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Abstract

The effects of monetary policy shocks are regularly estimated using high-frequency
surprises in asset prices around central bank meetings as an instrument. These stud-
ies, insofar as they explicitly model the relationship between instrument and struc-
tural shock, assume a constant relationship between the instrument and the monetary
policy shock. By allowing for time variation in this relationship, we show that only
a few distinct periods are informative about monetary policy shocks. Therefore, we
build a narrative for instrument-based identification. For the instrument in Gertler
& Karadi (2015), the effect on the (log) price level is almost 50 percent larger than
the standard specification would suggest.
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1 Introduction

Identifying impulse responses via external instruments has become commonplace in empir-

ical macroeconomics over the past decade (Stock & Watson 2012, Mertens & Ravn 2013,

Gertler & Karadi 2015). These external instruments are interpreted as imperfect measure-

ments of unobserved structural shocks. An instrument-based approach mitigates the issues

that can arise when using standard sign restrictions to identify monetary policy shocks, as

highlighted by Wolf (2020).

A key assumption of studies that use this approach while conducting Bayesian inference is

that there is a fixed, time-invariant relationship between the instrument and the shock of

interest. However, in this paper we present evidence that for a common application of ex-

ternal instruments—the study of monetary policy shocks using high-frequency variation in

asset prices around central bank announcements—there is actually substantial time varia-

tion in this relationship. To see this, Figure 1 plots the surprises in the three-month-ahead

Fed Funds futures (FF4) in a 30-minute window around meetings of the Federal Open

Market Committee (FOMC), an instrument popularized by Gertler & Karadi (2015) that

we also use. The figure shows that there are periods where the dynamics and volatility

of this instrument are substantially different from the rest of the sample, mainly the early

1990s, 2001, and during the Great Recession.

Building on this finding, we construct vector autoregressions (VARs) that explicitly cap-

ture this time variation, using the Bayesian approach for VARs with instruments (commonly

called proxy VARs).1 We show that the pattern observed in Figure 1 can be explained par-

simoniously by moving to a nonlinear measurement equation linking the instrument and

the structural shock of interest, while maintaining a linear and Gaussian structure for the

VAR itself to be comparable to the bulk of the literature.2 We introduce this nonlinearity

1Time-varying identification strength is also a feature of the non-parametric framework in Rambachan
& Shephard (2021).

2In theory, time-varying volatility of monetary policy shocks could also lead to the pattern described
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Figure 1: Surprise in 3-month-ahead Fed Funds futures (Gertler & Karadi 2015).

by allowing either changes in the volatility of the noise term or changes in the parameter

multiplying the unobserved shock of interest.3 These two assumptions translate changes

in the volatility of the instrument into time variation in identification strength in oppo-

site ways - volatile realizations of the instrument are deemed informative when we use the

time-varying parameter approach, but are considered uninformative (i.e. a source of weak

identification) when we estimate a model with stochastic volatility in the noise term. We

show that for our specific application, assuming changes in the volatility of the noise term

leads to results that most economists will find questionable. First, a standard VAR esti-

mated via ordinary least squares (OLS) delivers forecast errors that are highly correlated

with the instrument during periods where volatility is high, but not otherwise. Second,

the implied impulse responses in the case of stochastic volatility in the noise term are es-

timated with a large amount of uncertainty and have the wrong sign for the response of

here. We show in a Monte Carlo exercise in Appendix B that such a data-generating process would lead
to estimates of time-varying parameters that are qualitatively very different to those obtained using U.S.
data.

3Our approach comes at negligible additional computational cost relative to the previous literature.
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prices. Therefore, we interpret changes in the volatility of the instrument through the lens

of a model with time variation in the parameter linking the instrument and the monetary

policy shock instead.

We discuss what the implications of various types of misspecification4 are on estimates ob-

tained using our preferred specification. These implications are at odds with our estimates

using US data, which we confirm using Monte Carlo experiments.

Our approach yields two important insights. First, we can infer periods where the in-

strument is most informative about monetary policy shocks, thus helping to answer the

question as to where identification comes from and allowing us to develop a narrative for

identification. As such, our approach can be seen as complementing the narrative sign

restrictions approach of Antoĺın-Dı́az & Rubio-Ramı́rez (2018), who impose identification

via sign restrictions (and related restrictions) for certain periods only. In fact, as shown

by Plagborg-Møller & Wolf (2021) and highlighted by Giacomini et al. (2022), narrative

sign restrictions can be recast as binary instruments. Our approach instead identifies in-

formative periods for a given instrument. We find, for a standard US instrument, that

high-frequency-based instruments for monetary policy shocks are only relevant for a small

number of distinct periods. We show that even when we set 90 percent of the instrument

observations for the standard Gertler & Karadi (2015) instrument to zero (while keeping

those periods our approach estimates to be the most informative), we can recover the same

impulse responses as when we use all available observations.

Second, because inference about monetary policy shocks is no longer contaminated by peri-

ods where the instrument is not actually informative (our algorithm discounts information

contained in the instrument from these periods), we can gain a clearer picture of the effects

of monetary policy shocks. Using the same instrument as Gertler & Karadi (2015) in our

application yields, for example, effects on prices that are almost 50 percent larger after four

4One source of misspecification we study is stochastic volatility in the monetary policy shock itself.
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years.

Error bands for impulse responses are generally not wider than their fixed-coefficient coun-

terparts. Even in applications where our approach yields impulse responses similar to the

benchmark fixed-coefficient approach (which is something that is not known a priori), the

sharpening of the identification narrative can be crucial for interpreting the results.

The use of instruments in macroeconomics to identify the effects of monetary policy

shocks was pioneered by Romer & Romer (2004), who estimate a sophisticated monetary

policy rule using real-time data and obtain their instrument as the residual in that esti-

mated monetary policy rule. More recently, the focus has shifted toward using instruments

that are based on high-frequency variation in asset prices, first in event studies (Kuttner

2001, Gürkaynak & Wright 2013, Faust et al. 2007) and later as an instrument incorpo-

rated into time series models (Gertler & Karadi 2015, Jarociński & Karadi 2020, Caldara

& Herbst 2019, Miranda-Agrippino & Ricco 2020), building on the work of Stock (2008)

and Mertens & Ravn (2013), who introduced the proxy VAR framework.5 Other papers di-

rectly use information from high-frequency variation in asset prices around monetary policy

decisions as a right-hand side variable for regressions to estimate the effects of monetary

policy shocks (Campbell et al. 2016, Nakamura & Steinsson 2018).

Miranda-Agrippino & Ricco (2020) develop an instrument that is also based on high-

frequency-based asset price variation around FOMC meetings, but further controls for

information that the Federal Reserve had at the time of its meeting as well as possible

autocorrelation in the instrument. We show in Section 4.4 that with this instrument, we

also find relatively rare spikes in instrument relevance. The differences between the im-

pulse responses using the standard approach and our method are substantially smaller with

this instrument than with the Gertler & Karadi (2015) instrument. In fact, the impulse

responses obtained using this instrument are similar to those obtained with our approach

5The use of this type of identification is becoming more common. For example, Känzig (2021) uses a
high-frequency-based identification to identify oil shocks.
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and the Gertler & Karadi (2015) instrument.

Our work is related to (Abadie et al. 2023), who show that exploiting heterogeneity in

instrument strength in the first stage of a standard instrumental variable setting can sub-

stantially improve the mean squared error of instrumental variables estimators. We present

evidence that exploiting heterogeneity across time can lead to improved estimators of im-

pulse responses in applied macro settings.

2 A VAR Model to Study Changes in Instrument Rel-

evance

We set out to study the response of an n dimensional vector of observables yt to a monetary

policy shock eMP
t , which is one element of the n dimensional vector of structural shocks et.

6

To estimate said response, we use a structural vector autoregression (SVAR) in equation

(1):

yt = c+
L∑
l=1

Alyt−l +Bet, (1)

where et ∼iid N(0, I).

The well-known identification problem in Gaussian structural VARs (Canova 2011,

Baumeister & Hamilton 2015, Kilian & Luetkepohl 2018) implies that we need additional

information to identify the column of the response matrix B, which tells us how the ele-

ments of yt respond to the monetary policy shock eMP
t . The additional information that

we exploit, following a substantial fraction of the recent literature in empirical macroe-

conomics, is an instrument mt for the monetary policy shock eMP
t . There are various

frequentist (Mertens & Ravn 2013, Stock & Watson 2018) and Bayesian (Arias et al. 2021,

Caldara & Herbst 2019, Drautzburg 2020) approaches to incorporating such information

6We use boldface for vectors and matrices.
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in an SVAR analysis.7 Since our ultimate goal is to study possible changes in the relation-

ship between the observable instrument mt
8 and the unobserved monetary policy shock,

we explicitly model the relationship between the instrument and the structural shock of

interest. Within the standard homoskedastic VAR framework in the literature (Mertens &

Ravn 2013, Caldara & Herbst 2019), there are two diametrically opposite assumptions that

can generate the patterns observed in Figure 1.9 We introduce these cases in Equations

(2) and (3):

mt = βte
MP
t + σvvt. (2)

mt = βeMP
t + σv,tvt. (3)

vt is distributed independently and identically over time as N(0, 1) in either equation.

Equation (2) accounts for the observed patterns in the instrument by allowing the coeffi-

cient on the monetary shock to change, while Equation (3) allows for changes in the noise

variance. These alternatives lead to very different interpretations of the observed data, as

we show below. Measurement equations of the kind we use are standard in the literature

dating back to Mertens & Ravn (2013), but the common assumption is that βt = β∀t and

σv,t = σv∀t, especially when Bayesian inference is conducted.10 The measurement equations

can be generalized to include lags for observed variables on the right-hand side (Arias et al.

2021), and we show in Appendix G that such an extension does not change the conclusions

in our empirical application.

The key identification assumptions are twofold. First, we assume that vt is independent

7Frequentist inference using proxies in dynamic factor models was introduced by Stock &Watson (2012).
8Instead of one scalar instrument, we could use multiple instruments. In that case we would, for example,

need to make a decision about possible correlation in the error terms of the measurement equations.
9Mumtaz & Petrova (2021) estimate time-varying parameter VARs with external instruments, but in

their application the relationship between the instrument and the shock of interest is time-invariant.
10One exception is Mertens & Ravn (2013), where the authors allow for censoring of the instrument (so

that the entire right-hand side is multiplied by an indicator function), which is conceptually distinct from
the type of time variation we study.
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of all other shocks in our model, both the vector of structural shocks et and any shocks

determining the evolution of βt or σv,t, generally denoted as wt.
11 Second, the instrument is

informative for the monetary policy shock, meaning that at least for some periods, βt ̸= 0.

Our assumptions then imply

E [ej,tmt] = 0 for j = 2, . . . , n, (exogeneity) (4)

E [vtet] = 0 and E [vtwt] = 0, (5)

βt ̸= 0 for some t in Equation (2) or β ̸= 0 in Equation (3), (relevance) (6)

where ej,t denotes the jth element of et.

Our Bayesian estimation approach is still valid even if βt = 0 ∀t in Equation (2) or

β = 0 in Equation (3) in the sense that our approach will asymptotically identify that the

instrument is not relevant (βt = 0∀t), although, naturally, in that case the instrument will

not aid identification of the shock of interest. Our approach automatically approximates

the posterior distribution of all time-varying parameters and the associated instrument

reliability for each time period t. If those are always small (i.e., standard posterior bands

include zero), we can infer that the instrument is weak.12 We borrow the approach of

directly estimating the parameters of this measurement equation from Caldara & Herbst

(2019). Unlike in that paper, we allow for changes in parameters that govern the systematic

relationship between instruments and shocks.13

A useful summary statistic for assessing the strength of the instrument in different

11As is common in the literature on time-varying VAR (Cogley & Sargent 2002, Primiceri 2005), we also
assume that the structural shocks et are independent of innovations to parameters wt.

12Our approach also assumes invertibility of the monetary policy shock. For our monetary policy appli-
cation, this seems to be a widely accepted assumption (Wolf 2020). For recent work on the link between
inference using instruments and invertibility, see Miranda-Agrippino & Ricco (2022).

13Following Caldara & Herbst (2019), we normalize the relevant column of B so that the monetary policy
shock increases interest rates on impact. Such a sign normalization is necessary for any structural VAR
identification scheme. In our specific application, it also allows us to center the prior for βt or β at zero
while still maintaining a standard interpretation of the estimated monetary policy shock.
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periods is a time-varying version of the common reliability (or relevance) statistic ρt:

ρt ≡


β2
t

β2
t+σ2

v
if Equation (2) holds

β2

β2+σ2
v,t

if Equation (3) holds

(7)

This statistic represents the squared correlation between the instrument and the structural

shock at time t and measures time-varying identification strength.

Equations (2) and (3) provide different theories for changes in volatility of the instrument

mt. These different theories have opposite effects on ρt: If an increase in volatility of mt is

driven by an increase in βt this will lead to an increase in ρt, whereas an increase in σv,t

will lead to a decrease in ρt. The first specification therefore interprets periods where the

instrument is volatile as more informative for the identification of the effects of monetary

policy shocks. The stochastic volatility specification instead discounts these periods because

it attributes these fluctuations in the instrument to noise and instead identifies the effects

of monetary policy shocks using periods with low instrument volatility.

In Section 4.1, we first compare three different specifications for the time variation in

parameters:14

Constant: βt = β, σv,t = σv (8)

Time variation in Equation (2): βt = βt−1 + σβwt (9)

Time variation in Equation (3): log(σ2
v,t) = log(σ2

v,t−1) + σuwt (10)

In Equations (9) and (10), we assume that wt ∼iid N(0, 1). The first specification is a

constant parameter specification reminiscent of Caldara & Herbst (2019) as a benchmark

14We focus on these diametrically opposite cases here. One could entertain stochastic volatility σv,t and
time-varying βt jointly, but in that case the prior in the relative variability on βt and log(σv,t) would be
crucial due to weak identification (for a discussion in the context of time-varying VAR models, see Amir-
Ahmadi et al. (2020). More importantly, our choice of diametrically opposite cases helps us interpret our
findings.
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(equation (8)), the second specification is a Gaussian random walk specification for βt in

the tradition of the literature on time-varying parameters in state space models and VARs

(Cogley & Sargent 2002, Primiceri 2005, Stock & Watson 2007), and the third specification

is a standard specification for stochastic volatility, where log volatility follows a random

walk (Kim et al. 1998, Cogley & Sargent 2002, Primiceri 2005). We choose these specifica-

tions not only because they are common in the literature, but, more importantly, because

estimates obtained using these specifications can capture many patterns of time variation

even if the random walk specifications are misspecified (see, for example, Amir-Ahmadi

et al. (2020)).

In finite samples, a misspecified fixed coefficient approach will use information from all

time periods, even those where the instrument is not informative.

Standard frequentist approach will asymptotically be valid regardless as long as the in-

strument is relevant (i.e. there are enough periods where the instrument is informa-

tive).However, in finite samples, using irrelevant information (i.e. assuming Equations

(8) when the true instrument relevance is time-varying) will lead to inefficient estimates.

If there are only relatively few periods where the instrument is relevant, then our approach

naturally takes into account that there is not much information about the structural shock

in the instrument, thus automatically taking into account possibly weak identification. Note

that this is different from having an inefficient estimator - weak identification, if present, is

a feature of the data-generating process if the model is correctly specified. In Appendix F,

we study the performance of our approach as we vary the number of informative periods

in a Monte Carlo setting to highlight that even with very few informative periods, our

approach outperforms the fixed coefficient alternative.

To approximate the posterior of our model, which consists of equations (1), (2), and one of

the equations (8), (9), or (10), we modify the Metropolis-within-Gibbs sampling framework

of Caldara & Herbst (2019) (the specification with equation (8) is exactly their specifica-

10



tion). An important feature of our algorithm is that we do not require the same number

of observations for the instrument mt as for the macro variables collected in yt. Details

about the algorithm can be found in Appendix A. In Section 3, we show how our approach

is related to, but distinct from, identification based on heteroskedasticity (Rigobon 2003).

3 Identification With Time-Varying Instrument Rel-

evance

In this section, we use environments where the parameters follow a two-state discrete

Markov chain to derive analytical results that can help us understand where our identi-

fication comes from and when it breaks down. In order to analyze the relationship to

identification via changes in volatility, we first stack our original VAR and the measure-

ment equation for the instrument mt (which we assume to be scalar). We first assume

that only βt can vary over time before turning to a more general environment. A(L) is a

polynomial in the lag operator. e2,t is a vector that collects all structural shocks except for

the monetary shock eMP
t . The associated impact effects on yt are collected in BMP and

B2.

zt =

 mt

yt

 =

 0

c

+

 0 0

0 A(L)


 mt−1

yt−1

+

 σv βt 0

0 BMP B2


︸ ︷︷ ︸

Bt


vt

eMP
t

e2,t


︸ ︷︷ ︸

ut

Note that in contrast to standard identification via heteroskedasticity (Rigobon 2003),

the volatility of the shocks E(utu
′
t) is time-invariant, but the impact matrix Bt varies

because βt can change over time.15 We show now that if βt follows a two regime Markov-

15We assume throughout, as before, that E(utu
′
t) = I.
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switching process, we can identify the effects of ε1,t. The Markov-switching structure is only

assumed for simplicity. More general laws of motion for βt would yield the same insights.

We call the two possible values for Bt B0 and B1. These matrices only differ in their values

for β, which is equal to either β0 or β1.

To obtain our result, we start by writing out B1B
′
1:

 σv β1 0

0 BMP B2

×


σv 0

β1 BMP ′

0 B2′

 =

 σ2
v + β2

1 β1B
MP ′

β1B
MP BMPBMP ′ +B2B2′



We also get a similar expression for B0B
′
0, with β1 replaced by β0. The first row of

those two quadratic forms allows us to identify β2
1 −β2

0 (by taking the difference of the first

elements in the first row) and β1

β0
(by taking the ratio of any element of β1B

MP ′ and the

corresponding element of β0B
MP ′). With those two pieces of information, we can uniquely

pin down β1 and β0 up to one sign normalization. The other elements of the first row of

B1B
′
1 or B0B

′
0 except for the first element pin down BMP , which identifies the effects of

eMP
t .

Because we restrict only βt (a scalar random variable) to vary across regimes, each regime

gives us (n+ 1) new pieces of information from the regime-specific variance of the forecast

errors.16 Furthermore, our model implies that the lower nn block of the forecast error

covariance matrix is regime-independent. Thus, our model of time-varying βt coefficients

is overidentified.17

16The overall forecast error variance BtB
′
t has

(n+1)(n+2)
2 unique elements, but (n+1)n

2 elements of that
matrix do not depend on βt.

17In contrast, when we consider general time variation in Bt, an issue we come back to in the next

section, we have n2 + 1 free parameters in Bt in each regime and still only (n+1)(n+2)
2 free elements in the

forecast error covariance amtrix, meaning that such a model would not be identified for n > 3.
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3.1 Identification Breakdown When General Time Variation is

Present

We will now consider an environment with two regimes where all relevant parameters are

allowed to vary, including both the volatility of the measurement error and the volatility

of the monetary policy shock. We will study two macroeconomic outcomes stacked in the

vector yt. For simplicity, assume that all data are iid (none of the arguments above relied

on the data being persistent). Furthermore, we assume that yt is two-dimensional. Again,

nothing hinges on this assumption, but it hopefully makes the exposition clearer. We can

then again stack the model for yt with the measurement equation for the instrument mt to

get:


mt

y1,t

y2,t

 =


σv βt 0

0 BMP
y1,t By1,t

0 BMP
y2,t By2,t




σ̃v,t 0 0

0 σ̃MP
t 0

0 0 σ̃t




vt

eMP
t

e2,t

 (11)

We can identify the variance of the one-step ahead forecast error in each of the two regimes,

which in total gives us 12 independent pieces of information that can be used to help with

identification. Let us further assume that the time varying volatilities σ̃ are normalized

to be equal to 1 in one regime. This leaves us with 14 parameters to be estimated, so

there is no chance that identification can be achieved. To be clear, we do not recommend

to estimate such a general system without further identification restrictions.18 However,

counting the number of restrictions only gives us a necessary condition for identification,

and even if we incorporate additional restrictions the situation is less than clear: the map-

ping from parameters to elements of the covariance matrix of the one-step ahead forecast

error is not linear. In fact, the mapping is represented by multivariate higher order polyno-

18In a factor-augmented VAR context, Liao et al. (2023) explore the role of time-varying instrument
relevance and allow all VAR parameters to vary over time. As our example shows, priors play a crucial
role in such a model even asymptotically.
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mial equations,19 which generally have multiple solutions that would need to characterized

numerically on a case-by-case basis.

In Appendix E, we show how our approach compares empirically to an approach that as-

sumes stochastic volatility in the monetary policy shock itself, but shuts down all time

variation in the relationship between the instrument and the structural shock.

4 Effects of Monetary Policy Shocks Identified Through

High-Frequency Variation in Asset Prices

Section 4.1 studies the effects of allowing for time-varying reliability using the specifications

outlined above. Crucially, we will make our case for modeling time variation in βt for this

specific application and analyze further variations of that specification. Section 4.2 uses

a Markov-switching approach to model time variation in βt for reasons that will become

obvious once we study the posterior of βt in our benchmark random-walk specification.

In Section 4.3, we highlight that indeed only a few periods are informative for the effects

of monetary policy shocks by estimating our model with an instrument that is set to

zero except for the most informative periods. Finally, Section 4.4 estimates the effects of

monetary policy shocks with the Miranda-Agrippino & Ricco (2020) instrument, the Bauer

& Swanson (2022) instrument, and an alternative version of the Gertler & Karadi (2015)

instrument.

19In general the equations will feature at least some third order terms even if we treat the squared values
of the σ̃ volatilities directly as objects of interest, thus reducing the degree of the polynomial that needs
to be solved.
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4.1 The Effects of Time-Varying Reliability

We first contrast the constant parameter specification with the random walk specification

for βt and the stochastic volatility in noise specification. Our application uses US data:20 yt

consists of the log of the Consumer Price Index (CPI), the log of industrial production (IP),

the interest rate on one-year government bonds i, and the excess bond premium (EBP)

(Gilchrist & Zakrajsek 2012). As Caldara & Herbst (2019) highlight, including a measure

of financial conditions such as the EBP in our VAR is crucial in order to get the effects of

monetary policy right. The sample for yt runs from July 1979 to June 2012 to match the

sample used by Gertler & Karadi (2015). We also follow Gertler & Karadi (2015) in our

choice of instrument mt and use the surprise in the three-month-ahead Fed Funds futures

around FOMC meetings (the series depicted in Figure 1). The sample for mt is January

1991 to June 2012. We use 12 lags in all VARs estimated on US data in this paper.

To motivate our preference for the assumption of variation in βt, it is instructive to study

the relationship between the instrument and various forecast errors implied by a VAR. We

estimate a version of our benchmark VAR via OLS to make sure that the estimation does

not use any information on the instrument (as it would when we estimate our benchmark

model using Bayesian methods). We then compute the correlation between the OLS-based

one-step-ahead forecast errors for the variables in our VAR and the Gertler & Karadi (2015)

instrument, for both periods where, according to our models, the instrument is volatile

and periods where it is not.21 Identification schemes for structural VARs generally posit

a linear relationship between these forecast errors and the structural shocks of interest.

Thus, these are key correlations that are exploited whenever researchers use an instrument

for identification in a structural VAR (as discussed before, standard proxy VARs assume a

20In Appendix H, we apply our preferred specification to UK data, using the high-frequency instrument
of Cesa-Bianchi et al. (2020).

21More specifically, we use the periods that our model with time variation in βt identifies as informative
as described in Section 4.3. Using the stochastic volatility model to identify these volatile periods leads to
very similar results.
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time-invariant relationship, so this correlation should be constant across subsamples).

Table 1 shows the correlation for each forecast error in a different column and each

period in a different row. In periods where our approach identifies the instrument as not

volatile, the absolute value of the correlation between the instrument and the (one-step-

ahead) forecast errors decreases by at least 70 percent and by as much as 82 percent,

depending on the variable.22 Furthermore, the absolute decrease in correlation is meaning-

ful (a decrease in correlation of 0.34 for inflation and EBP, for example). Not only is the

correlation between the instruments and forecast errors stronger when the instrument is

volatile, in periods where the instrument is volatile, the signs of the correlation between the

instrument and the forecast errors in the VAR are more in line with correlations implied by

standard New Keynesian theories: a contractionary shock raises interest rates, but lowers

prices. The sign of the correlation for IP might seem unusual, but we will see a small

initial positive impulse response of IP to a monetary policy shock (confirming the sign of

the correlation) that quickly turns negative in our preferred specification below.

Table 1: Correlation between instrument and forecast errors in OLS version of our VAR.

i CPI IP EBP

High volatility in mt 0.48 -0.34 0.10 0.46
Low volatility in mt 0.14 0.06 0.03 0.12
Percent reduction in (absolute) correlation 0.71 0.82 0.70 0.74

For the rest of the analysis, we use a Bayesian approach. The priors that we use

throughout are standard in the literature and are described in detail in Appendix A. We

make the priors as comparable as possible across the different specifications: The same

parameters always have the same priors. Furthermore, the prior for β in the fixed coefficient

variant is the same as the prior for β0 in the random walk specification. Estimation results

for models with time-varying coefficients can often be somewhat sensitive to the choice

22The slightly awkward use of the absolute value of the correlation is necessary because the correlation
of the instrument with CPI forecast errors becomes positive when the instrument is not informative.
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of prior for the innovation standard deviations σβ and σvol in the law of motion for the

parameter. This parameter governs the amount of time variation. Sensitivity is less of

an issue here because (i) we only have one time-varying parameter (in contrast to papers

where all VAR parameter can vary, such as Cogley & Sargent 2002 and Primiceri 2005),

and (ii) we only have either time-varying parameters or stochastic volatility in our models,

which helps sharpen inference. Nevertheless, to ensure that this is not an issue, we follow

some of our previous work (Amir-Ahmadi et al. 2020) and estimate the hyperparameters

that enter the priors for σβ and σvol. Details on the priors can be found in Appendix A.

We first analyze the case of time variation in β. Figure 2 shows the posterior path of βt

and ρt. We plot the corresponding elements of the fixed coefficient version in gray. We show

the posterior median as well as 68 percent equal-tail posterior bands.23 It is striking that

there are few short periods of high instrument relevance when allowing for time variation in

β.24 Three periods stand out, which we now discuss in turn. The first period is the first half

of the 1990s. It is useful to point out that the large posterior value of βt at the beginning

of the sample for the instrument is not driven by our prior, as our prior for the initial value

of βt is centered at zero. Instead, the first half of the 1990s was characterized by relatively

high inflation at the beginning, as well as a (mild) recession. Our model highlights the

period coming out of the 1990s recession, when annual CPI inflation was still high in 1991

(4.2 percent) as a period where the Federal Reserve was surprisingly accommodative (see

Figure 1).

The second period that our model highlights is in 2001, driven by two intermeeting rate

changes in January and April of 2001.25 The third period of high instrument relevance

23All posterior bands in this paper are 68 percent posterior bands.
24The posterior median reliability of our time-varying parameter specification is almost always larger

than its fixed coefficient counterpart because the estimated variance of the noise part is substantially larger
in the fixed coefficient version—in the fixed coefficient case part of the time variation is soaked up in the
noise term. This is also evident from the posterior of βt.

25The rate change around September 11th 2001 is not part of our instrument series as most financial
markets were closed until the rate change on September 17th 2001, making it impossible to compute the
changes in Fed Funds futures needed to construct the instrument.
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Figure 2: Posterior of βt and ρt (median and 68 percent posterior bands).

is the Great Recession around 2008. Thus, our framework helps us to understand what

information is contained in the instruments. We next examine whether this time variation

in instrument relevance matters for impulse responses.

Figure 3: Impulse responses (median and 68 percent posterior bands) to a monetary policy
shock, time variation in β.

Figure 3 shows the impulse to a monetary policy shock that raises interest rates by

25 basis points under the fixed coefficient (gray) and random walk (blue) specifications.26

26We maintain the normalization of a monetary shock to raise interest by 25 percent unless noted
otherwise.
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We plot the posterior median as well as the 68 percent error bands. For bond yields, IP,

and the EBP, the impulse responses are similar. For log CPI, the differences are instead

substantial. With fixed coefficients, we see a price puzzle appearing, whereas this is not the

case at all for the posterior median of the impulse responses when we allow for time variation

in instrument relevance. Furthermore, the response of log CPI is larger in magnitude—

after four years, the posterior median of the response is almost 50 percent larger when we

allow for time variation in instrument relevance. Our approach discounts periods where

the instrument is not informative and can hence lead to substantially different impulse

responses. As mentioned before, in our example this does not come at a cost in terms of

the width of the error bands.

We now contrast these results with the case of stochastic volatility in the noise term. Figure

4 shows that the same volatile periods that were previously identified as high βt periods are

now identified as periods with large noise volatility and basically zero reliability (ρt = 0).

In light of the correlation structure with VAR forecast errors that we analyzed above, it is

not surprising then that the resulting impulse responses, as displayed in Figure 5, show no

meaningful response in prices or Industrial Production with the posterior median response

for prices being positive for the first three years. In light of these findings, we will focus on

time variation in β for the rest of the paper.

Modeling changes in βt means that volatile periods of the instrument are interpreted as

informative events; with stochastic volatility in the noise term, they are be interpreted as

noise. In most of our applications, it turns out that the instruments are generally not very

informative (low ρt) except possibly for clearly delineated short periods of high instrument

volatility. Thus, using stochastic volatility in noise implies a prior that, in these specific

applications, puts very little faith in the instruments. This stands in contrast to standard

priors in the proxy VAR literature (Arias et al. 2021, Caldara & Herbst 2019) that imply

that the instruments are indeed useful/reliable. Our preferred assumption of time-varying
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Figure 4: Posterior of σv,t and ρt (median and 68 percent posterior bands).

Figure 5: Impulse responses (median and 68 percent posterior bands) to a monetary policy
shock, time variation in σv.

parameters instead of time variation in the volatility of the noise term σv can thus also be

seen as a context-specific prior choice that implies at least some instrument reliability, in

line with the previous literature.
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4.2 A Markov-Switching Alternative

Recalling Figure 2, one possible criticism that could be raised is that the estimated path for

βt might be better characterized by a Markov-switching model (Hamilton 1989, Sims & Zha

2006). We think of the random walk as our benchmark exactly because it is flexible enough

to approximate many patterns of time variation, including sudden changes as observed in

Figure 2. Nevertheless, we next estimate a two-state Markov-switching specification and

show that it yields very similar results. The only difference between the Markov-switching

specification and the random walk benchmark is the law of motion for βt as detailed in

equations (9) and (12), respectively.

Markov Switching in Equation (2): βt = βst , P r(st = i|st−1 = j) = pij. (12)

Figure 6 shows the impulse response of log CPI to a 25 basis point monetary policy shock

in the two-state Markov-switching model for βt. We focus here on the response of CPI

because that is where the major differences between fixed coefficient and time-varying

parameter results occurred in the previous section. This impulse response is very similar

to the random walk specification.

Figure 7 illustrates instrument relevance for our benchmark random walk specification

in blue and the two-state Markov-switching model in red. We can see that both specifi-

cations identify largely the same periods of high instrument relevance. The random walk

specification is somewhat conservative in that it has fewer spikes, but this does not lead

to any meaningful difference in impulse responses, as discussed above. The choice of a

specific law of motion for β ultimately comes down to the application in mind as well as

preferences. We recommend the random walk as the default choice because of its flexibility.
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Figure 6: Impulse response of log CPI for Markov-switching specification (median and 68
percent posterior bands).

4.3 Shutting Down Periods Where the Instrument Is Informa-

tive/Uninformative

To get a better sense of the role that periods with high instrument relevance play in shaping

the posterior distribution of the impulse responses, we now carry out two diametrically

opposite thought experiments. First, we compute the posterior probability that βt = 0 for

each time period t, using the approach in Koop et al. (2010)27 and our original instrument

mt. We then create two instruments, m̃t and mt, from our instrument according to the

following two rules:

1. m̃t = mt if Pr(βt = 0) < 0.5, m̃t = 0 else

2. mt = mt if Pr(βt = 0) ≥ 0.5, mt = 0 else

m̃t only keeps the original realizations of the instrument that our model deems informa-

tive, whereas mt only keeps relatively uninformative realizations, thus exacerbating weak

identification problems. The threshold probability of 0.5 only selects the early 1990s and

27The approach in Koop et al. (2010)computes Bayesian model probabilities of both the unrestricted
model and the restricted model with βt = 0.
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Figure 7: Posterior reliability for Markov-switching and random walk specifications (pos-
terior median).

2001 as informative periods.

Figure 8 shows the results when we use m̃t as our instrument. For comparison, the fixed

coefficient VAR in this figure uses our original instrument mt. We see that our approach

still estimates the same periods to have high instrument relevance.28 The impulse responses

(we highlight CPI in this figure but show all responses in the Appendix) are very similar

to those in our original setting, making clear that it is indeed only those high instrument

relevance periods that inform the impulse responses. Naturally, this result depends on the

specific application. Had the instrument relevance been reasonably high outside of the

spikes in the instrument relevance we document, the procedure in this section would have

led to a meaningful loss of information.

Figure 9 shows the corresponding results when we only keep the original instrument if

its relevance is low. Zero is now included in the 68 percent posterior bands for all horizons.

Posterior instrument relevance is low for all periods, implying that identification is weak

throughout the sample. This is true even though we keep 90 percent of the observations

from the original sample because there is little information contained in those observations.

28To economize on notation, we also call this parameter βt, but it is a different object from βt when we
use the instrument mt.
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Figure 8: Results for m̃t (median and 68 percent posterior bands). The fixed coefficient
VAR is based on the original mt instrument.

In the Appendix (Figures A-16 and A-17), we show impulse responses obtained with a

fixed coefficient VAR and these modified instruments—the resulting impulse responses are

basically indistinguishable from the responses obtained with a fixed coefficient VAR and our

original instrument. In order to effectively exploit the instrument when it is informative,

we need to allow for time variation so that the instrument is not used for identification

when it is not informative.

Figure 9: Results for mt (median and 68 percent posterior bands). The fixed coefficient
VAR is based on the original mt instrument.
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4.4 Alternative Instruments

Our various observation equations that link mt and the unobserved monetary shock all im-

ply that mt is iid, borrowing from Caldara & Herbst (2019). Other papers in the literature

(Arias et al. 2021, Plagborg-Møller & Wolf 2021) have posited more flexible relationships

where the instrument can be contaminated by past macro variables and/or lags of the in-

strument. To assess whether this is an issue in our application, we progress in two steps.

First, we regress our instrument on two lags of itself and the variables yt in the VAR. The

key results are summarized in Figure 10 and are very similar to our benchmark. The only

difference is that the spike in ρt and βt surrounding the Great Recession is less pronounced.

The impulse response of CPI is basically unchanged (other impulse responses can be found

in Appendix G, including estimates of the reliability and βt when we use a more general

measurement equation and directly include lags of the VAR variables in the measurement

equation - results are basically unchanged there as well).

Figure 10: Results for the case of the modified instrument (median and 68 percent posterior
bands).

In Appendix G, we also show results from our approach when using the instruments by

Miranda-Agrippino & Ricco (2020), Bauer & Swanson (2022).
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5 Conclusion

In this paper, we study how instrument relevance changes over time in a common appli-

cation of instrument-based identification in structural VARs. We find substantial time

variation in instrument relevance, thus allowing us to isolate periods where instruments

are informative, which helps to build a narrative for a given instrument. Furthermore,

our approach can substantially alter conclusions by discounting periods where the instru-

ment is not informative, as in the case of the Gertler & Karadi (2015) instrument. As a

practical recommendation, we show in our application that removing periods that are not

informative will generally not help, unless a researcher is willing to model time variation

in instrument relevance.

Although we focus on monetary policy shocks in our application, the estimation ap-

proach we develop is general and can be used for any application of external instruments in

VARs, such as the effects of government spending shocks, tax shocks, or financial shocks.
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A Algorithms and Priors

A.1 Time Varying Parameter

The first three steps of the algorithm follows exactly Algorithm 1 of Caldara & Herbst

(2019), whose notation we largely borrow. The law of motion of βt is given by

βt = βt−1 + wt, wt
iid∼ N

(
0, σ2

w

)
.
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In addition, we assume following priors:

p
(
σ2
w

)
∼ IG(τ/2, τq/2).

p(β0) ∼ N(b0, V0).

The scale parameter q of the IG prior is crucial for controlling the time variation. We follow

the procedure outlined in Amir-Ahmadi et al. (2020) to estimate this parameter.

Our VAR can be stated in companion form as

Yt = ΦXt +Ut (A-1)

where Yt stack current and lagged values of our vector of observables yt, Xt contains lags

of Yt as well as a vector of ones to capture the intercept, and Ut ∼iid N(0, B̌).

Algorithm 1. For i = 1, . . . , N . At iteration i

1. Draw B̌,Φ | Y1:T ,M1:T ,Ω
i−1, βi−1

1:T , σ
i−1
v , σi−1

w , qi−1. For B̌ we use a mixture proposal

distribution (suppressing dependence on parameters for notational convenience):

q
(
B̌ | B̌i−1

)
= γp

(
B̌ | Y1:T

)
+ (1− γ)IW

(
B̌; B̌i−1, d

)

where p
(
B̌ | Y1:T

)
is the known posterior distribution of B̌ underY1:T and IW

(
·; B̌i−1, d

)
is an Inverse Wishart distribution with scaling matrix B̌i−1 and d degrees of freedom.

For Φ we use the known distribution p
(
Φ | Y1:T , B̌

)
as a proposal in an independence

MH step:

• Draw B̌∗ according to q
(
B̌ | B̌i−1

)
.

• Draw Φ∗ according to p
(
Φ | Y1:T , B̌

∗).
• With probability α, set Φi = Φ∗ and B̌i = B̌∗, otherwise set Φi = Φi−1 and
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B̌i = B̌i−1, defined as

α = min

{
p
(
M1:T ,Y1:T ,Φ

∗, B̌∗,Ωi−1, βi−1, σi−1
ν

)
p
(
B̌∗)

p
(
M1:T ,Y1:T ,Φi−1, B̌i−1,Ωi−1, βi−1, σi−1

ν

)
p
(
B̌i−1

) q (B̌i−1 | B̌∗)
q
(
B̌∗ | B̌i−1

) , 1}

2. Draw Ω | Y1:T ,Mt, B̌,Φ,Ωi−1, βi−1
1:T , σ

i−1
v , σi−1

w , qi−1. Use an Independence Metropolis-

Hastings sampler step using the Haar measure on the space of orthogonal matrices:

• Draw Ω∗ using Theorem 9 in Rubio-Ramı́rez et al. (2010).

• With probability α, set Ωi = Ω∗, otherwise Ωi = Ωi−1 is defined as

α = min

{
p
(
M1:T | Y1:T ,Φ

i, B̌i,Ω∗, βi−1, σi−1
ν

)
p
(
M1:T | Y1:T ,Φi, B̌i,Ωi−1, βi−1, σi−1

ν

) , 1}

3. Draw σ2
v | Y1:T ,M1:T , B̌,Φ,Ωi−1, βi−1

1:T , σ
i−1
v , σi−1

w , qi−1. Sample σ2
v from IG (s̄1/2, s̄2/2),

the known conditional posterior distribution associated with σ2
v .

4. Draw β1:T | Y1:T ,M1:T , B̌,Φ,Ωi−1, βi−1
1:T , σ

i−1
v , σi−1

w , qi−1. Conditional on all other pa-

rameters, the law of motion forms a linear Gaussian state space system. This step

can be carried out using the simulation smoother detailed in Carter & Kohn (1994)

or Primiceri (2005).

5. Draw σ2
w | Y1:T ,M1:T , B̌,Φ,Ωi−1, βi−1

1:T , σ
i−1
v , σi−1

w , qi−1. Sample σ2
w from IG (w̄1/2, w̄2/2),

the known conditional posterior distribution associated with σ2
w.

6. Draw q | Y1:T ,M1:T , B̌,Φ,Ωi−1, βi−1
1:T , σ

i−1
v , σi−1

w , qi−1. The scale parameter is sampled

with a MH step outlined in Amir-Ahmadi et al. (2020).
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A.2 Markov switching

In the case of Markov switching in βt, we assume that βt follows a two state Markov process

with

βt = βst

Pr(st = i|st−1 = j) = pij

i, j ∈ {1, 2}.

We assume the following priors

p(βst=1) ∼ N(b1, V1).

p(βst=2) ∼ N(b2, V2).

p11 ∼ beta (a11, b11) .

p22 ∼ beta (a22, b22) .

Algorithm 2. For i = 1, . . . , N . At iteration i. The first 3 steps of the algorithm are

the same as Algorithm 1.

4. Draw β1:T | Y1:T ,M1:T , B̌,Φ,Ωi−1, βi−1
1:T , σ

i−1
v , pi−1

11 , pi−1
22 , si−1

1:T . Sample βt fromN(b̄1, V̄1)

if si−1 = 1 and from N(b̄2, V̄2) if s
i−1 = 2. Both are known conditional normal distri-

butions.

5. Draw p11, p22 | Y1:T ,M1:T , B̌,Φ,Ωi−1, βi−1
1:T , σ

i−1
v , pi−1

11 , pi−1
22 , si−1

1:T . Sample p11 from beta(ā11, b̄11)

and p22 from beta(ā22, b̄22). Both are known conditional beta distributions (see

Frühwirth-Schnatter (2006), page 330).

6. Draw s1:T | Y1:T ,M1:T , B̌,Φ,Ωi−1, βi−1
1:T , σ

i−1
v , pi−1

11 , pi−1
22 , si−1

1:T . Sample s1:T using the

Multi-Move sampler outlined in Frühwirth-Schnatter (2006), algorithm 11.5.
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A.3 Stochastic Volatility

We assume that the variance of the measurement error innovation follows a random walk

log
(
σ2
v,t

)
= log

(
σ2
v,t−1

)
+ wt, wt

iid∼ N
(
0, σ2

u

)
.

In addition, we assume the following priors:

p
(
σ2
u

)
∼ IG(τ/2, τr/2).

p(log(σ2
v,0)) ∼ N(v0,W0).

Similar to the case of time varying β, the scale parameter r of the IG prior is crucial for

controlling the stochastic volatility. We follow the procedure outlined in Amir-Ahmadi

et al. (2020) to estimate this parameter.

In practice, we use the same Gibbs steps to draw β1:T but set q the hyperparameter

controlling the time variation to a very small number, i.e. 10−4. The step 3 of algorithm 1

is then replaced by

3a Draw σ2
v,1:T | Y1:T ,M1:T , B̌,Φ,Ωi−1, βi−1

1:T , σ
i−1
v,1:T , σ

i−1
w , qi−1, σi−1

u , ri−1. The sampler draw-

ing log
(
σ2
v,t

)
is based on Kim et al. (1998) who approximate the distribution of

log
(
σ2
v,t

)
by mixtures of normal distributions.

3b Draw σu | Y1:T ,M1:T , B̌,Φ,Ωi−1, βi−1
1:T , σ

i−1
v,1:T , σ

i−1
w , qi−1, σi−1

u , ri−1. Sample σi−1
u from

IG (ū1/2, ū2/2), the known conditional posterior distribution associated with σ2
u.

3c Draw r | Y1:T ,M1:T , B̌,Φ,Ωi−1, βi−1
1:T , σ

i−1
v , σi−1

w , qi−1, σi−1
u , ri−1. The scale parameter

is sampled with a MH step outlined in Amir-Ahmadi et al. (2020).
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A.4 More on Priors

We use a benchmark Minnesota prior setting for the VAR with a very loose overall tightness

parameter equal to 10.1 The diagonal elements of the location matrix of the inverse Wishart

prior are fixed to OLS estimates of an AR(1) model based on 12 observations of pre-sample

data. We use a fairly uninformative prior for the residual variance σ2
v ∼ IG(s1/2, (s1s

2
2/2).

For the estimation of the parameter q, we adopt the half-Cauchy prior with scale parameter

θ. The prior hyperparameters are summarized in the following table:

Table A-1: TVP Benchmark Prior Hyperparameters

s1 s2 b0 V0 τ θ
2 0.2 0 1 2 0.01

In case of Markov Switching, the Minnesota prior specification remains the same, the

other prior hyperparameters are summarized in the following table:

Table A-2: Markov Switching Benchmark Prior Hyperparameters

s1 s2 b1 V1 b2 V2 a11 b11 a22 b22
2 0.2 0 1 0 1 6 1 6 1

In case of stochastic volatility in the measurement error, we use a very similar prior

setting as in the case of time varying parameter. In particular, we also estimate the

hyperparameter r which controls the degree of stochastic volatility base on Amir-Ahmadi

et al. (2020). We assume again a half-Cauchy prior with scale parameter θ. As mentioned

in the description of the sampler, we set q the hyperparameter controlling the time variation

to 10−4. The other prior hyperparameters are summarized in the following table:

Table A-3: Stochastic Volatility Prior Hyperparameters

v0 W0 b0 V0 τ θ
log (0.22) 1 0 1 2 0.01

1For the exact definition of this parameter see Giannone et al. (2015).
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All posterior results except for the Monte Carlo experiments are based on 500, 000 draws

from the MCMC sampler.

B What Happens When Our Model Is Misspecified?

We next turn to discussing possible sources and consequences of misspecification: What

happens if the true data-generating process features changes in volatility in either the noise

term vt or the monetary policy shock, but we estimate a model with time variation in β?

We first present some general deliberations for the case of stochastic volatility in monetary

policy shocks before studying these issues in further detail using Monte Carlo experiments.

One possible source of confusion in the discussion of stochastic volatility in structural

shocks is that we can always rewrite the measurement equation linking the instrument

and the monetary policy shock as featuring time-varying parameters when the true data-

generating process features changes in the volatility of monetary policy shocks. This does

not mean that the two specifications are equivalent - a homoskedastic VAR specification

will be misspecified when the monetary policy shock features stochastic volatility. This

leads to different implications for estimated parameter paths of βt, allowing us to argue

that stochastic volatility in monetary policy shocks is not what drives our results. To see

this, assume that the true data generating process for the instrument is

mt = βeMP
t + σvvt (A-2)

where the true monetary policy shock eMP
t features changes in volatility σMP

t and β is a

fixed parameter. We now derive an equivalent representation of the instrument equation

that features changes in βt:

mt = βtet + σvvt (A-3)
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where et is the standardized monetary policy shock that has fixed variance 1 (as in our

empirical model assumes). βt in this case equals βσMP
t .2 With knowledge of all parameters

in the stochastic volatility case (including the entire time path of shock volatility) we can,

thus, derive this equivalent representation of the measurement equation. When there are

volatility changes in the data-generating process, we now show that our approach will not

recover the unit variance shock et. Therefore, our approach will not recover the implied

βt = βσMP
t . The estimated path of βt will, instead, be more muted.

To see this, we can rewrite the VAR equation (1) in slightly more compact notation as

yt = Axt−1 +Bet (A-4)

where xt−1 collects the relevant lags of yt as well as the constant term. Let us assume that

the true data-generating process also takes this VAR form with parameter matrices A∗ and

B∗, but with one element of the true structural shocks e∗t (namely the true monetary policy

shock eMP
t ) having nonconstant variance σMP

t . We now study how this affects our estimates

of the structural shocks when the estimated model does not feature changes in volatility.

Suppose that we have parameter values Ã and B̃ (we can think about a draw from the

posterior or a point estimate). Then the implied estimate of the vector of structural shocks

ẽt is

ẽt = B̃−1([A∗ − Ã]xt−1 +B∗e∗t ) (A-5)

It is known that misspecification of the distribution of the structural shocks in linear VARs

does not asymptotically bias the estimates of the dynamics of the VAR (Petrova 2022),

so asymptotically under standard conditions all elements of A∗ − Ã will be zero except

possibly for those related to the constant term. In large samples, variation in ẽt is, thus,

2As a side note, in order to get a value of βt near 0 in this specification (as in our estimated results for
US data) we would need the volatility βσMP

t to go to zero.
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driven by variation in the true shocks e∗t , and the estimated shocks ẽt will inherit stochastic

volatility from the true shocks e∗t .

Let us now consider an, admittedly, unlikely special case, namely B∗ − B̃ = 0. In that

case, we recover the true structural shocks with stochastic volatility and as a result in large

enough samples our estimates of βt will converge to a neighborhood of β because we have

the true structural shock as a right hand-side variable in the step of the Gibbs Sampler

that estimates the path of βt (this is the aforementioned muted response relative to the

implied value of βt that we derived at the beginning of the section). Why? Asymptotically,

we recover the true time-invariant β because we are running a regression of mt on the

true shocks, which, as we just discussed, we can recover in this special case. Therefore,

stochastic volatility in the true structural shock of interest has different implications for

parameter estimates in our model compared to a data-generating process with changes in

βt that do not come from stochastic volatility, even if these assumptions seem similar at

first sight.

Importantly, with estimation error or bias in B̃ and, due to the sample size, possibly

estimation error in Ã, this argument will not hold exactly, but, as we show in our Monte

Carlo study below, holds approximately for a realistic data-generating process and sample

size.3

We also show by means of these Monte Carlo experiments that our approach performs as

well as the standard fixed coefficient approach when it is misspecified and there is either

stochastic volatility in the measurement equation that is unrelated to monetary policy or

there is stochastic volatility in the monetary policy shock. However, those specifications

for the data-generating process lead to estimated paths of βt that are inconsistent with our

findings based on US data, thus providing evidence for our modeling assumptions. While we

3As far as there is meaningful time variation in the posterior of βt in this scenario, our estimation
will put more weight on periods with high estimated βt to infer the effects of monetary policy shocks —
periods that in this scenario are actually periods with high volatility of the monetary policy shock—, while
discounting periods with low estimated βt — periods with low volatility of the monetary policy shock.
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could, in theory, use marginal likelihoods to compare those different model specifications,

we instead choose to use Monte Carlo-based evidence because marginal likelihoods can be

substantially influenced by tail behavior of priors even if that tail behavior is inconsequential

for most objects of interests, such as posterior error bands for impulse responses. This

dependence on priors becomes particularly pronounced when priors are relatively loose,

prompting us to instead focus on Monte Carlo experiments.

B.1 Monte Carlo Studies

We follow Wolf (2020) and use the Smets & Wouters (2007) model as a laboratory.4 We

use three observables in our VAR: Output, inflation, and nominal interest rates. Since the

Smets-Wouters model is a quarterly model, we set the lag length in our VAR to four. We

simulate the instrument using equation (2) for various specifications of βt, the volatility of

the monetary shock, and the volatility of the measurement error σv.
5

The first Monte Carlo experiment uses time variation in βt that broadly matches the

number of informative periods from our empirical estimates. We choose an extreme scenario

where βt can only take on the values zero and one. The path of βt in the data-generating

process is fixed across all Monte Carlo samples for this first experiment.

We simulate 100 samples of length 250 using the posterior mode as in Wolf (2020). For

approximately 10 percent of those periods,6 we set βt = 1 in the data-generating process;

otherwise it is zero (hence the instrument is just noise). Figure A-1 shows the true impulse

response to a one standard deviation monetary shock in black, as well as the Monte Carlo

average of the 68 percent posterior bands for our approach and the fixed coefficient version.

4We use a standard sample size in our simulations, whereas Wolf (2020) studies population properties,
and we introduce measurement error in our instrument, which we calibrate to have 25 percent of the
variance of the actual monetary shock in our first experiment. Details on the exact calibration of the
data-generating processes can be found in Appendix C.

5One difference between the equation used to simulate the instrument and equation (2) in our estimated
model is that the simulated monetary policy shock does not have unit variance, a point we come back to
below.

6From periods 1 to 4, 141 to 149, and 231 to 250.
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Our results confirm those of the population analysis in Wolf (2020):The true responses are

well approximated by our VAR. The fixed coefficient version generally has wider error

bands, which leads the average posterior bands for output to include 0 for all horizons and

a more pronounced probability of a price puzzle for inflation.

Figure A-1: Impulse responses for the data-generating process with time-varying βt and
the Monte Carlo replications, first Monte Carlo experiment.

Figure A-2a shows the estimated posterior median of instrument reliability in blue

and the true reliability path in black (periods with high values of β, and hence higher

instrument volatility, are denoted by gray bars). Our approach captures the changes in

instrument reliability well.

It is instructive to directly study the posterior median paths of βt. As we discuss in

more detail in Appendix C, we must rescale the true βt values described there by the

standard deviation of the monetary shock to make them comparable to our estimation

results since our estimated model assumes monetary policy shocks with unit variance,

whereas the monetary shock in the Smets-Wouters model has non-unit variance.7 In this

Monte Carlo exercise, the properly rescaled true βt values (which can be directly compared

to the estimated values) are 0 and 0.23 (the original values multiplying the monetary policy

7All scale effects in our estimated model are captured by B.
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shock with non-unit variance were 0 and 1).
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(b) Posterior medians of βt.

Figure A-2: Reliability and posterior paths of βt, first Monte Carlo experiment.

The posterior paths shown in Figure A-2b closely resemble the true paths and, more

importantly, the patterns we find in US data: Close to 0 for most periods, with distinct

increases when the true value is non-zero.

Next, we study two more Monte Carlo experiments in which our specification of the

measurement equation for the instrument is more severely misspecified. Here, we focus on

the posterior impulse responses and the posterior median paths for βt. First, we simulate

the data so that there is stochastic volatility in the measurement error vt. We choose

parameter values to keep the overall volatility of the instrument at each point in time

to be the same as in the benchmark case discussed immediately above (see Appendix C

for details). Figure A-3 shows that our approach performs as well as the fixed coefficient

version that is standard in the literature, even though both are misspecified in different

ways. It is not surprising that both specifications do reasonably well in this specification

since βt is always non-zero in the data-generating process, so the instrument conveys some

information about the true monetary policy shock each period, in contrast to the previous

experiment.
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Figure A-3: Impulse responses for the data-generating process and the Monte Carlo repli-
cations: Stochastic volatility in measurement error.

Turning to the posterior paths of βt, the properly rescaled true β value in this experiment

(which can be directly compared to the estimated values) is 0.5∗0.23 ≈ 0.12. The posterior

paths plotted in Figure A-4 are remarkably stable and generally do not hover around zero,

but instead are close to the true value of 0.12, a stark contrast to the posterior paths

obtained using US data.

Finally, we ask how our approach performs when confronted with data where there is

stochastic volatility in the true monetary policy shock.8 We again keep the paths of the

instrument’s volatility the same as in our benchmark specification. Figure A-5 shows that

our approach again performs as well as the fixed coefficient version.9

We find estimated paths for βt that do not change much over time and do not decrease

toward zero, in contrast to those obtained using US data or in the first experiment (see

Figure A-6), but in line with our previous discussion. Due to the relative stability, it is then

also not surprising that our approach does as well as the fixed coefficient approach in this

8We solve the model linearly and then change the volatility of the monetary policy shock in some
periods, along the lines of Justiniano & Primiceri (2008).

9Since the volatility of the monetary policy shock changes over time in the data-generating process, we
scale the impulse response for the data-generating process so that the variance of the monetary shock is
the simple average of the two possible realizations of the variance we consider, while the estimated impulse
responses are still one-standard deviation shocks according to the estimated standard deviation.
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Figure A-4: Estimated paths of βt in the Monte Carlo runs (posterior medians) when the
data-generating process features time variation in the volatility of vt.

case. Comparing across experiments, the reason that both algorithms have a harder time

identifying significant effects in this experiment is due to our calibration, implying that the

monetary policy shock is less volatile in most periods compared to the second experiment.

This final Monte Carlo experiment involves one subtlety that we alluded to previously and

was not present in the earlier experiments: Having knowledge of the true data-generating

process, we could rescale the true βt value (which is constant) by taking into account the

changing volatility of the true monetary shock to give βt values of 0.12 and 0.26 that

multiply rescaled versions of monetary policy shock that have unit variance throughout the

sample. As we have shown above, such a transformation is always possible in models with

stochastic volatility. However, this does not mean that this last experiment is similar to

the first experiment: In the first experiment, the VAR in equation (1) is correctly specified,

whereas in the latter experiment the VAR is misspecified because it assumes constant

volatility of the shocks. As discussed before, our estimated monetary policy shock (which

in a correctly specified world would have unit variance) inherits changes in volatility via
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Figure A-5: Impulse responses for the data-generating process and the Monte Carlo repli-
cations: Stochastic volatility in the monetary policy shock.

the VAR that is estimated to have fixed coefficients and fixed forecast error variance.10

Hence the estimated movements in βt are more muted than what we would get if the true

unit variance (i.e., rescaled) monetary policy shock from the data-generating process were

observable and we would directly estimate the measurement equation for the instrument.

Nonetheless, the average level is broadly in line with the rescaled values discussed above.

In summary, only the first Monte Carlo experiment can qualitatively capture the patterns

of the posterior βt paths that we obtained in our empirical applications. We view this as

substantial evidence in favor of our modeling assumptions.

C Details on Monte Carlo Exercises

All of our Monte Carlo setups consist of two regimes. Our goal is to match the variance of

the instrument for a given regime across specifications. We assume that in the benchmark

the monetary policy shocks are N(0, σ2
e) and β = 1 in one regime and equal 0 in the other.

10To convince readers that the issue of rescaling the monetary policy shock has no impact on our results,
we show in Appendix C.3.1 that the estimated impulse responses remain unchanged in a hypothetical
scenario where the instrument is directly linked to the period-by-period rescaled (and thus unit variance)
monetary policy shock.
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Figure A-6: Estimated paths of βt in the Monte Carlo runs (posterior medians) when the
data-generating process features time variation in the volatility of the monetary policy
shock.

Furthermore, we will assume that in the benchmark the variance of the measurement error

vt is a fixed fraction κ of the variance of the monetary policy shock.11 Note that in contrast

to our estimated model (where eMP
t is assumed to have unit variance and all scaling is

captured in the impact matrix B), the true monetary policy shock does not have unit

variance. This affects the scale of the estimated βt coefficients and needs to be taken

into account when comparing to the true values stated here (we give more details when

discussing the estimated paths of βt).

In our Monte Carlo exercise, we simulate 100 samples of length T = 250 each. The

variables we use in Monte Carlo exercise are the nominal interest rate, output, inflation, and

the monetary policy shock from an estimated Smets-Wouters model. The VAR contains

simulated nominal interest rate, output and inflation and the lag length is set to 4. In each

of the Monte Carlo repetitions (in total 100), posterior results are based on 50,000 MCMC

11Compared to the main text, we use non-unit variance shocks in the data-generating process, whereas
the shocks entering the estimated model in the main text (monetary shock eMP

t and measurement error
uM
t ) are unit variance shocks.
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draws. The prior specification is exactly the same as in the empirical estimation.

C.1 Benchmark

The measurement equation and the variance in the two regimes are:

mt = et + vt, V ar(mt) = (1 + κ)σ2
e (A-6)

mt = vt, V ar(mt) = κσ2
e (A-7)

We set σ2
e = 0.22902 equal to the DGP value and κ = 0.25. For T = 5, ..., 140 and

T = 150, ..., 230, β = 0. Otherwise, β = 1. These values are chosen to be comparable to

the Gertler-Karadi instrument.

C.2 Changing Volatility in the measurement error

We now assume that the measurement error vt has a variance that switches between regimes

with values σ2
v,1 and σ2

v,2. The measurement equations are given by:

mt = βet + vt, V ar(mt) = β
2
σ2
e + σ2

v,1 (A-8)

mt = βet + vt, V ar(mt) = β
2
σ2
e + σ2

v,2 (A-9)

We now need to solve the following two equations:

β
2
σ2
e + σ2

v,1 = (1 + κ)σ2
e (A-10)

β
2
σ2
e + σv,2 = κσ2

e (A-11)

We actually have three unknowns and two equations here. Since all variances have to be

positive, we have additional constraints though. We set β =
√
κ and σ2

v,2 = 0. This implies
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σ2
v,1 = σ2

e .

We set σ2
e = 0.22902 (equal to the DGP value) and κ = 0.25. For T = 5, ..., 140 and

T = 150, ..., 230, σ2
v,2 = 0. Otherwise, σ2

v,1 = σ2
e .

C.3 Changing Volatility in et

We now assume that the variance in the monetary policy shocks changes, with variances

σ2
e,1 and σ2

e,2. We also allow the measurement error variance σ̃2
v and the coefficient β̃ to

be different than in the other specifications (they are fixed across regimes though). The

equations in this MC are given by

mt = β̃et + vt, V ar(mt) = β̃2σ2
e,1 + σ̃2

v (A-12)

mt = β̃et + vt, V ar(mt) = β̃2σ2
e,2 + σ̃2

v (A-13)

The equations we need to solve are:

β̃2σ2
e,1 + σ̃2

v = (1 + κ)σ2
e (A-14)

β̃2σ2
e,2 + σ̃2

v = κσ2
e (A-15)

We impose β̃ = 1 and σ̃2
v = 0, which implies σ2

e,2 = κσ2
e and σ2

e,2 = (1 + κ)σ2
e .

We set σ2
e = 0.22902 and κ = 0.25. For T = 5, ..., 140 and T = 150, ..., 230, σ2

e,2 = κσ2
e .

Otherwise, σ2
e,2 = (1 + κ)σ2

e .
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C.3.1 Alternative Measurement Equation

Since the previous exercise is somewhat cumbersome to interpret, we also carried out an

alternative where the data-generating process for all variables except the instrument is the

same as before. For the instrument, we now assume that

mt = et + vt, (A-16)

where et is the normalized monetary policy shock that has unit variance each period. We

set vt ∼ N(0, 0.25). This exercise has the disadvantage that the path of the instrument’s

volatility is not the same as in the previous exercise. The advantage is that the instrument

equation is independent of changes in the monetary policy shock’s volatility. Furthermore,

this exercise is certainly not as realistic as the others because the instrument is linked to

the normalized true shock. Figure A-7 plots the impulse responses under this alternative

specification - results are basically indistinguishable from the original exercise in the main

text, as can be seen when comparing Figure A-7 with Figure A-5. The posterior median

paths of βt are now flat (Figure A-8).

Figure A-7: Impulse responses for the data-generating process and the Monte Carlo repli-
cations: Stochastic volatility in the monetary policy shock, alternative instrument.

A-20



50 100 150 200

Periods

0.5

0.6

0.7

0.8

0.9

1

1.1

t

Figure A-8: Estimated paths of βt in the Monte Carlo runs (posterior medians) when the
data-generating process features time variation in the volatility of the monetary policy
shock, alternative instrument.

D Data Sources

For the US economy, we follow Gertler & Karadi (2015) and obtained industrial pro-

duction (INDPRO), consumer price index (CPIAUCSL) and 1-year treasury rate (GS1)

from FRED (https://fred.stlouisfed.org/). The data for the excess bond premium

is obtained from Board of Governors (https://www.federalreserve.gov/econresdata/

notes/feds-notes/2016/files/ebp_csv.csv). The instrument of Gertler & Karadi (2015)

is obtained from the replication file of the paper (https://www.openicpsr.org/openicpsr/

project/114082/version/V1/view). The instrument of Miranda-Agrippino & Ricco (2022)

is obtained from the personal website of Silvia Miranda-Agrippino (http://silviamirandaagrippino.

com/s/Instruments_web-x8wr.xlsx). For the UK economy, we use the replication data

and instrument of Cesa-Bianchi et al. (2020) from https://github.com/ambropo/MP_

HighFrequencyUK/.

A-21

https://fred.stlouisfed.org/
https://www.federalreserve.gov/econresdata/notes/feds-notes/2016/files/ebp_csv.csv
https://www.federalreserve.gov/econresdata/notes/feds-notes/2016/files/ebp_csv.csv
https://www.openicpsr.org/openicpsr/project/114082/version/V1/view
https://www.openicpsr.org/openicpsr/project/114082/version/V1/view
http://silviamirandaagrippino.com/s/Instruments_web-x8wr.xlsx
http://silviamirandaagrippino.com/s/Instruments_web-x8wr.xlsx
https://github.com/ambropo/MP_HighFrequencyUK/
https://github.com/ambropo/MP_HighFrequencyUK/


E Stochastic Volatility in the Monetary Policy Shock

To highlight that our specification delivers meaningfully different results from a specification

with stochastic volatility in the monetary policy shock, we now estimate a structural VAR

with stochastic volatility in the structural shocks. The stochastic volatility follows an

independent log random walk specification for each shock. We include our instrument

in our VAR as the first variable and use a recursive identification scheme along the lines

of Plagborg-Møller & Wolf (2021). The stochastic volatility specification we use here is

silent on where stochastic volatility comes from - measurement error or the true monetary

shock. We choose to interpret the results as if there is no measurement error and we

directly observe the monetary shock. In that sense, these results impose restrictions that

are diametrically opposite to our benchmark specification.

Priors are comparable to our benchmark specification. The model we estimate is

zt =

 mt

yt

 = c+A(L)zt−1 +But

whereB is lower triangular and ut ∼ N(0,Ωt) with Ωt being diagonal. Since our instrument

is only available from 1990m1 to 2012m6, we also re-estimate our benchmark model using

this exact sample. Figure A-9 shows that the assumption of stochastic volatility of the

monetary policy shock delivers a much more muted response of the price level compared

to our benchmark.
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Figure A-9: Impulse responses (median and 68 percent posterior bands) to a 25 basis point
monetary policy shock - stochastic volatility ion monetary policy shock vs time-variation
in βt.

F Varying the Amount of Information in the Sample

In this section, we carry out various Monte Carlo exercises to assess what happens when

only a relatively small fraction of the sample comes with an informative instrument. The

DGP is a bi-variate VAR(1) with coefficient matrix A = [0.95 0; 0 0.9] and impact matrix

B = [1 − 0.5; 0.8 1]. The structural shocks are iid N(0,1). The instrument is set to the

true structural shock (we only consider the first shock) in the last 1, 10, or 50 percent of

the sample. Otherwise, the instrument is drawn iid from a N(0,1) distribution. Each MC

exercise is repeated 500 times. We consider sample sizes of T ∈ {200, 500, 1000} and report

the RMSE of the impulse responses at different horizons h ∈ {1, 6, 12, 24}. The relative

RMSE is calculated as the benchmark model RMSE divided by the RMSE of the fixed

coefficient model based on the posterior medians of the estimated impulse responses. As we

can see, except with only one percent of observations featuring an informative instrument,

our approach clearly outperforms the fixed coefficient alternative.12

12We obtain qualitatively the same results if we use a model where βt evolves according to a two-state
Markov chain.
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Table A-4: Relative root mean squared error for first variable.

T=200 T=500 T=1000
1% 10% 50% 1% 10% 50% 1% 10% 50%

h = 1 1.0081 0.7124 0.7141 1.0880 0.2978 0.6595 0.9585 0.1340 0.6365
h = 6 1.0114 0.8778 0.9417 1.1000 0.5649 0.8743 0.9701 0.3720 0.8541
h = 12 1.0060 0.9547 0.9455 1.0915 0.7626 0.9119 0.9827 0.5804 0.8869
h = 24 1.0007 0.9992 0.9550 1.0574 0.8819 0.9319 0.9991 0.7695 0.8990

Table A-5: Relative root mean squared error for second variable.

T=200 T=500 T=1000
1% 10% 50% 1% 10% 50% 1% 10% 50%

h = 1 1.0318 0.7081 0.6034 0.9834 0.2086 0.6497 0.9530 0.2266 0.5426
h = 6 1.0086 0.7151 0.8343 0.9872 0.3320 0.9180 0.9553 0.4064 0.7884
h = 12 0.9981 0.7856 0.9217 0.9937 0.5301 0.9547 0.9582 0.6365 0.8914
h = 24 1.0017 0.9239 0.9973 1.0107 0.8421 0.9603 0.9688 0.9130 0.9447

G Additional Figures

Here we show the full set of impulse responses for various specifications in the main text.

G.1 Markov Switching

Figure A-10: Impulse responses (median and 68 percent posterior bands) to a one standard
deviation monetary policy shock - Markov-switching specification.
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G.2 Shutting Down Periods Where the Instrument is Informa-

tive/Not Informative

Figure A-11: Impulse responses (median and 68 percent posterior bands) to a one standard
deviation monetary policy shock - m̃t.

Figure A-12: Impulse responses (median and 68 percent posterior bands) to a one standard
deviation monetary policy shock - mt.

G.3 Alternative Instruments
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Figure A-13: Impulse responses (median and 68 percent posterior bands) to a one standard
deviation monetary policy shock - modified instrument.

Figure A-14: Impulse responses (median and 68 percent posterior bands) to a one standard
deviation monetary policy shock - Miranda-Agrippino & Ricco (2020) instrument.
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Figure A-15: Impulse responses (median and 68 percent posterior bands) to a one standard
deviation monetary policy shock - Bauer & Swanson (2022) instrument.

Figure A-16: Impulse responses (median and 68 percent posterior bands) based on fixed
coefficient VAR for benchmark instrument and m̃t

A-27



Figure A-17: Impulse responses (median and 68 percent posterior bands) based on fixed
coefficient VAR for benchmark instrument and mt

Figure A-18: Impulse responses (median and 68 percent posterior bands) based on Naka-
mura & Steinsson (2018) instrument.

A-28



G.4 More General Measurement Equation

Figure A-19: βt and ρt, one lag of VAR variables included in measurement equation of the
instrument

G.5 Alternative paths for βt in the DSGE Monte Carlo
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Figure A-20: Impulse responses for the data-generating process with time-varying βt and
the Monte Carlo replications, random transition paths for true βt based on two-state
Markov chain with transition probabilities matching transition used in main text.

H Evidence from the UK

Finally, we present evidence for high-frequency based identification of monetary policy

shocks in the United Kingdom. We use both the instrument and the VAR specification

(i.e. the choice of variables entering yt) of Cesa-Bianchi et al. (2020). We focus on the

specification with a random walk specification for βt.

Figure A-21 shows impulse responses for all UK variables in the VAR. In contrast to the

US, we find little difference between fixed coefficient-based responses and random walk-

based responses. A potential reason can be seen in Figure A-22: The sample for the UK

(both for the VAR variables and the instrument) is much shorter, and within that shorter

time-span there are more periods where the instrument is informative, making the fixed

coefficient estimation generally more informative.
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Figure A-21: Impulse responses (median and 68 percent posterior bands) to a one standard
deviation monetary policy shock, UK.
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Figure A-22: Posterior of βt and ρt, UK (median and 68 percent posterior bands).
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