippino & Ricco (2020) or our bench-

mark results, reliability is relatively constant over time, but also substantially smaller.
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cific variables to clean the original instrument), which leads to our ap-

proach being a useful alternative in other applications where cleaned in-

struments are not available. Importantly, our approach allows users to

build a narrative that explains what time periods are important for iden-

tification, something that was absent from the previous literature. For

the specific application in this paper, the results in this section also serve

as a validity check on the popular instruments proposed by Miranda-

Agrippino & Ricco (2020), Bauer & Swanson (2022) and highlight why

results can differ substantially across various instruments.

Figure 12: Results for the Bauer & Swanson (2022) instrument (median
and 68 percent posterior bands).

4 What Happens When Our Model Is Misspec-

ified?

We next turn to discussing possible sources and consequences of mis-

specification: What happens if the true data-generating process features

changes in volatility in either the noise term vt or the monetary policy
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shock, but we estimate a model with time variation in β? We first present

some general deliberations for the case of stochastic volatility in mone-

tary policy shocks before studying these issues in further detail using

Monte Carlo experiments. One possible source of confusion in the dis-

cussion of stochastic volatility in structural shocks is that we can always

rewrite the measurement equation linking the instrument and the mon-

etary policy shock as featuring time-varying parameters when the true

data-generating process features changes in the volatility of monetary

policy shocks. This does not mean that the two specifications are equiv-

alent - a homoskedastic VAR specification will be misspecified when the

monetary policy shock features stochastic volatility. This leads to differ-

ent implications for estimated parameter paths of βt, allowing us to argue

that stochastic volatility in monetary policy shocks is not what drives our

results. To see this, assume that the true data generating process for the

instrument is

mt = βeMP
t + σvvt (12)

where the true monetary policy shock eMP
t features changes in volatility

σMP
t and β is a fixed parameter. We now derive an equivalent represen-

tation of the instrument equation that features changes in βt:

mt = βtet + σvvt (13)

where et is the standardized monetary policy shock that has fixed vari-

ance 1 (as in our empirical model assumes). βt in this case equals βσMP
t .23

With knowledge of all parameters in the stochastic volatility case (in-

cluding the entire time path of shock volatility) we can, thus, derive this
23As a side note, in order to get a value of βt near 0 in this specification (as in our

estimated results for US data) we would need the volatility βσMP
t to go to zero.
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equivalent representation of the measurement equation. When there are

volatility changes in the data-generating process, we now show that our

approach will not recover the unit variance shock et. Therefore, our ap-

proach will not recover the implied βt = βσMP
t . The estimated path of βt

will, instead, be more muted.

To see this, we can rewrite the VAR equation (1) in slightly more compact

notation as

yt = Axt−1 +Σet (14)

where xt−1 collects the relevant lags of yt as well as the constant term.

Let us assume that the true data-generating process also takes this VAR

form with parameter matrices A∗ and Σ∗, but with one element of the

true structural shocks e∗t (namely the true monetary policy shock eMP
t )

having nonconstant variance σMP
t . We now study how this affects our

estimates of the structural shocks when the estimated model does not

feature changes in volatility. Suppose that we have parameter values Ã

and Σ̃ (we can think about a draw from the posterior or a point estimate).

Then the implied estimate of the vector of structural shocks ẽt is

ẽt = Σ̃−1([A∗ − Ã]xt−1 +Σ∗e∗t ) (15)

It is known that misspecification of the distribution of the structural

shocks in linear VARs does not asymptotically bias the estimates of the

dynamics of the VAR (Petrova 2022), so asymptotically under standard

conditions all elements of A∗ − Ã will be zero except possibly for those

related to the constant term. In large samples, variation in ẽt is, thus,

driven by variation in the true shocks e∗t , and the estimated shocks ẽt will

inherit stochastic volatility from the true shocks e∗t .
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If Σ∗ − Σ̃ = 0, we recover the true structural shocks with stochastic

volatility and as a result in large enough samples our estimates of βt

will converge to a neighborhood of β because we have the true structural

shock as a right hand-side variable in the step of the Gibbs Sampler that

estimates the path of βt (this is the aforementioned muted response rel-

ative to the implied value of βt that we derived at the beginning of the

section). Therefore, stochastic volatility in the true structural shock of

interest has different implications for parameter estimates in our model

compared to a data-generating process with changes in βt that do not

come from stochastic volatility, even if these assumptions seem similar

at first sight.

With estimation error or bias in Σ̃ and, due to the sample size, possibly

estimation error in Ã, this argument will not hold exactly, but, as we

show in our Monte Carlo study below, holds approximately for a realistic

data-generating process and sample size.24

We also show by means of these Monte Carlo experiments that our ap-

proach performs as well as the standard fixed coefficient approach when

it is misspecified and there is either stochastic volatility in the measure-

ment equation that is unrelated to monetary policy or there is stochastic

volatility in the monetary policy shock. However, those specifications for

the data-generating process lead to estimated paths of βt that are in-

consistent with our findings based on US data, thus providing evidence

for our modeling assumptions. While we could, in theory, use marginal

likelihoods to compare those different model specifications, we instead
24As far as there is meaningful time variation in the posterior of βt in this scenario,

our estimation will put more weight on periods with high estimated βt to infer the effects
of monetary policy shocks — periods that in this scenario are actually periods with high
volatility of the monetary policy shock—, while discounting periods with low estimated
βt — periods with low volatility of the monetary policy shock.
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choose to use Monte Carlo-based evidence because marginal likelihoods

can be substantially influenced by tail behavior of priors even if that tail

behavior is inconsequential for most objects of interests, such as posterior

error bands for impulse responses. This dependence on priors becomes

particularly pronounced when priors are relatively loose, prompting us

to instead focus on Monte Carlo experiments.

4.1 Monte Carlo Studies

We follow Wolf (2020) and use the Smets & Wouters (2007) model as a

laboratory.25 We use three observables in our VAR: Output, inflation,

and nominal interest rates. Since the Smets-Wouters model is a quar-

terly model, we set the lag length in our VAR to four. We simulate the

instrument using equation (2) for various specifications of βt, the volatil-

ity of the monetary shock, and the volatility of the measurement error

σv.26

The first Monte Carlo experiment uses time variation in the measure-

ment equation of the instrument that is along the lines of our estimated

models (even though the random walk specification that we use here

is still misspecified). The data-generating process features parameter

changes in βt. We choose an extreme scenario where βt can only take on

the values zero and one. The path of βt in the data-generating process is
25Wolf (2020) studies an instrumental variables approach in VARs, but in addition to

his assumption of fixed coefficients, there are two substantial differences relative to our
setup: We use a standard sample size in our simulations, whereas Wolf (2020) studies
population properties, and we introduce measurement error in our instrument, which
we calibrate to have 25 percent of the variance of the actual monetary shock in our first
experiment. Details on the exact calibration of the data-generating processes can be
found in Appendix C.

26One difference between the equation used to simulate the instrument and equation
(2) in our estimated model is that the simulated monetary policy shock does not have
unit variance, a point we come back to below.
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fixed across all Monte Carlo samples for this first experiment.

We simulate 100 samples of length 250 using the posterior mode as in

Wolf (2020). For approximately 10 percent of those periods,27 we set βt = 1

in the data-generating process; otherwise it is zero (hence the instru-

ment is just noise). Figure 13 shows the true impulse response to a one

standard deviation monetary shock in black, as well as the Monte Carlo

average of the 68 percent posterior bands for our approach and the fixed

coefficient version. Our results confirm those of the population analysis

in Wolf (2020): Even without perfect invertibility, the true responses are

well approximated by our VAR. The fixed coefficient version generally has

wider error bands, which leads the average posterior bands for output to

include 0 for all horizons and a more pronounced probability of a price

puzzle for inflation.

Figure 13: Impulse responses for the data-generating process with time-
varying βt and the Monte Carlo replications, first Monte Carlo experi-
ment.

Figure 14a shows the estimated posterior median of instrument reli-

ability in blue and the true reliability path in black (periods with high
27From periods 1 to 4, 141 to 149, and 231 to 250.
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values of β, and hence higher instrument volatility, are denoted by gray

bars). Our approach captures the changes in instrument reliability well.

It is instructive to directly study the posterior median paths of βt. As

we discuss in more detail in Appendix C, we must rescale the true βt

values described there by the standard deviation of the monetary shock

to make them comparable to our estimation results since our estimated

model assumes monetary policy shocks with unit variance.28 In this

Monte Carlo exercise, the properly rescaled true βt values (which can

be directly compared to the estimated values) are 0 and 0.23 (the origi-

nal values multiplying the monetary policy shock with non-unit variance

were 0 and 1).
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Figure 14: Reliability and posterior paths of βt, first Monte Carlo exper-
iment.

The posterior paths shown in Figure 14b closely resemble the true

paths and, more importantly, the patterns we find in US data: Close to 0

for most periods, with distinct increases when the true value is non-zero.

Next, we study two more Monte Carlo experiments in which our speci-

fication of the measurement equation for the instrument is more severely
28All scale effects in our estimated model are captured by Σ.

33



misspecified. Here, we focus on the posterior impulse responses and the

posterior median paths for βt. First, we simulate the data so that there

is stochastic volatility in the measurement error vt. We choose parame-

ter values to keep the overall volatility of the instrument at each point

in time to be the same as in the benchmark case discussed immediately

above (see Appendix C for details). Figure 15 shows that our approach

performs as well as the fixed coefficient version that is standard in the

literature, even though both are misspecified in different ways. It is not

surprising that both specifications do reasonably well in this specification

since βt is always non-zero in the data-generating process, so the instru-

ment conveys some information about the true monetary policy shock

each period, in contrast to the previous experiment.

Figure 15: Impulse responses for the data-generating process and the
Monte Carlo replications: Stochastic volatility in measurement error.

Turning to the posterior paths of βt, the properly rescaled true β value

in this experiment (which can be directly compared to the estimated val-

ues) is 0.5 ∗ 0.23 ≈ 0.12. The posterior paths plotted in Figure 16 are

remarkably stable and generally do not hover around zero, but instead

are close to the true value of 0.12, a stark contrast to the posterior paths

34



obtained using US data.
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Figure 16: Estimated paths of βt in the Monte Carlo runs (posterior me-
dians) when the data-generating process features time variation in the
volatility of vt.

Finally, we ask how our approach performs when confronted with data

where there is stochastic volatility in the true monetary policy shock.29

We again keep the paths of the instrument’s volatility the same as in

our benchmark specification. Figure 17 shows that our approach again

performs as well as the fixed coefficient version.30

We find estimated paths for βt that do not change much over time and

do not decrease toward zero, in contrast to those obtained using US data

or in the first experiment (see Figure 18), but in line with our previous

discussion. Due to the relative stability, it is then also not surprising that
29We solve the model linearly and then change the volatility of the monetary policy

shock in some periods, along the lines of Justiniano & Primiceri (2008).
30Since the volatility of the monetary policy shock changes over time in the data-

generating process, we scale the impulse response for the data-generating process so
that the variance of the monetary shock is the simple average of the two possible re-
alizations of the variance we consider, while the estimated impulse responses are still
one-standard deviation shocks according to the estimated standard deviation.

35



our approach does as well as the fixed coefficient approach in this case.

Comparing across experiments, the reason that both algorithms have a

harder time identifying significant effects in this experiment is due to

our calibration, implying that the monetary policy shock is less volatile

in most periods compared to the second experiment. This final Monte

Figure 17: Impulse responses for the data-generating process and the
Monte Carlo replications: Stochastic volatility in the monetary policy
shock.

Carlo experiment involves one subtlety that we alluded to previously and

was not present in the earlier experiments: Having knowledge of the true

data-generating process, we could rescale the true βt value (which is con-

stant) by taking into account the changing volatility of the true monetary

shock to give βt values of 0.12 and 0.26 that multiply rescaled versions of

monetary policy shock that have unit variance throughout the sample.

As we have shown above, such a transformation is always possible in

models with stochastic volatility. However, this does not mean that this

last experiment is similar to the first experiment: In the first experiment,

the VAR in equation (1) is correctly specified, whereas in the latter ex-

periment the VAR is misspecified because it assumes constant volatility
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of the shocks. As discussed before, our estimated monetary policy shock

(which in a correctly specified world would have unit variance) inherits

changes in volatility via the VAR that is estimated to have fixed coeffi-

cients and fixed forecast error variance.31

Hence the estimated movements in βt are more muted than what we

would get if the true unit variance (i.e., rescaled) monetary policy shock

from the data-generating process were observable and we would directly

estimate the measurement equation for the instrument. Nonetheless,

the average level is broadly in line with the rescaled values discussed

above.
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Figure 18: Estimated paths of βt in the Monte Carlo runs (posterior me-
dians) when the data-generating process features time variation in the
volatility of the monetary policy shock.

In summary, only the first Monte Carlo experiment can qualitatively cap-

ture the patterns of the posterior βt paths that we obtained in our em-
31To convince readers that the issue of rescaling the monetary policy shock has no

impact on our results, we show in Appendix C.3.1 that the estimated impulse responses
remain unchanged in a hypothetical scenario where the instrument is directly linked
to the period-by-period rescaled (and thus unit variance) monetary policy shock.
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pirical applications. We view this as substantial evidence in favor of our

modeling assumptions.

5 Conclusion

In this paper, we study how instrument relevance changes over time in

a common application of instrument-based identification in structural

VARs. We find substantial time variation in instrument relevance, thus

allowing us to isolate periods where instruments are informative, which

helps to build a narrative for a given instrument. Furthermore, our ap-

proach can substantially alter conclusions by discounting periods where

the instrument is not informative, as in the case of the Gertler & Karadi

(2015) instrument. As a practical recommendation, we show in our ap-

plication that "cleaning" an instrument and removing periods that are

not informative will generally not help, unless a researcher is willing to

model time variation in instrument relevance.

Although we focus on monetary policy shocks in our application, the

estimation approach we develop is general and can be used for any appli-

cation of external instruments in VARs, such as the effects of government

spending shocks, tax shocks, or financial shocks.
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A Algorithms and Priors

A.1 Time Varying Parameter

The first three steps of the algorithm follows exactly Algorithm 1 of Cal-

dara & Herbst (2019), whose notation we largely borrow. The law of mo-

tion of βt is given by

βt = βt−1 + wt, wt
iid∼ N

(
0, σ2

w

)
.

In addition, we assume following priors:

p
(
σ2
w

)
∼ IG(τ/2, τq/2).

p(β0) ∼ N(b0, V0).

The scale parameter q of the IG prior is crucial for controlling the time

variation. We follow the procedure outlined in Amir-Ahmadi et al. (2020)

to estimate this parameter.

Our VAR can be stated in companion form as

Yt = ΦXt +Ut (A-1)
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where Yt stack current and lagged values of our vector of observables yt,

Xt contains lags of Yt as well as a vector of ones to capture the intercept,

and Ut ∼iid N(0, Σ̌).

Algorithm 1. For i = 1, . . . , N . At iteration i

1. Draw Σ̌,Φ | Y1:T ,M1:T ,Ω
i−1, βi−1

1:T , σ
i−1
v , σi−1

w , qi−1. For Σ̌ we use a mix-

ture proposal distribution (suppressing dependence on parameters

for notational convenience):

q
(
Σ̌ | Σ̌i−1

)
= γp

(
Σ̌ | Y1:T

)
+ (1− γ)IW

(
Σ̌; Σ̌i−1, d

)
where p

(
Σ̌ | Y1:T

)
is the known posterior distribution of Σ̌ under

Y1:T and IW
(
·; Σ̌i−1, d

)
is an Inverse Wishart distribution with scal-

ing matrix Σ̌i−1 and d degrees of freedom. For Φ we use the known

distribution p
(
Φ | Y1:T , Σ̌

)
as a proposal in an independence MH

step:

• Draw Σ̌∗ according to q
(
Σ̌ | Σ̌i−1

)
.

• Draw Φ∗ according to p
(
Φ | Y1:T , Σ̌

∗).
• With probability α, set Φi = Φ∗ and Σ̌i = Σ̌∗, otherwise set

Φi = Φi−1 and Σ̌i = Σ̌i−1, defined as

α = min

{
p
(
M1:T ,Y1:T ,Φ

∗, Σ̌∗,Ωi−1, βi−1, σi−1
ν

)
p
(
Σ̌∗)

p
(
M1:T ,Y1:T ,Φi−1, Σ̌i−1,Ωi−1, βi−1, σi−1

ν

)
p
(
Σ̌i−1

) q (Σ̌i−1 | Σ̌∗)
q
(
Σ̌∗ | Σ̌i−1

) , 1}

2. Draw Ω | Y1:T ,Mt, Σ̌,Φ,Ω
i−1, βi−1

1:T , σ
i−1
v , σi−1

w , qi−1. Use an Indepen-

dence Metropolis-Hastings sampler step using the Haar measure

on the space of orthogonal matrices:

• Draw Ω∗ using Theorem 9 in Rubio-Ramírez et al. (2010).
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• With probability α, set Ωi = Ω∗, otherwise Ωi = Ωi−1 is defined

as

α = min

{
p
(
M1:T | Y1:T ,Φ

i, Σ̌i,Ω∗, βi−1, σi−1
ν

)
p
(
M1:T | Y1:T ,Φi, Σ̌i,Ωi−1, βi−1, σi−1

ν

) , 1}

3. Draw σ2
v | Y1:T ,M1:T , Σ̌,Φ,Ω

i−1, βi−1
1:T , σ

i−1
v , σi−1

w , qi−1. Sample σ2
v from

IG (s̄1/2, s̄2/2), the known conditional posterior distribution associ-

ated with σ2
v .

4. Draw β1:T | Y1:T ,M1:T , Σ̌,Φ,Ω
i−1, βi−1

1:T , σ
i−1
v , σi−1

w , qi−1. Conditional on

all other parameters, the law of motion forms a linear Gaussian

state space system. This step can be carried out using the simula-

tion smoother detailed in Carter & Kohn (1994) or Primiceri (2005).

5. Draw σ2
w | Y1:T ,M1:T , Σ̌,Φ,Ω

i−1, βi−1
1:T , σ

i−1
v , σi−1

w , qi−1. Sample σ2
w from

IG (w̄1/2, w̄2/2), the known conditional posterior distribution asso-

ciated with σ2
w.

6. Draw q | Y1:T ,M1:T , Σ̌,Φ,Ω
i−1, βi−1

1:T , σ
i−1
v , σi−1

w , qi−1. The scale param-

eter is sampled with a MH step outlined in Amir-Ahmadi et al.

(2020).

A.2 Markov switching

In the case of Markov switching in βt, we assume that βt follows a two

state Markov process with

βt = βst

Pr(st = i|st−1 = j) = pij

i, j ∈ {1, 2}.
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We assume the following priors

p(βst=1) ∼ N(b1, V1).

p(βst=2) ∼ N(b2, V2).

p11 ∼ beta (a11, b11) .

p22 ∼ beta (a22, b22) .

Algorithm 2. For i = 1, . . . , N . At iteration i. The first 3 steps of the

algorithm are the same as Algorithm 1.

4. Draw β1:T | Y1:T ,M1:T , Σ̌,Φ,Ω
i−1, βi−1

1:T , σ
i−1
v , pi−1

11 , pi−1
22 , si−1

1:T . Sample βt

from N(b̄1, V̄1) if si−1 = 1 and from N(b̄2, V̄2) if si−1 = 2. Both are

known conditional normal distributions.

5. Draw p11, p22 | Y1:T ,M1:T , Σ̌,Φ,Ω
i−1, βi−1

1:T , σ
i−1
v , pi−1

11 , pi−1
22 , si−1

1:T . Sample

p11 from beta(ā11, b̄11) and p22 from beta(ā22, b̄22). Both are known con-

ditional beta distributions (see Frühwirth-Schnatter (2006), page

330).

6. Draw s1:T | Y1:T ,M1:T , Σ̌,Φ,Ω
i−1, βi−1

1:T , σ
i−1
v , pi−1

11 , pi−1
22 , si−1

1:T . Sample s1:T

using the Multi-Move sampler outlined in Frühwirth-Schnatter (2006),

algorithm 11.5.

A.3 Stochastic Volatility

We assume that the variance of the measurement error innovation fol-

lows a random walk

log
(
σ2
v,t

)
= log

(
σ2
v,t−1

)
+ wt, wt

iid∼ N
(
0, σ2

u

)
.
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In addition, we assume the following priors:

p
(
σ2
u

)
∼ IG(τ/2, τr/2).

p(log(σ2
v,0)) ∼ N(v0,W0).

Similar to the case of time varying β, the scale parameter r of the IG prior

is crucial for controlling the stochastic volatility. We follow the procedure

outlined in Amir-Ahmadi et al. (2020) to estimate this parameter.

In practice, we use the same Gibbs steps to draw β1:T but set q the

hyperparameter controlling the time variation to a very small number,

i.e. 10−4. The step 3 of algorithm 1 is then replaced by

3a Draw σ2
v,1:T | Y1:T ,M1:T , Σ̌,Φ,Ω

i−1, βi−1
1:T , σ

i−1
v,1:T , σ

i−1
w , qi−1, σi−1

u , ri−1.The

sampler drawing log
(
σ2
v,t

)
is based on Kim et al. (1998) who approx-

imate the distribution of log
(
σ2
v,t

)
by mixtures of normal distribu-

tions.

3b Draw σu | Y1:T ,M1:T , Σ̌,Φ,Ω
i−1, βi−1

1:T , σ
i−1
v,1:T , σ

i−1
w , qi−1, σi−1

u , ri−1. Sam-

ple σi−1
u from IG (ū1/2, ū2/2), the known conditional posterior distri-

bution associated with σ2
u.

3c Draw r | Y1:T ,M1:T , Σ̌,Φ,Ω
i−1, βi−1

1:T , σ
i−1
v , σi−1

w , qi−1, σi−1
u , ri−1.The scale

parameter is sampled with a MH step outlined in Amir-Ahmadi

et al. (2020).

A.4 More on Priors

We use a benchmark Minnesota prior setting for the VAR with a very

loose overall tightness parameter equal to 10.1 The diagonal elements
1For the exact definition of this parameter see Giannone et al. (2015).
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of the location matrix of the inverse Wishart prior are fixed to OLS esti-

mates of an AR(1) model based on 12 observations of pre-sample data. We

use a fairly uninformative prior for the residual variance σ2
v ∼ IG(s1/2, (s1s

2
2/2).

For the estimation of the parameter q, we adopt the half-Cauchy prior

with scale parameter θ. The prior hyperparameters are summarized in

the following table:

Table A-1: TVP Benchmark Prior Hyperparameters

s1 s2 b0 V0 τ θ
2 0.2 0 1 2 0.01

In case of Markov Switching, the Minnesota prior specification re-

mains the same, the other prior hyperparameters are summarized in the

following table:

Table A-2: Markov Switching Benchmark Prior Hyperparameters

s1 s2 b1 V1 b2 V2 a11 b11 a22 b22
2 0.2 0 1 0 1 6 1 6 1

In case of stochastic volatility in the measurement error, we use a very

similar prior setting as in the case of time varying parameter. In partic-

ular, we also estimate the hyperparameter r which controls the degree

of stochastic volatility base on Amir-Ahmadi et al. (2020). We assume

again a half-Cauchy prior with scale parameter θ. As mentioned in the

description of the sampler, we set q the hyperparameter controlling the

time variation to 10−4. The other prior hyperparameters are summarized

in the following table:

Table A-3: Stochastic Volatility Prior Hyperparameters

v0 W0 b0 V0 τ θ
log (0.22) 1 0 1 2 0.01
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All posterior results except for the Monte Carlo experiments are based

on 500, 000 draws from the MCMC sampler.

B Relationship With High-Frequency Iden-

tification

In order to analyze the relationship to identification via changes in volatil-

ity, we first stack our original VAR and the measurement equation for the

instrument mt (which we assume to be scalar). A(L) is a polynomial in

the lag operator. e2,t is a vector that collects all structural shocks ex-

cept for the monetary shock eMP
t . The associated impact effects on yt are

collected in ΣMP and Σ2.

zt =

 mt

yt

 =

 0

c

+
 0 0

0 A(L)


 mt−1

yt−1

+
 σv βt 0

0 ΣMP Σ2


︸ ︷︷ ︸

Σt


vt

eMP
t

e2,t


︸ ︷︷ ︸

ut

Note that in contrast to standard identification via heteroskedasticity

(Rigobon 2003), the volatility of the shocks E(utu
′
t) is time-invariant, but

the impact matrix Σt varies.2 We show now that if βt follows a two regime

Markov-switching process, we can identify the effects of ε1,t. The Markov-

switching structure is only assumed for simplicity to highlight the rela-

tionship between our approach and identification via heteroskedasticity.

More general laws of motion for βt would yield the same insights. We call

the two possible values for Σt Σ0 and Σ1. These matrices only differ in

their values for β, which is equal to either β0 or β1.
2We assume throughout, as before, that E(utu

′
t) = I.
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To obtain our result, we start by writing out Σ1Σ
′
1:

 σv β1 0

0 ΣMP Σ2

×


σv 0

β1 ΣMP ′

0 Σ2′

 =

 σ2
v + β2

1 β1Σ
MP ′

β1Σ
MP ΣMPΣMP ′ +Σ2Σ2′



We also get a similar expression for Σ0Σ
′
0, with β1 replaced by β0. The

first row of those two quadratic forms allows us to identify β2
1 − β2

0 (by

taking the difference of the first elements in the first row) and β1

β0
(by

taking the ratio of any element of β1Σ
MP ′ and the corresponding element

of β0Σ
MP ′). With those two pieces of information, we can uniquely pin

down β1 and β0 up to one sign normalization. The other elements of the

first row of Σ1Σ
′
1 or Σ0Σ

′
0 except for the first element pin down ΣMP ,

which identifies the effects of eMP
t .

C Details on Monte Carlo Exercises

All of our Monte Carlo setups consist of two regimes. Our goal is to

match the variance of the instrument for a given regime across specifica-

tions. We assume that in the benchmark the monetary policy shocks are

N(0, σ2
e) and β = 1 in one regime and equal 0 in the other. Furthermore,

we will assume that in the benchmark the variance of the measurement

error vt is a fixed fraction κ of the variance of the monetary policy shock.3

Note that in contrast to our estimated model (where eMP
t is assumed to

have unit variance and all scaling is captured in the impact matrix Σ),
3Compared to the main text, we use non-unit variance shocks in the data-generating

process, whereas the shocks entering the estimated model in the main text (monetary
shock eMP

t and measurement error uM
t ) are unit variance shocks.
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the true monetary policy shock does not have unit variance. This af-

fects the scale of the estimated βt coefficients and needs to be taken into

account when comparing to the true values stated here (we give more

details when discussing the estimated paths of βt).

In our Monte Carlo exercise, we simulate 100 samples of length T =

250 each. The variables we use in Monte Carlo exercise are the nominal

interest rate, output, inflation, and the monetary policy shock from an

estimated Smets-Wouters model. The VAR contains simulated nominal

interest rate, output and inflation and the lag length is set to 4. In each

of the Monte Carlo repetitions (in total 100), posterior results are based

on 50,000 MCMC draws. The prior specification is exactly the same as

in the empirical estimation.

C.1 Benchmark

The measurement equation and the variance in the two regimes are:

mt = et + vt, V ar(mt) = (1 + κ)σ2
e (A-2)

mt = vt, V ar(mt) = κσ2
e (A-3)

We set σ2
e = 0.22902 equal to the DGP value and κ = 0.25. For T = 5, ..., 140

and T = 150, ..., 230, β = 0. Otherwise, β = 1. These values are chosen to

be comparable to the Gertler-Karadi instrument.

C.2 Changing Volatility in the measurement error

We now assume that the measurement error vt has a variance that switches

between regimes with values σ2
v,1 and σ2

v,2. The measurement equations
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are given by:

mt = βet + vt, V ar(mt) = β
2
σ2
e + σ2

v,1 (A-4)

mt = βet + vt, V ar(mt) = β
2
σ2
e + σ2

v,2 (A-5)

We now need to solve the following two equations:

β
2
σ2
e + σ2

v,1 = (1 + κ)σ2
e (A-6)

β
2
σ2
e + σv,2 = κσ2

e (A-7)

We actually have three unknowns and two equations here. Since all vari-

ances have to be positive, we have additional constraints though. We set

β =
√
κ and σ2

v,2 = 0. This implies σ2
v,1 = σ2

e .

We set σ2
e = 0.22902 (equal to the DGP value) and κ = 0.25. For T =

5, ..., 140 and T = 150, ..., 230, σ2
v,2 = 0. Otherwise, σ2

v,1 = σ2
e .

C.3 Changing Volatility in et

We now assume that the variance in the monetary policy shocks changes,

with variances σ2
e,1 and σ2

e,2. We also allow the measurement error vari-

ance σ̃2
v and the coefficient β̃ to be different than in the other specifica-

tions (they are fixed across regimes though). The equations in this MC

are given by

mt = β̃et + vt, V ar(mt) = β̃2σ2
e,1 + σ̃2

v (A-8)

mt = β̃et + vt, V ar(mt) = β̃2σ2
e,2 + σ̃2

v (A-9)

The equations we need to solve are:
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β̃2σ2
e,1 + σ̃2

v = (1 + κ)σ2
e (A-10)

β̃2σ2
e,2 + σ̃2

v = κσ2
e (A-11)

We impose β̃ = 1 and σ̃2
v = 0, which implies σ2

e,2 = κσ2
e and σ2

e,2 = (1+κ)σ2
e .

We set σ2
e = 0.22902 and κ = 0.25. For T = 5, ..., 140 and T = 150, ..., 230,

σ2
e,2 = κσ2

e . Otherwise, σ2
e,2 = (1 + κ)σ2

e .

C.3.1 Alternative Measurement Equation

Since the previous exercise is somewhat cumbersome to interpret, we also

carried out an alternative where the data-generating process for all vari-

ables except the instrument is the same as before. For the instrument,

we now assume that

mt = et + vt, (A-12)

where et is the normalized monetary policy shock that has unit variance

each period. We set vt ∼ N(0, 0.25). This exercise has the disadvantage

that the path of the instrument’s volatility is not the same as in the previ-

ous exercise. The advantage is that the instrument equation is indepen-

dent of changes in the monetary policy shock’s volatility. Furthermore,

this exercise is certainly not as realistic as the others because the instru-

ment is linked to the normalized true shock. Figure A-1 plots the impulse

responses under this alternative specification - results are basically in-

distinguishable from the original exercise in the main text, as can be seen

when comparing Figure A-1 with Figure 17. The posterior median paths
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of βt are now flat (Figure A-2).

Figure A-1: Impulse responses for the data-generating process and the
Monte Carlo replications: Stochastic volatility in the monetary policy
shock, alternative instrument.
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Figure A-2: Estimated paths of βt in the Monte Carlo runs (posterior
medians) when the data-generating process features time variation in
the volatility of the monetary policy shock, alternative instrument.

D Data Sources

For the US economy, we follow Gertler & Karadi (2015) and obtained in-

dustrial production (INDPRO), consumer price index (CPIAUCSL) and

1-year treasury rate (GS1) from FRED (https://fred.stlouisfed.org/).

The data for the excess bond premium is obtained from Board of Gover-

nors (https://www.federalreserve.gov/econresdata/notes/feds-notes/

2016/files/ebp_csv.csv). The instrument of Gertler & Karadi (2015) is

obtained from the replication file of the paper (https://www.openicpsr.

org/openicpsr/project/114082/version/V1/view). The instrument of Miranda-

Agrippino & Ricco (2022) is obtained from the personal website of Silvia

Miranda-Agrippino (http://silviamirandaagrippino.com/s/Instruments_

web-x8wr.xlsx). For the UK economy, we use the replication data and in-

strument of Cesa-Bianchi et al. (2020) from https://github.com/ambropo/

MP_HighFrequencyUK/.
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E Additional Figures

Here we show the full set of impulse responses for various specifications

in the main text.

E.1 Markov Switching

Figure A-3: Impulse responses (median and 68 percent posterior bands)
to a one standard deviation monetary policy shock - Markov-switching
specification.

E.2 Shutting Down Periods Where the Instrument is

Informative/Not Informative
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Figure A-4: Impulse responses (median and 68 percent posterior bands)
to a one standard deviation monetary policy shock - m̃t.

Figure A-5: Impulse responses (median and 68 percent posterior bands)
to a one standard deviation monetary policy shock - mt.
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E.3 Alternative Instruments

Figure A-6: Impulse responses (median and 68 percent posterior bands)
to a one standard deviation monetary policy shock - modified instrument.
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Figure A-7: Impulse responses (median and 68 percent posterior bands)
to a one standard deviation monetary policy shock - Miranda-Agrippino
& Ricco (2020) instrument.

Figure A-8: Impulse responses (median and 68 percent posterior bands)
to a one standard deviation monetary policy shock - Bauer & Swanson
(2022) instrument.
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Figure A-9: Impulse responses (median and 68 percent posterior bands)
based on fixed coefficient VAR for benchmark instrument and m̃t

Figure A-10: Impulse responses (median and 68 percent posterior bands)
based on fixed coefficient VAR for benchmark instrument and mt
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F Evidence from the UK

Finally, we present evidence for high-frequency based identification of

monetary policy shocks in the United Kingdom. We use both the instru-

ment and the VAR specification (i.e. the choice of variables entering yt) of

Cesa-Bianchi et al. (2020). We focus on the specification with a random

walk specification for βt.

Figure A-11 shows impulse responses for all UK variables in the VAR.

In contrast to the US, we find little difference between fixed coefficient-

based responses and random walk-based responses. A potential reason

can be seen in Figure A-12: The sample for the UK (both for the VAR

variables and the instrument) is much shorter, and within that shorter

time-span there are more periods where the instrument is informative,

making the fixed coefficient estimation generally more informative.
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Figure A-11: Impulse responses (median and 68 percent posterior bands)
to a one standard deviation monetary policy shock, UK.
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Figure A-12: Posterior of βt and ρt, UK (median and 68 percent posterior
bands).
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