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A Some Background on Wavelets

A.1 Continuous Wavelet Transform

A wavelet ψ (t) is a function of finite length which oscillates around the time axis. The name

wavelet (small wave) derives from the admissibility condition, which requires the mother

wavelet to be of finite support (i.e., small) and of oscillatory (wavy) behavior. The most

commonly used mother wavelet in economic applications - and the one we use in this paper

- is the Morlet wavelet defined by ψ (t) = π
1
4 e6ite−

t2

2 . The continuous wavelet transform of

a time series x(t) with respect to a given mother wavelet is:

Wx(τ , s) =
1√
s

∫ +∞

−∞
x(t)ψ

(
t− τ
s

)
dt, (A.1)

where ψ denotes the complex conjugate of ψ, and τ and s are the two control parameters of

the continuous wavelet transform (CWT). The location parameter τ determines the position

of the wavelet along the time axis, while the scale parameter s defines how the mother

wavelet is stretched. The scale is inversely related to frequency f , with f ≈ 1/s. A lower
(higher) scale means a more (less) compressed wavelet which allows to detect higher (lower)

frequencies of the time series x(t). The ability and flexibility to endogenously change the

length of the wavelets is one of the main advantages of the wavelet transform when compared

with the most common alternative, the short-time Fourier transform. The wavelet power

spectrum (WPS) of x(t) is defined as (WPS)x (τ , s) = |Wx(τ , s)|2. It measures the local
variance distribution of the time series x(t) around each time and scale/frequency. The

WPS can be averaged over time so that it can be compared to classical spectral methods.

In particular, the global wavelet power spectrum (GWPS) can be obtained by integrating

the WPS over time: (GWPS)x (s) =
∫ +∞
−∞ Wx(τ , s)dτ .

A.2 Maximal Overlap Discrete Wavelet Transform and Wavelet Multi
Resolution Analysis

Wavelet multiresolution analysis (MRA) allows decomposition of any variable into a trend,

a cycle, and a noise component, irrespective of its time series properties. This is similar

to the traditional time series trend-cycle decomposition approach (Beveridge and Nelson,

1981, and Watson, 1986) or other filtering methods like the Hodrick and Prescott (1997) or

the Baxter and King (1999) band-pass filter. We employ a particular version of the wavelet

transform called the Maximal Overlap Discrete Wavelet Transform (MODWT). To perform

the MODWT of a given time series we need to apply an appropriate cascade of wavelet
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filters which is similar to filtering by a set of band-pass filters. This procedure allows to

capture fluctuations from different frequency bands. By using the Haar wavelet filter, any

variable Xt, regardless of its time series properties, can be decomposed as:

Xt =

J∑
j=1

Dj,t + SJ,t, (A.2)

where the Dj,t are the wavelet coeffi cients at scale j, and SJ,t is the scaling coeffi cient. These

coeffi cients are given by:

Dj,t =
1

2j

2j−1−1∑
i=0

Xt−i −
2j−1∑
i=2j−1

Xt−i

 , (A.3)

SJ,t =
1

2J

2J−1∑
i=0

Xt−i. (A.4)

Equations (2) - (4) illustrate how the original series Xt, exclusively defined in the time

domain, can be decomposed into different time series components, each defined in the time

domain and representing the fluctuation of the original time series in a specific frequency

band. As in the Beveridge and Nelson (1981) time-series decomposition into stochastic

trends and transitory components, the wavelet coeffi cientsDj,t can be viewed as components

with different levels of calendar-time persistence operating at different frequencies; whereas

the scaling coeffi cient SJ,t can be interpreted as the low-frequency trend of the time series

under analysis. In particular, when j is small, the j wavelet coeffi cients represent the higher

frequency characteristics of the time series (i.e. its short-term dynamics). As j increases,

the j wavelet coeffi cients represent lower frequencies movements of the series.

A.3 The Wavelet Transform: A Simple Example

The wavelet coeffi cients resulting from the MODWT with Haar filter are fairly straight-

forward to interpret as they are simply differences of moving averages. Consider the case

of J = 1. A time series Xt is then decomposed into a transitory component D1 and a

persistent scale component S1 as:

Xt =
Xt −Xt−1

2︸ ︷︷ ︸
D1,t

+
Xt +Xt−1

2︸ ︷︷ ︸
S1,t

. (A.5)

When J = 2 the decomposition results in two detail components D1 and D2 and a scale

component D1:

Xt =
Xt −Xt−1

2︸ ︷︷ ︸
D1,t

+
Xt +Xt−1 − (Xt−2 +Xt−3)

4︸ ︷︷ ︸
D2,t

+
Xt +Xt−1 +Xt−2 +Xt−3

4︸ ︷︷ ︸
S2,t

. (A.6)
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While the first component D1 remains unchanged at the now higher scale J = 2, the prior

persistent component S1 is divided into an additional transitory component D2 and a new

persistent one S2. The length Kj of the filter, that is, the number of observations needed

to compute the coeffi cients increases with j: Kj = 2j . Hence, the coarser the scale, the

longer the filters. Intuitively, the lower the frequencies a researcher wants to capture, the

wider the time window to be considered. Alternatively, the lower the frequencies targeted,

the longer the data sample required. The equations also show that this is a one-sided filter

as future values of Xt are not needed to compute the coeffi cients of the wavelet transform

of Xt at time t. This implies that the Dj,t and SJ,t lag Xt. In other words, they reflect the

changes in Xt with some delay. Moreover, since the length of the filters increases with j, so

does the delay. Hence, the coarser the scale, the more the wavelet components are lagging

behind Xt. Finally, the scale of the decomposition is releated to the frequency at which

activity in the time series occurs. For example, with annual or quarterly time series, Table

A.1 shows the interpretation of the different scales.

Table A.1: Scales and Cycle Length

Period Length
Scale j Annual Data Quarterly Data

1 2y-4y 2q-4q

2 4y-8y 4q-8q=1y-2y

3 8y-16y 8q-16q=2y-4y

4 16y-32y 16q-32q=4y-8y

5 32y-64y 32q-64q=8y-16y

6 64y-128y 64q-128q=16y-32y

... >128y >128q=32y
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B Data

We extract aggregate time series from the Haver database. The data are collected quarterly

and cover the period from 1954Q3 to 2017Q3, which is the longest available time span

for the variables we consider. Table B1 reports further details on the data and Figure B1

shows the raw data series. We report results for GDP growth which we compute as the

quarter-over-quarter rate. Similarly, our measure of inflation is the quarter-over-quarter

growth rate of the PCE price index. We also construct a time series for the spread between

the long and the short bond rate, computed as the simple difference.

Table B1: Data

Variable Mnemonic Comment

Real GDP GDPH@USECON Seasonally Adjusted

Unemployment LR@USECON Seasonally Adjusted, 16 and over

PCE Price Index JC@USECON Seasonally Adjusted

Federal Funds Rate FFED@USECON Monthly Average of Daily Data

3-Month Treasury Rate FTBS3@USECON Monthly Average of Daily Data

10-Year Treasury Rate FCM10@USECON Monthly Average of Daily Data
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Figure B1: Macroeconomic Time Series Data
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C Additional Wavelet Decompositions

C.1 One-Sided Haar Filter

The figures in this section report the wavelet components D1 - D6 and the scale component

S6 individually for each of the 6 macroeconomic time series and for the term spread, the

difference between the 10-year and the 3-month rate. In the figures we show the respective

component in dark blue against the overall underlying data series in grey.
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C.2 One-Sided Daubechies Filter

The figures in this section report the wavelet decompositions for the four categories ‘Short

Term’(D1, D2), ‘Business Cycle’(D3, D4), ‘Medium Term’(D5, D6), and ‘Long Term’(S6)

from a decomposition that uses the Daubechies wavelet filter. We report the decompositions

for inflation, the federal funds rate, and the 10-year rate. For comparison purposes, the

figures also report the corresponding Haar-filter decompositions.

Figure C.8: Wavelet Decompositions for Alternative Filters: Inflation
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Figure C.9: Wavelet Decompositions for Alternative Filters: Federal Funds Rate

Figure C.10: Wavelet Decompositions for Alternative Filters: 10-Year Treasury Rate
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D The Frequency-Specific Effects of Monetary Policy Shocks

D.1 VAR Specification

We closely follow Arias et al. (2018) in the specification and estimation of a structural

VAR (SVAR) to identify the effects of a monetary policy shock. Specifically, we estimate

an SVAR of the following form:

y′tA0 = c+
L∑
l=1

y′t−lAl + ε
′
t. (A.7)

yt is a column vector that collect the obervable variables and εt collects the structural

innovations; c is a vector of constants, while L is the number of lags in the VAR. Our

focus is on determining the elements in the structural impact matrix A0. Since we do not

impose overidentifying restrictions, we can estimate the reduced-form VAR and impose our

identification restrictions after estimation. To do so, we post-multiply the previous equation

by A−10 to arrive at:

y′t = x′tB + u
′
t, (A.8)

where xt also contains the intercept term. We use conjugate Normal-inverse Wishart priors

of the form used in Arias et al. (2018). We assume 4 lags and a loose, but proper, prior

throughout. Once we have parameter estimates for B and the covariance matrix of ut we

follow the algorithm outlined in Rubio-Ramirez et al. (2010) to impose sign restrictions on

impact. With respect to the latter, we assume that the level of the nominal rate increases

on impact after a monetary policy shock, inflation decreases, and either that (i) the unem-

ployment rate increases or (ii) that real GDP growth decreases, given the activity variable

used in the estimation.

D.2 Impulse Response Functions

In this seection we report the impulse response functions based on unemployment as the

macroeconomic activity variable in the VAR. Specifically, we report results from a spec-

ification where we add the short-term D2, the business-cycle D4 and the long-term S6

component.
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Figure D.1: Impulse Response Functions with D2 Components

Figure D.2: Impulse Response Functions with D4 Components
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Figure D.3: Impulse Response Functions with S6 Components
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