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Abstract

We study how structural parameter variations affect the decision rules and eco-
nomic inference. We provide diagnostics to detect parameter variations and to ascer-
tain whether they are exogenous or endogenous. A constant parameter model poorly
approximates a time-varying DGP, except in a handful of relevant cases. Linear ap-
proximations do not produce time-varying decision rules; higher order approximations
can do this only if parameter disturbances are treated as decision rule coefficients.
Structural responses are time invariant regardless of order of approximation. Adding
endogenous variations to the parameter controlling leverage in Gertler and Karadi’s
(2010) model substantially improves the fit of the model.
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Appendix A: Proofs and derivations

Proposition 1
Proof. Substituting the linear decision rule into the optimality conditions, we obtain

0=[FP?*+ (G+ N¢, )P+ (H +0¢,)|xi 1+ [(FP+ G+ N¢,)Q+ FQu, + Ly, + M]z
+[(FP+4 G+ N¢,)R+ FRw, + Noywy + Od,]us

Since the solution must hold for every realization of x;_1, z:, us, we need to equate
their coefficient to zero and the result obtains. O

Derivation of second order decision rules
When parameters are time-varying, the approximate second order law of motion of
the structural parameters is

01 = ppri—1 + P us +1/2 A X\ (1)
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equilibrium conditions are:
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Using (1), and disregarding terms of order higher than two, the optimality conditions
can be rewritten as:

0= E{Fzi41+ (G+ No )z + (H + O¢,)xi—1 + [L M] [zttl} 1 [N¢, Od,] [“Zl

1 - -
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(3)

Following Lombardo and Sutherland (2007), one can rewrite (3) as

0=F, (FxtH +(G+No,)x + (H+ Od,)xi—1+ [L M) [zttl] [N¢, O6,] {“tﬂ + 1A Kt) +B

2
(4)
where
A = (NA(Jo ® Jo) + Tpg(1 @ J)(P® P) + (OA(Jo ® Jo) +T0.4(J1 @ 1))
=1/2 (NA(Jo® Jo) + Tgop(h ® J )) Q®Q) =
P 0 Q¢, Ruw, Q R
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and P = 00 o 0 Q= I ool The solution to (4) is given by
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where, by construction, P,(Q, R are the same as in the first order solution, C solves
SC = —vec(3A), S=1;® (FP+ G+ N¢,), { =2ny +n, +n, and D is a function

of 1/2 (NA(Jo ® Jo) +T4(1 ® 11)) (Q® Q)
When the model has constant coefficients, the optimality condition (3) is
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and the terms in I ize corresponding to the second order or cross derivatives with re-
spect to 0; are zero. The solution in this case is

zy = P2y 1+ Qcczt + Ccht + D (7)



where, C solves SC* = —vec(3A°°), and D is a function of B.

Proposition 4

Proof. In this case, ¢, =0 ¢, = ¢, =0, ¢, # 0 ¢, # 0. Thus, the solutions to (4)
and (6) differ only because of terms involving us, usuj, and its variance. O

Appendix B: The models of section 4 and addi-
tional Monte Carlo evidence

In the capacity utilization model, the representative household maximizes:

max Fjy i Gt Ctl_n —A ni—w (8)
= 1—n 14+~
c+ip = wng +rikd —a(u)ki — Ty 9)
it = k—(1—0)k—1 (10)
kS = wki (11)

where ¢; is consumption, i; investment, k; the stock of capital, and n; is hours worked.
Household chooses the utilization rate of capital, u;, and the amount of effective capital
that she can rent to the firm, i.e., k/. Household receives earnings from supplying labor
and capital services to the firm, i.e., w; and rf, respectively, subject to a cost of changing
capital utilization, a(u;)k;. Finally, T; are lump-sum taxes levied by the government.
The production function is y; = 2 (kf)*ni~* A fraction of output is consumed by the
government and financed with lump-sum taxes. The government budget constrain is
gty = Ty
The optimality conditions of the planner problem are

=gy = c+ki—(1—=09—alu)u) ke (12)

Anjc] = (1—a)(l - go)ye/ne (13)

1 = BE(ct/c+1)"(1 = 6 — a(upe1)uprr + (1 — g1 yes1/k{L4)

a(l = g)ye/ke—1 = wi(a(ue)ur + aluy)) (15)
ye = z(uki—1)ng " (16)

a(uy) = 71/6 _;6 L <e¢(“t_1) — 1) (17)

(17) gives the functional form for the adjustment cost of the capital utilization. Note
that a(1) = 0, d’(1) = 1/8+6 — 1, (1) = ¢(1/8 + § — 1). If assume that, in the
steady state u = 1, the steady states for (g, 5, %, n) are the same as in the RBC model
without variable capital utilization.



The RBC model with one period time to build is as in the text except the capital
accumulation and production function equations are substituted by

K, = (1 — (5>Kt_1 + 91 (18)
Y, = GELN" (19)

When stochastic volatility is present the variance of the technological disturbance is
logo,+=0.0llogo.o+0.99logo. 1 + vy (20)

where log o, o = 0.00712 and var(v;) = 0.01.
For the RBC model with capital adjustment cost we assume

Ki=(1—=0)Ki 141+ 2k —ki_1)? (21)

In the model with two states, we use data simulated from constant parameter model
and the baseline parameterization for 40 periods; for the remaining periods the data
comes from the baseline model when § = 0.015;v = 1.0;7 = 1.0; E(z) = 1.5.

In the model with occasionally binding constraints, we assume that investment
cannot fall below a certain exogenous threshold in every period,

it > Wigg, (22)

and derive policy functions using Guerrieri and Iacoviello’s (2015) algorithm.

DGP Estimated model|Optimality wedge|Forecast errors

T=500] T=150 |T=500]T=150
Fixed parameter Fixed parameter| 0.00 0.00 0.00 | 0.00
Exogenous parameter Fixed parameter| 0.90 0.78 1.00 | 0.99
Endogenous parameter Fixed parameter| 0.99 0.61 1.00 | 0.99
Endogenous parameter (internalization)|Fixed parameter| 0.96 0.80 1.00 | 0.99

Table B.1: Percentage of rejections at the 0.05 confidence level of the null of no time
variations in 200 experiments. The dependent variable is either the Euler wedge or the out-
put forecast error. The regressors are lagged consumption and lagged real rate for the Euler
wedge; lagged output, lagged consumption, and lagged hours for the forecast error. Parameter
variations explain 15-20 cents of output variance

Appendix C: Inferential distortions

Identification

We are concerned with whether population identification pathologies described by
Canova and Sala (2009) may also emerge as a byproduct of time-varying misspeci-
fication. We ask whether parameters that could be identified if the correct likelihood



is employed can became poorly identified when the incorrect likelihood is used. Mag-
nusson and Mavroedis (2014) have shown that when a GMM approach is used, time
variations in certain parameters help the identification of time-invariant parameters.
Huang (2014) qualifies the result by showing that time variations in weakly identi-
fied parameters have no effects on the asymptotic distribution of strongly identified
parameters.

True B - Estimated B True RBC C - Estimated C True D - Estimated D
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Figure C.1: Likelihood surfaces, RBC model

Figure C.1 plots the likelihood function of the RBC model of section 2 in the
risk-aversion coefficient 1 and the inverse elasticity of labor supply « when the forecast
errors of the correct linearized model (top row) and of the constant parameter linearized
model (bottom row) are used to construct the likelihood function. The first column
considers data generated by the model B (exogenously varying parameters), the second
by model C (endogenously varying parameters, but no internalization), the third by
model D (endogenously varying parameters and internalization). The other parameters
are fixed as in section 2.5. While the likelihood curvature in the correct model is
not large, the maximum can be found at v = 2, n = 2 for all three specifications
(see top row). When the decision rules of the constant parameter model are used to
construct the likelihood, the distortions are large: with exogenous parameter variations,
~v becomes weakly identified; with endogenous specifications, the likelihood is locally
convex, there is a ridge in (y,7) - we can identify the sum of the two but not each of
them separately - and the maximum is shifted away from the true values.

Note that shock misaggregation is present in all three columns, while decision rule
misspecification is present only in columns 2 and 3. Thus, while both induce identifi-
cation pathologies, the distortions created by the latter are larger.



A formal identification analysis conducted using Koop et al. (2013) statistic (see
table C.1) confirms the graphical conclusions. Koop et al. show that asymptotically
the precision matrix grows at the rate T for identified parameters and at rate less
than T for underidentified parameters. Thus, the precision of the estimates, scaled
by the sample size, converges to a constant for identified parameters and to zero for
underidentified parameters. Furthermore, the magnitude of the constant measures
identification strength: a large value indicates a strongly identified parameter; a small
value a weakly identified one.

Parameter | T=150 | T=300 | T=500 | T=750 | T=1000 | T=1500 | T=2500
DGP Model B, Estimated model A
n 15.9 17.8 17.2 18.8 18.4 19.3 17.9
v 28.5 45.7 108.4 81.4 93.6 104.2 90.17
P 1.8e+4 | 2.6e+4 | 4.2e+4 | 4.2e+4 | 4.5e+4 | 4.9e+4
Pg 209.2 | 655.5 2741 2190 2860 3417 2802
0 927.3 | 973.8 | 1.7e+4 | 1.Te+4 | 2.4e+4 | 2.3e+4
a 140.2 156.2 264.2 215.5 239.1 252.1 229.3
A 28.42 | 30.67 7.99 10.99 9.15 7.83 9.83
DGP Model C, Estimated model A
n 822 1033 743 785 759 746 752
~ 2261 3147 2682 2809 2720 2579 2566
0, 3073 2673 2952 2909 2799 2806 2877
Py 1.74 2.23 2.44 2.96 3.17 2.82 2.90
0 4.6e+5 | 4.4e+5 | 4.3e+5 | 4.0e+5 | 3.8e+5 | 4.4e+5
« 1.8e+4 | 1.1e+4 | 1.4e+4 | 1.2e+4 | 1.1e+4 | 1.6e+4
A 351 493 441 505 500 449 444
DGP Model D, Estimated model A
n 550 575 592 610 545 542 494
v 3577 2442 2660 2870 2564 2711 2430
o 1613 1243 1120 1162 1068 1189 1074
Py 1.22 1.28 1.44 1.53 1.60 1.62 1.67
0 5.2e+5 | 6.7e+5 | 6.5e+5 | 6.0e+5 | 5.7e+5 | 5.8e+5
@ 1.1e+4 | 2.5e+4 | 2.4e+4 | 1.9e+4 | 2.1e+4 | 2.0e+4
A 488 276 340 382 349 395 334

Table C.1: Koop, Pesaran, and Smith diagnostic. Reported are the diagonal ele-
ments of the precision matrix scaled by the sample size

When the DGP is model B and a fixed parameter model is considered, all para-
meters are identified. When the DGP are models C and D, all parameters but p,
seem identifiable. Interestingly, in models C and D, p, is weakly identified, even when
the correct likelihood is used. Thus, time variations in 3, and J; do not help in the
identification of p,, in line with Huang (2014).



Structural estimation

To study the properties of likelihood-based estimates of a misspecified constant para-
meter model, we generate data from the linearized versions of the RBC models B, C, D;
estimate the structural parameters using the likelihood function constructed with the
linear decision rules of the time-invariant model, flat priors, and standard Montecarlo
Markov Chain (MCMC) methods; and repeat the exercise 150 times using different
shock realizations. To benchmark the size of the distortions, we also estimate the
structural parameters using the likelihood constructed with the correct decision rules
(i.e., model B rules if the data is generated with model B, etc.).

The parameterization we employ is as in section 2.5. For the time-varying parame-
ters, we set d; = ;. 1/0; and assume that, in model B, ©;411 —© = (di41— 3, 6141 — )’
= Upy1, where § = 0.99,6 = 0.025, and the components of Upt1 = (ugt+1,Ust+1)
are independent AR(1) with persistence p; = 0.9,ps = 0.8 and standard devia-
tion o4 = 0.008,05 = 0.01, respectively. For the other two models, the time-
varying parameters evolve according to O;11 = [0, — (0, — 0;) 0 e %a(Ki=K)] 1
(04 — (04 — 0;) 0 e E=K)] L U, where O/, = (0.999,0.025); also for model C,
¢l = (0.01,0.03), ¢}, = (0.2,0.1), Up4q is i.i.d. with ¥, = diag(0.008,0.005), while for
model D, ¢/, = (0.001,0.016), ¢, = (0.2,0.1), U1 isi.i.d. with 3, = diag(0.009,0.001).
With these choices parameter variations explain 3-6 percent of the forecast error vari-
ance of output; we regard this as a conservative choice. We discuss also what happens
when shocks to the parameters are more important.

Table C.2 contains a summary of the results: we report the time invariant parame-
ters used to generate the data (column 1); the median of the distribution of posterior
estimates obtained with the correct decision rules (column 2); the median, the 5th,
and the 95th percentiles of the distribution of posterior estimates obtained with the
decision rules of the time invariant model, when T' = 150 (columns 3-5) and when
T = 1000 (columns 6-8).

Figure C.2 plots the density of posterior estimates in the three cases. When the
model is correctly specified, the density of posterior estimates should cluster around
the true value. Thus, if the median is away from the true parameter value and/or
the spread of the distribution is large, likelihood-based methods have difficulties in
recovering the constant parameters of the data-generating process.
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True Correct| Constant Parameter Model Constant Parameter Model
ParameterMedian|5th percentile Median 95th percentile|5th percentile Median 95th percentile
T=150 T=150 T=1000

n=2.0 2.01 0.87 2.08 2.16 0.87 1.38 2.00
v=2.0 2.00 2.31 2.55 2.75 2.13 2.53 2.67
p, =09 0.89 0.93 0.94 0.98 0.94 0.95 0.98
pg =0.5 0.49 0.80 0.86 0.89 0.74 0.85 0.87
6 =0.025 | 0.02 0.01 0.01 0.01 0.01 0.01 0.03
a=0.3 0.30 0.10 0.15 0.18 0.10 0.13 0.17
n=2.0 1.98 0.55 1.38 2.00 0.55 1.50 2.00
v=2.0 2.00 1.62 1.97 2.47 1.62 1.98 2.50
p, =09 0.90 0.91 0.95 1.00 0.91 0.97 1.00
pg =0.5 0.49 0.51 0.85 1.00 0.51 0.85 1.00
6 =0.025 | 0.02 0.02 0.07 0.07 0.04 0.07 0.08
a=0.3 0.30 0.17 0.25 0.28 0.19 0.26 0.29
n=20 1.56 0.39 0.61 1.84 0.04 0.37 1.30
v=2.0 1.98 1.52 2.23 2.58 0.79 1.32 2.30
p, =0.9 0.90 0.91 0.99 1.00 0.94 1.00 1.00
pg =0.5 0.60 0.99 1.00 1.00 1.00 1.00 1.00
6 =0.025 | 0.03 0.01 0.02 0.03 0.01 0.01 0.03
a=0.3 0.30 0.10 0.15 0.22 0.10 0.13 0.22

Table C.2. Summary of the distributions of posterior estimates.
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Figure C.2: Density of estimates. Parameter variations explain 3-6 percent of output

variance).




Figure C.3 plots impulse responses to technology shocks: in each box we have the
responses obtained using the values reported in column 2 of table C.2 together with the
16th and 84th percentiles of the distribution of responses obtained using the estimated
distribution of parameters produced by the time invariant model when 7' = 150. Table
C.3 shows the long-run variance decomposition, when 7" = 150 and the median of
the estimated posterior distribution is used. In the first two columns we have the
contribution of technology and government spending shocks to output, consumption,
hours, and capital variability in the correct model; in the last two columns we have
their contribution when the constant parameter model is used.
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Figure C.3: Impulse responses to technology shocks



Variance attributed to
Technology | Government | Technology | Government
Shocks Shocks Shocks Shocks
DGP: Model B
True Estimated Time invariant
Y 0.942 0.002 0.968 0.032
C 0.791 0.045 0.586 0.414
N 0.478 0.068 0.376 0.624
K 0.749 0.058 0.564 0.436
DGP: Model C
True Estimated Time invariant
Y 0.965 0.006 0.977 0.023
C 0.780 0.055 0.878 0.122
N 0.430 0.139 0.499 0.501
K 0.592 0.108 0.949 0.051
DGP: Model D
True Estimated: Time invariant
Y 0.898 0.002 0.738 0.262
C 0.836 0.055 0.439 0.561
N 0.393 0.153 0.573 0.427
K 0.829 0.128 0.757 0.243

Table C.3 Long-run variance decomposition

A number of features of table C.2 are worth discussing. When the correct model is
employed, the estimation is successful, regardless of the DGP and of whether time vari-
ations are exogenous (model B) or externally endogenous (model C). Some distortions
estimating 7 and p, occur when model D is the DGP, but numerical biases are small.
A number of distortions occur when a time-invariant model is used in estimation. For
example, when exogenous variations are present, the persistence of government spend-
ing shocks is poorly estimated (mean persistence is about 50 percent larger than in
the DGP), while estimates of (0, «) are severely biased downward. The distortions
become larger when time variations are endogenous (models C and D), and a signif-
icant upward bias exists in both p, and p,. Because in models C and D, parameter
variations are serially correlated, a time-invariant model can capture these variations
only by increasing the persistence of structural shocks. Note also that the performance
of the time-invariant model is invariant to the sample size.

Responses to technology shocks are generally off in terms of impact magnitude and
responses produced with estimates of the true model tend to be outside the estimated
68 percent band produced with estimates of the time-invariant model. Misspecification
is larger when endogenous time variations exist.

What is the contribution of structural disturbances to the variability of the en-
dogenous variables? One should expect the structural shocks obtained with the time
invariant-model to be contaminated because the wrong P matrix is used to compute

11



forecast errors and because we are aggregating m (primitive and parameter) shocks
into n < m (structural) shocks making them function of lags (and possible leads) of all
original disturbances (see, e.g., Canova and Paustian, 2011). Indeed, important biases
emerge. When models B or C are the DGP, the relative contribution of government
spending shocks to the forecast error variance of hours, capital, and consumption is
greatly overestimated. When the DGP is model D, this happens also for the forecast
error variance of output.

When parameter variations explain a larger portion of the forecast error variance
of output, the distortions are large (tables C.4-C.5 and figures C.4-C.5). For example,
the density of posterior parameter estimates is often bimodal and skewed, and at times
the density of estimates obtained in the time invariant model hardly overlaps with the
density of estimates obtained with the correct model.

We have also performed a Monte Carlo exercise allowing the labor share to be time-
varying. Variations in the labor share have been documented in, e.g., Rios Rull and
Santaeularia Llopis (2010), and there is evidence that they are strongly countercyclical.
This is relevant for our exercise because all four optimality conditions are affected
by time variations, altering the strength of income and substitution effect distortions.
Indeed, we do find that the distortions become quite large, and in many cases it becomes
difficult to estimate the time-invariant model, regardless of the DGP (results available
on request).

In sum, estimating a constant parameter model when the linearized DGP features
time-varying parameters leads to identification and inferential distortions. This is true
regardless of the sample size, of whether variations are exogenous or endogenous, and
of whether parameter variations account for a small or a larger portion of output
variability.

12
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True Correct Model| Constant Coefficient Model Constant  Coefficient Model
Parameter Median 5th percentile Median 95th percentile|5th percentile Median 95th percentile
T=150 T=150 T=1000

n=2.0 2.05 0.42 1.01 2.04 0.38 0.52 1.14
v=2.0 2.00 1.62 2.25 2.60 1.88 2.43 2.60
p, =09 0.89 0.90 0.97 1.00 0.96 1.00 1.00
pg =0.5 0.48 0.79 0.94 1.00 0.93 0.98 1.00
6 =0.025 0.02 0.01 0.03 0.09 0.01 0.01 0.03
a=0.3 0.30 0.10 0.18 0.33 0.10 0.12 0.17
n=2.0 2.00 1.12 2.00 2.01 1.50 2.00 2.01
v=2.0 2.00 1.77 2.00 2.11 1.79 2.02 2.05
p, =09 0.90 0.90 0.92 0.97 0.90 0.91 0.95
pg =0.5 0.50 0.45 0.52 1.00 0.44 0.51 0.98
6 =0.025 0.03 0.02 0.06 0.07 0.05 0.06 0.07
a=0.3 0.30 0.17 0.23 0.26 0.20 0.22 0.26
n=20 1.99 1.70 2.06 2.10 0.15 2.03 5.72
v=2.0 2.00 1.40 2.01 2.05 0.06 0.37 2.02
p, =0.9 0.97 0.85 0.90 0.97 0.74 0.96 0.99
pg =0.5 0.51 1.00 1.00 1.00 1.00 1.00 1.00
6 =0.025 0.03 0.01 0.08 0.09 0.01 0.01 0.07
a=0.3 0.30 0.10 0.28 0.30 0.15 0.22 0.25

Table C.4: Distributions of posterior estimates. Parameter variations explain 15-20
percent of output variance.
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Figure C.4: Density of estimates. Parameter variations explain 15-20 percent of
output variance



x10"*

Model B-A

x10°

Model C-A

x10°

Model D-A

[—e—n8s —o—A16 —#—B50

Capital

15 20 25 30 35 40

G
1 ‘ AB4 Al6 —i#— C50 13

e,
ER.

D

2

5 10 15 20 25 30 35 40 5

0.06
0.04

25 30 35 40

Output

[ —e—A8s —6—A16 —#—Ds0

10 15 20 25 30 35 40

x10°

-—\ 3

Consumption
N

5 10 15 20 25 30 35 40

... Y
15 20 25 30 35 40

|

J

)

5 10 15 20 25 30 35 40 5

| ooceeamnsgy)
10 15 20 25 30 35 40

Figure C.5: Impulse responses to technology shocks. Parameter variations explain
15-20 percent of output variance

Variance attributed to
Technology|Government|Technology| Government
Shocks Shocks Shocks Shocks
DGP: Model B
True Estimated: Time invariant
Y| 0.830 0.005 0.827 0.182
C| 0.567 0.032 0.298 0.717
N| 0.225 0.032 0.099 0.913
K| 0.514 0.039 0.412 0.601
DGP: Model C
True Estimated Time invariant
Y| 0.843 0.005 0.116 0.884
C| 0.347 0.024 0.052 0.948
N| 0.105 0.034 0.006 0.994
K| 0.150 0.027 0.630 0.370
DGP: Model C
True Estimated Time invariant
Y| 0.826 0.002 0.049 0.966
C| 0.325 0.021 0.075 0.943
N| 0.063 0.024 0.026 0.985
K| 0.215 0.033 0.052 0.963

Table C.5: Long-run variance decomposition. Parameter variations explain 15-20
percent of output variance.
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Appendix D : The equations of Gertler and Karadi’s
model and the prior used

exp(o) = (exp(Ct) — hexp(Ci—1))"7 — Bh(exp(Cii1) — hexp(Cy)) ™7 (23)
1 = Pexp(Ry)exp(Aii1) (24)
7 exp(o;)
exp(Ay) = 7€Xp(gt,1) (25)
oL = exple) exp(Pr (1 - o) ) (26)
exp(ve) = (1—0)Bexp(Aps1)(exp(Ry,i+1) — exp(Re)) + B exp(Asr1)0 exp(zi41) exp(vf27)
exp(n,) = (1—0)+ Bexp(Air1)0exp(zi41)exp(ngyq) (28)
- 1 exp(n;)
RGN (s P e T 2
exp(z:) = (exp(Rps) — exp(Ri—1))(1 — ¢y_1) exp(¢y_1) + exp(R—1) (30)
- exp(gbt)(l - 7/’:&) exp(z
V)= (o, (1= ) P 3!
_exp(¢y) exp(IVe)
eXp(Kt) - eXp(Qt) (32)
exp(Ny) = exp(Ney) + exp(Nny) (33)
exp(Ney) = 0Oexp(z)exp(Ni—1)exp(—enes) + ¢, (34)
exp(Nne) = w(l—1v_1)exp(Qt)exp(§,) exp(Ki—1) (35)
B exp(Yimt) exp(9))
xp(Rer) = (exp(Pho 202 4 oxp(e)  exp(@r) - -2 (36)
exp(Yim:) = exp(as) * (exp(&;) * exp(Up) * exp(K;_1))® * exp(L)' (37)
o (I?’Lt-f-_[s) (Int—l—ls) (Int—l—ls)
exp(Q¢) = 1+ 0~577i(m - 1%+ m((lnt_1 T 1) Ty + I°3)
(Ing+1 + I°) (Ingg1 4+ I°)
- ﬁexp(AH-l)ni( (ITZ + I8 - ) (ITL—:—FIS) ) (38)
exp(6) = be+b/(1+ () xexp(Up)' e (39)
anp(Ym) _ beXp(Ut)C eXp(gt) * eXp(Kt—l) (40)
exp(Uy) exp(Pr.t)

In; = exp(ly) —exp(d) * exp(&;) * exp(Ki—1) (41)
exp(Ky) = exp(§,) * exp(Ki—1) + Iy (42)
exp(Gy) = G° xexp(gr) (43)
exp(Y;) = exp(Cy) + exp(Gy) + exp(1y) + O.Bni(m —1)*(Iny +I?)

+ T1Yexp(Ky) (44)
exp(Ynt) = exp(Y;) *exp(Dy) (45)



exp(Dy) = gxexp(Di—1) *xexp(infli_1) "P* exp(infl;)*
+ (=)L = yexp(infle—1)"" = exp(infl) ") /(1 = 7))~/ =7(46)
exp(Xy) = 1/exp(Pry) (47)

exp(F;) = exp(Yy) = exp( )

+  Byexp(Ati1) exp(znflt+1) (exp(infle)) ™77 exp(Fit1) (48)
exp(Z) = exp(¥i)+ By exp(Aes) exp(inflys ) exp(infl) 19 exp(Zes49)
explinfly) = 5 2 explingl) (50)
(exp(infl)' ™ = yexp(infli—1)*079 + (1 —v)(exp(infl}))' (51)
exp(iy) = exp(Ry) *exp(inflit11) (52)
exp(is) = exp(ir—1)" (87" exp(infly)™ * (exp(Xy)/(e/(e = 1)))™)' P exp(e;33)
Vv, = K*(Rpp1—Re—Rj+R°)+ep: (54)
U = Pu* A1 — Oq*€ay (55)
§ = pex&q —Ogxegy (56)
gt = Pg*Gt—1 — Egy (57)
ept = Pyp*epi1teypy (58)

The priors we use in the estimation process are as follows. The parameters common
to all models, we use a uniform bounded prior on the persistence and the standard de-
viation of the capital quality shocks &;, a Beta (0.515, 0.1) prior for the habit parameter
h, a Beta (0.4, 0.2) prior for A, a Beta (0.01, 0.001) prior for w, and a Beta (0.50, 0.2)
prior for 6. The mean of the endogenous variables has a bounded uniform distribution.

For the two additional parameters entering the model with exogenously varying \;,
we assume that the persistence parameter p, is truncated normal (0.9, 0.1) and the
standard deviation o) is inverted gamma with mean 0.05 and variance 0.02.

For the five additional parameters entering the model with endogenously varying
A, we assume that the persistence parameter p, is truncated normal(0.9, 0.1) and
the standard deviation o) is inverted gamma with mean 0.05 and variance 0.02,
Ay ~ Beta(0.8,0.05); ¢; ~ Beta(0.05,0.02); and ¢ ~ Beta(0.05,0.02).
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