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1 The Metropolis-within-Gibbs step implementation

in more detail

In this section, we present details on the algorithm for the posterior sampling of the scaling

parameters in the VAR with time-varying parameters and stochastic volatility. For the

sake of brevity, we describe the sampling procedure for a generic scaling factor kX , X ∈

{Ωb,Ωa,Ωh}. Given a draw for X, the conditional posterior p(kX |X) ∝ p(X|kX)p(kX) can

be obtained with a Metropolis-Hastings step. We use a version of the (Gaussian) random

walk Metropolis-Hastings algorithm with an automatic tuning step for the proposal variance

in a burn-in phase. The algorithm is initialized with values k0
X (which we choose to be the

values from Primiceri (2005)) and σ2
kX
, which we change in a preliminary burn-in phase to

achieve a target acceptance rate.

1. At step i, take a candidate draw k∗
X from N(ki−1

X , σ2
kX
)

2. Calculate the acceptance probability αi
kX

= min
(
1,

p(X|k∗X)p(k∗X)

p(X|ki−1
X )p(ki−1

X )

)
3. Accept the candidate draw by setting ki

X = k∗
X with probability αi

kX
. Otherwise set

ki
X = ki−1

X .

4. Calculate the average acceptance ratio ᾱkX . Adjust the increment standard deviation

σkX every qth iteration according to σNew
kX

= σkX

ᾱkX

α∗ , where α∗ denotes the target

average acceptance ratio. Do not adjust after the iteration i exceeds the burn-in

threshold I.

In practice, we set α∗ = .5 and the burn-in threshold I equal to one-half of the total

repetition number.
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2 The algorithm for a fixed-coefficient VAR

Fixed coefficient VARs are often estimated using the Gibbs sampler (see Koop & Korobilis

(2010)). A fixed coefficient Gaussian VAR is of the form:

yt = µ+
L∑

j=1

Bjyt−j + et (1)

with et ∼iid N(0,Σ).

If we define β ≡ [µ′ vec(B1)
′ . . . vec(BL)

′]′, the most commonly used Gibbs sampler assumes

that

β ∼ N(β(ϕ), Vβ(ϕ)) (2)

Σ ∼ IW (νV, ν) (3)

where we have made the dependence of the prior for β on hyperparameters ϕ explicit. Note

that the priors on β and Σ are assumed independent and are thus not natural conjugate

priors (i.e. the approach of Giannone et al. (2015) cannot be applied in this case). We could

also introduce additional hyperparameters for the prior on Σ, but since popular priors such

as the Minnesota prior focus on β, we will do the same here. A Gibbs sampler for this

model consists of the following three steps:

1. Draw β|Σ, ϕ

2. Draw Σ|β, ϕ - since this step conditions on β, it simplifies to drawing Σ conditional

only on β since ϕ does not carry any additional information about Σ once we condition

on β

3. Draw ϕ|β,Σ. As discussed in this paper, this simplifies to drawing ϕ|β

The first two steps of the Gibbs sampler are standard in the literature (see again Koop

& Korobilis (2010)), except that we have to possibly change ϕ at every iteration when

drawing β. The last step is described in detail in this paper.
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3 The complete algorithm for a time-varying param-

eter VAR with stochastic volatility

In this section, we describe the complete algorithm to estimate the TVP-VAR model with

stochastic volatility described in the main text. We modify the algorithm described in Del

Negro & Primiceri (2015) to include additional steps for the drawing of the hyperparame-

ters.

The algorithm proceeds as follows1:

1. Draw hT from p(hT |yT , bT , aT , V, sT , kΩb
, kΩa , kΩh

). This step requires us to generate

draws from a nonlinear state space system. We use the approach by Kim et al. (1998)

to approximate draws from the desired distribution. For a correct posterior sampling

of the stochastic volatilities, we follow the corrigendum in Del Negro & Primiceri

(2015) and the modified steps therein.

2. Draw bT from p(bT |yT , aT , hT , V, kΩb
, kΩa , kΩh

). Conditional on all other parameter

blocks, equations (4) and (5) from the main text form a linear Gaussian state space

system. This step can be carried out using the simulation smoother detailed in Carter

& Kohn (1994).

3. Draw aT from p(aT |yT , bT , hT , V, kΩb
, kΩa , kΩh

). Again, we draw these covariance

states based on the simulation smoother of the previous step, exploiting our as-

sumption that the covariance matrix of the innovations in the law of motion for the a

coefficients is block diagonal. This assumption follows Primiceri (2005), where further

details on this step can be found.

4. Draw Ωh, Ωb, and Ωa. Given our distributional assumptions, these conditional poste-

riors of the time-invariant variances follow inverse-Wishart distributions (which are

functions of kΩb
, kΩa , kΩh

).

5. Draw sT , the sequence of indicators for the mixture of normals needed for the Kim

et al. (1998) stochastic volatility algorithm.

1A superscript T denotes a sample of the relevant variable from t = 1 to T .
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6. Draw kΩb
, kΩa , kΩh

. Each of these scaling parameters is drawn via the algorithm

described in section A of the appendix.
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Next, we give a schematic overview of both the standard algorithm due to Del Negro

& Primiceri (2015) and our extension.

Algorithm 1 Standard TVP-VAR estimation procedure

1. Constant VAR on T0 to initialize priors,

set gto1, where g = 1, . . . , G

2. Sample p(hT ) | aT , bT , sT ,Ωb,Ωa,Ωh, y
T ) = pFFBS

3. Sample p(bT | aT , hT ,Ωb,Ωa,Ωh, y
T ) = pFFBS

4. Sample p(aT | bT , hT ,Ωb,Ωa,Ωh, y
T ) = pFFBS

5. Sample p(sT | aT , hT ,Ωb,Ωa,Ωh, y
T ) ∝ q · fN

6. Sample p(Ωb,Ωh,Ωa | −”−) = piΩh

7. set g to g + 1 and go to Step 2.

Iterate through Step 2 and Step 6 for large G until convergence is achieved.
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Algorithm 2 Benchmark TVP-VAR with hyperparameters

1. Constant VAR on T0 to initialize priors,

set gto1, where g = 1, . . . , G

2. Sample p(hT ) | aT , bT , sT ,Ωb,Ωa,Ωh, y
T ) = pFFBS

3. Sample p(bT | aT , hT ,Ωb,Ωa,Ωh, y
T ) = pFFBS

4. Sample p(aT | bT , hT ,Ωb,Ωa,Ωh, y
T ) = pFFBS

5. Sample p(sT | aT , hT ,Ωb,Ωa,Ωh, y
T ) ∝ q · fN

6. Sample p(Ωb,Ωh,Ωa | −”−) = piΩh

7. Sample p(κΩb
| Ωb) = p(Ωb | κΩb

)p(κΩb
)

Sample p(κΩh
| Ωh) = p(Ωh | κΩh

)p(κΩh
)

Sample
∏J

j=1 p(κΩa | Ωa,j) = p(Ωa | κΩa)p(κΩa)

8. set g to g + 1 and go to Step 2.

Iterate through Step 2 and Step 6 for large G until convergence is achieved.
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4 Densities for hyperparameters

In this section, we provide formulas for the prior densities that we use for the hyperparam-

eters.

4.1 Inverse Gamma Distribution

Our inverse gamma parameterization corresponds to the so called scaled inverse chi-squared

distribution with scale parameter τ and degree of freedom ν. Suppose x is inverse gamma

distributed given shape α and mode m. Its scale parameter β is then m(α + 1). The

corresponding parameterization in the scaled inverse chi-squared specification is

ν = 2α

τ =
2β

ν

The density of the scaled inverse chi-squared distribution is given by

f(x) =
(τν/2)ν/2

Γ(ν/2)

exp
[
−ντ

2x

]
x1+ν/2

4.2 Half-t And Half-Cauchy Distribution

The density of the half-t distribution is

f(x) = 2
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
νπτ 2

[
1 +

1

ν

(x
τ

)2
]− ν+1

2

where τ is the scale parameter and ν the degree of freedom. For ν = 1 the half-t distribution

corresponds to the half-cauchy distribution and has the density function:

f(x) =
2τ

π(τ 2 + x2)

Gelman (2006) proposes the half-t distribution as weakly informative prior for the standard

deviation instead of the more conventional inverse gamma distribution.
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5 Univariate Monte Carlo results

In this section, we use a univariate AR(1) process in a simulation study to further demon-

strate the properties of our approach. The findings are the same as in the multivariate

examples in the main text, but the univariate examples allow us to also consider a random

walk law of motion for the parameters without having to either reject many simulations for

non-stationary draws, have very little time variation, or have very unreasonable time series,

as discussed in the main text. We estimate AR(1) models with time-varying intercept and

AR parameter as well as stochastic volatility:

yt = µt + ϕtyt−1 + εt, εt
iid∼ N(0, σ2

t ) µt

ϕt

 =

 µt−1

ϕt−1

+

 e1,t

e2,t

 , et
iid∼ N(0,Ωb)

ht = ht−1 + ut, ut
iid∼ N(0,Ωh)

Let us define the ht ≡ logσt and bt ≡ (µt, ϕt)
′ for this section. To assess how well our

approach works relative to a model with fixed hyperparameters, we study the root mean

squared error for the parameter path. To be more specific, the statistic we use is

RMSE =

√√√√ 1

Nsim

Nsim∑
j=1

1

T

T∑
t=1

(
θ̂t,j − θt,j

)2

where θ̂t,j denotes the estimated posterior median of the coefficient at time t in Monte

Carlo sample j. θt,j denotes the corresponding true value. T is the sample size for each

simulation, which we set to 350. 40 periods of these 350 are used as a training sample for

the prior. Nsim is the total number of Monte Carlo repetitions, which we set to 100. The

relative RMSE is computed relative to the fixed hyperparameter specification (we use the

values from Primiceri (2005) as our benchmark). In addition, we also want to investigate

whether any possible gains from our procedure in terms of parameter estimation translate

into forecasting performance. To do so, we compute out of sample forecasts for each Monte

Carlo sample ranging from one step ahead to eight steps ahead. We again use a root mean
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Figure 1: Prior densities for our Monte Carlo experiments

squared error criterion to asses the performance of our model: The RMSFEh of forecast

horizon h is defined as

RMSFEh =

√√√√ 1

Nsim

Nsim∑
j=1

(ŷt+h,j − yt+h,j)
2

where ŷt+h,j denotes the median h-step ahead forecast of Monte Carlo sample j. yt+h,j

denotes the corresponding true value. For both root mean squared error criteria we reports

values relative to the case with fixed hyperparameters.

We use various data-generating processes to highlight that these models can, when

hyperparameters are estimated, successfully recover the path of parameters even when

these parameters do not follow a random walk and the model is thus misspecified. First,

we use a data-generating process that is correctly specified, except that we impose that

|ϕt| < 1∀t so that the resulting time series resemble the time series we actually observe in

real-world applications.2 We initialize the intercept and the AR coefficient at 0 and the

stochastic volatility at 0.1. We set Ωb to be a diagonal matrix with diagonal elements 0.0001

2If we do not impose this restriction, simulated time series from this class of models can become

explosive.
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and Ωh to 0.001. Table 6 shows the results for this exercise. We can see that in terms of

parameters, our approach substantially outperforms the fixed hyperparameter approach3

We show results for various prior distributions for the hyperparameters (we use the same

prior for each hyperparameter within one estimation), adding the half-Cauchy and half-t

distributions (as suggested by Gelman (2006)) to our benchmark inverse-Gamma prior.

The half-t and half-Cauchy distribution do not, as emphasized by Gelman (2006), make a

hyperparameter value close to 0 very unlikely, but can rather be parametrized to be smooth

around 0 so they might be preferable in some situations. To be specific, the priors we use

are either a inverse-Gamma distribution with a scale parameter of 1/15 and 6 degrees of

freedom, a half-Cauchy distribution with a scale parameter of 1/15 or a half-t distribution

with a scale parameter of 1/15 and 6 degrees of freedom. Figure 1 displays these priors.

All those priors outperform the fixed hyperparameter case, with the decreases in root

mean squared error being between 25 and 35 percent. This increase in performance trans-

lates to forecasting performance, as can be seen in table 6. We next focus on a data-

generating process that is more severely misspecified, namely parameters that evolve ac-

cording to sine and cosine functions. We will keep this DGP fixed across the 100 Monte

Carlo samples, allowing for easier visual inspection of the performance of the various hyper-

parameter settings. We set µt = − cos(t), ϕt = 0.4(sin(t) + 1) and σt = sin(t) + 1.5. Table

2 shows that in this case our approach fares even better than with the first DGP. Figure 2

plots the true path of the parameters as well as the 5th percentile, the 95th percentile and

the median across Monte Carlo samples of the posterior median paths of the parameters

for the case of the inverse gamma prior and the fixed hyperparameter case (the estimated

paths for the other priors look similar to the inverse-Gamma case). We see that while

our approach does capture the true DGP reasonably well, the fixed hyperparameter case

wrongly finds that the parameters do not move much over time. It is worth pointing out

that the fixed hyperparameter setup often finds little time variation in many parameters

in real world applications such as Cogley & Sargent (2005).

A natural question to ask is how much of this advantage is due to the specific values

of the hyperparameters we used in the estimation with fixed hyperparameters. While our

3Our approach and the fixed hyperparameter approach perform similarly for the stochastic volatility,

which is why we omit it here.
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Table 1: Monte Carlo results for DGP1 with random walk evolution of parameters.

Relative RMSE

[In-sample fit of parameter paths θt evaluated at posterior median]

Parameter iG half-Cauchy half-t Fixed

µt 0.7037 0.7326 0.7519 1.0000

ϕt 0.6300 0.6471 0.6557 1.0000

Relative RMSFE

[Out-of-sample forecast of yt evaluated at posterior median]

Horizons iG half-Cauchy half-t Fixed

1 1.0112 0.9981 0.9869 1.0000

2 0.9430 0.9384 0.9594 1.0000

3 0.9872 0.9649 0.9872 1.0000

4 0.9659 0.9546 0.9639 1.0000

5 0.9301 0.9563 0.9610 1.0000

6 0.9479 0.9737 0.9605 1.0000

7 0.9030 0.9415 0.9446 1.0000

8 0.9297 0.9238 0.9317 1.0000

approach will always have the advantage that no fixed value needs to be chosen for the

hyperparameters, for one specific application one could wonder whether a higher value of

the hyperparameter can lead to a better performance for the fixed hyperparameter case.

Below we show that even setting kΩb
10 times larger than in these benchmark Monte Carlo

simulations still leaves our approach superior (and the magnitudes of the differences in root

mean squared errors still large).

A second natural question is whether our approach comes at a cost - if the true co-

efficients are fixed over time, does our approach do worse than the fixed hyperparameter

setup?4 This is a natural question because, as mentioned before, in many applications the

fixed hyperparameter setup finds little to no time variation in many parameters (Cogley &

4We use µ = 0.5, ϕ = 0.8 and σ = 0.1 for the data-generating process.
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Table 2: Monte Carlo results for DGP2 with deterministic evolution of parameters.

Relative RMSE

[In-sample fit of parameter paths θt evaluated at posterior median]

Parameter iG half-Cauchy half-t Fixed

µt 0.5499 0.5434 0.5822 1.0000

ϕt 0.3552 0.3702 0.3869 1.0000

Relative RMSFE

[Out-of-sample forecast of yt evaluated at posterior median]

Horizons iG half-Cauchy half-t Fixed

1 0.9590 0.9492 0.9481 1.0000

2 0.9453 0.9428 0.9405 1.0000

3 0.9032 0.9035 0.8964 1.0000

4 0.8464 0.8490 0.8623 1.0000

5 0.8051 0.7968 0.8382 1.0000

6 0.7887 0.7696 0.7964 1.0000

7 0.7908 0.7934 0.8248 1.0000

8 0.8094 0.8263 0.8845 1.0000

Sargent (2005)), so one might be tempted to think it has an edge when the coefficients are

indeed fixed. Furthermore, the inverse gamma prior we use bounds the hyperparameter

away from zero, meaning that finding exactly zero time variation is not possible. Nonethe-

less, our approach is capable of finding basically zero time variation in the parameters

when there is none, as highlighted in table 3. Both in terms of parameter estimates and

forecasting ability our approach and the fixed hyperparameter approach are very similar in

this case.

Next, we carry out Monte Carlo simulations where we, instead of using our benchmark

values for the fixed hyperparameters case, use a value of kΩb
that is ten times higher. Tables

4 to 5 show that even with a substantially higher value of the fixed hyperparameter, our

approach still does better.5

5These Monte Carlo results were obtained from samples independent from the samples used above, so
the ratio of any two entries other than entries in the last column will not be numerically the same as they
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Table 3: Monte Carlo results for DGP3 with fixed parameters.

Relative RMSE

[In-sample fit of parameter paths θt evaluated at posterior median]

Parameter iG half-Cauchy half-t Fixed

µt 1.1102 0.9999 1.0118 1.0000

ϕt 1.1093 0.9982 1.0087 1.0000

Relative RMSFE

[Out-of-sample forecast of yt evaluated at posterior median]

Horizons iG half-Cauchy half-t Fixed

1 0.9982 1.0000 1.0000 1.0000

2 0.9980 0.9997 1.0000 1.0000

3 0.9945 0.9996 0.9996 1.0000

4 0.9965 0.9986 0.9991 1.0000

5 0.9959 1.0007 1.0013 1.0000

6 0.9920 1.0009 1.0011 1.0000

7 0.9935 0.9994 0.9997 1.0000

8 0.9939 0.9998 0.9982 1.0000

To show the effects of larger fixed hyperparameters, figure 3 shows a version of figure

2 from the main manuscript, with the fixed hyperparameter kΩb
increased by a factor of

10 (again, using a new set of 100 simulations, so the inverse-Gamma based results are not

numerically identical to those in the main text, but very similar).

are in the corresponding tables above, but they are numerically very close.
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Figure 2: Estimated coefficient paths for the deterministic law of motion for parameters

and the inverse Gamma prior.
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Table 4: Monte Carlo results for DGP2 with deterministic parameters, higher fixed hyper-

parameter.

Relative RMSE

[In-sample fit of parameter paths θt evaluated at posterior median]

Parameter iG half-Cauchy half-t Fixed

µt 0.7029 0.6487 0.7372 1.0000

ϕt 0.6780 0.6495 0.7405 1.0000

Relative RMSFE

[Out-of-sample forecast of yt evaluated at posterior median]

Horizons iG half-Cauchy half-t Fixed

1 0.9477 0.9372 0.9559 1.0000

2 0.9035 0.8874 0.9169 1.0000

3 0.8778 0.8929 0.8998 1.0000

4 0.8511 0.8490 0.8666 1.0000

5 0.8795 0.8925 0.8816 1.0000

6 0.8287 0.8278 0.8137 1.0000

7 0.8094 0.7748 0.8095 1.0000

8 0.8207 0.7801 0.8157 1.0000
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Table 5: Monte Carlo results for DGP1 with random walk parameters, higher fixed hyper-

parameter

Relative RMSE

[In-sample fit of parameter paths θt evaluated at posterior median]

Parameter iG half-Cauchy half-t Fixed

µt 0.8559 0.8471 0.8855 1.0000

ϕt 0.8694 0.8818 0.8961 1.0000

Relative RMSFE

[Out-of-sample forecast of yt evaluated at posterior median]

Horizons iG half-Cauchy half-t Fixed

1 0.9898 0.9614 0.9932 1.0000

2 0.9732 0.9498 0.9657 1.0000

3 0.9953 0.9931 0.9993 1.0000

4 0.9829 0.9730 0.9797 1.0000

5 0.9840 0.9754 0.9880 1.0000

6 0.9783 0.9674 0.9697 1.0000

7 0.9934 0.9907 0.9977 1.0000

8 1.0026 1.0080 1.0029 1.0000
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Figure 3: Estimated coefficient paths for the deterministic law of motion for parameters

and the various priors for the hyperparamters in comparison.
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Figure 4: Estimated median parameter paths for the Euro Area, fixed hyperparameters in

black

6 Additional empirical results

6.1 Additional Results with Eigenvalue Restriction

We first show additional results for the case where the Cogley-Sargent style eigenvalue

restriction is imposed. All bands shown in this appendix are 68% posterior bands.
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Figure 5: UK impulse responses, fixed hyperparameters in gray
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Figure 6: UK impulse responses, fixed hyperparameters in gray
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Figure 7: EA impulse responses, fixed hyperparameters in gray

22



Figure 8: EA impulse responses, fixed hyperparameters in gray
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Figure 9: Estimated infinite horizon forecasts for the Euro Area, fixed hyperparameters in

gray
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Figure 10: Estimated R2 for the UK, fixed hyperparameters in gray
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Figure 11: Estimated R2 for the Euro Area, fixed hyperparameters in gray

6.2 Results without Eigenvalue Restriction

Next, we show results where we do not impose the eigenvalue restriction. In this case we

can not show the long-run means or the R2 measure.
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Figure 12: UK impulse responses, fixed hyperparameters in gray
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Figure 13: Euro Area impulse responses, fixed hyperparameters in gray
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Figure 14: Posterior distributions for the hyperparameters
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Figure 15: UK impulse responses, fixed hyperparameters in gray
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Figure 16: UK impulse responses, fixed hyperparameters in gray
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Figure 17: EA impulse responses, fixed hyperparameters in gray
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Figure 18: EA impulse responses, fixed hyperparameters in gray
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Figure 19: Estimated hyperparameters for the UK and the Euro Area over time with 68

% posterior bands

6.3 Estimated Hyperparameters over Time in the Forecasting

Exercise

Next, we show how the estimated hyperparameters change over time as we accrue more data

in our out-of-sample forecasting exercise. We show the posterior median, associated 68 %

posterior bands (and Primiceri’s value as a dashed line) in figure 19. For both the UK and

the Euro Area, we find that while there are fluctuations in the estimated hyperparameters,

there are no visible trends and the hyperparameters seem to fluctuate around constant

values.
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7 The Relationship between the dimension of the VAR

and the hyperparameters

A natural question that arises when choosing hyperparameters is how the value of the

hyperparameter is related to the number of observables that are included in the VAR. This

is not a straightforward question to answer because any comparison across models with

different observables has to confront the issues of misspecification (or, to be more precise,

omitted variable bias) - if we think that a VAR with 2 additional observables is necessary

to study the dynamics of real GDP growth, then a univariate model of real GDP growth

will be misspecified. Nonetheless, we find it useful to compare estimated hyperparameters

across three specifications - a univariate of our VAR for real GDP growth, a bivariate VAR

for real GDP growth and inflation and our benchmark 3 variable VAR. Figures 20 and

21 shows the estimated hyperparameters. One interesting takeaway is that for both the

UK and the Euro Area, the distribution of hyperparameters becomes less dispersed as we

add variables. Adding more variables thus seems to be informative about the values of

the hyperparameters. Furthermore, there is a significant shift across both datasets and

all hyperparameters in the mean or mode of the marginal posteriors - as we add more

observables the data seems to call for a smaller fraction of the training sample variance as

a prior variance for the amount of time variation.
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Figure 20: Hyperparameter posteriors for the UK across models with different dimensions
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Figure 21: Hyperparameter posteriors for the Euro Area across models with different di-

mensions
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8 Additional Results for Multivariate Monte Carlo

Simulations

8.1 Equations For Data-Generating Processes, Trivariate VARs

The first DGP from the main text features deterministic continuous time variation:

y1,t = µ1,t +B11,ty1,t−1 +B12,ty2,t−1 +B13,ty3,t−1 + σ1,tε1,t

y2,t = µ2,t +B21,ty1,t−1 +B22,ty2,t−1 +B23,ty3,t−1 + σ2,tε2,t

y3,t = µ3,t +B31,ty1,t−1 +B32,ty2,t−1 +B33,ty3,t−1 + σ3,tε3,t

where ε1,t, ε2,t ,and ε3,t are iidN(0, 1) and

µ1,t = − cos (xt)

µ2,t = cos (xt)

µ3,t = cos (xt)

B11,t = 0.4 (sin(xt) + 1)

B12,t = 0

B13,t = 0

B21,t = −0.3 cos(xt)

B22,t = 0.4 (sin(xt) + 1)

B23,t = 0

B31,t = −0.3 cos(xt)

B32,t = 0.4 (sin(zt) + 1)

B33,t = 0.3 cos(xt)

σ1,t = σ2,t = σ3,t = sin(xt) + 1.5

where xt is a vector of T evenly spaced points in the interval [−π, π] and zt is a vector of

T evenly spaced points in the interval [0, 2π]

The second DGP from the main text features no time variation:

38



y1,t = 0.9y1,t−1 + ε1,t

y2,t = −0.3y1,t−1 + 0.6y2,t−1 + ε2,t

y3,t = −0.3y1,t−1 + 0.4y2,t−1 + 0.3y3,t−1 + ε3,t

where ε1,t, ε2,t ,and ε3,t are iidN(0, 1)

8.2 Equations For Data-Generating Processes, Bivariate VARs

Deterministic continuous time variation:

y1,t = µ1,t +B11,ty1,t−1 +B12,ty2,t−1 + σ1,tε1,t

y2,t = µ2,t +B21,ty1,t−1 +B22,ty2,t−1 + σ2,tε2,t

where ε1,t and ε2,t are iidN(0, 1) and

µ1,t = − cos (xt)

µ2,t = − cos (xt)

B11,t = 0.4 (sin(xt) + 1)

B12,t = 0

B21,t = −0.3 cos(xt)

B22,t = 0.4 (sin(xt) + 1)

σ1,t = sin(xt) + 1.5

σ2,t = sin(xt) + 1.5

where xt is a vector of T evenly spaced points in the interval [−π, π]

One-time break:

y1,t = µ1,t +B11,ty1,t−1 +B12,ty2,t−1 + ε1,t

y2,t = µ2,t +B21,ty1,t−1 +B22,ty2,t−1 + ε2,t
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where ε1,t and ε2,t are iidN(0, 1).For t < T
2

µ1,t = 0

µ2,t = 0

B11,t = 0.8

B12,t = 0.1

B21,t = 0.4

B22,t = 0.5

else

µ1,t = 0

µ2,t = 0

B11,t = 0

B12,t = 0

B21,t = 0

B22,t = 0

8.3 Results for Bivariate VARs

We next present some additional results for bivariate VARs. The first DGP is similar

to the continuous parameter variation DGP we used in the trivariate case and the same

conclusion applies - our approach generally outperforms the fixed hyperparameter case,

independent of what the fixed hyperparameter is. In terms of the parameters, we focus

again on the elements of bt because that is where the differences are most pronounced. Even

though the models we study in this paper are meant to capture continuous smooth time

variation, it is also interesting to study how these models behave when there is a discrete

change in parameters. The last data-generating process capture exactly that behavior.

Again, our approach, independent of the prior, does better than the fixed hyperparameter

counterpart, with the one exception that the path of the intercepts is better captured by

the fixed hyperparameter setup. Following, in table (6) and (7) we report results based
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on a DGP with deterministic continuous time variation and a DGP with a one-time break

respectively.
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Table 6: Monte Carlo results for deterministic and continuous evolution of parameters.

Relative RMSE

[In-sample fit of parameter paths bt evaluated at posterior median]

Parameter iG half-Cauchy Fixed (κΩb
= 0.1)

µ1 0.637 0.630 0.755

µ2 0.764 0.746 0.907

B11 0.413 0.422 0.499

B12 1.163 1.160 1.209

B21 0.770 0.759 0.891

B22 0.514 0.509 0.628

[Out-of-sample forecast of first variable]

Horizons iG half-Cauchy Fixed (κΩb
= 0.1)

1 1.000 0.997 1.009

2 0.958 0.960 0.987

3 0.941 0.946 0.975

4 0.902 0.902 0.960

5 0.916 0.905 0.962

6 0.925 0.914 0.955

7 0.905 0.888 0.934

8 0.810 0.807 0.908

[Out-of-sample forecast of second variable]

Horizons iG half-Cauchy Fixed (κΩb
= 0.1)

1 1.025 1.028 1.008

2 0.941 0.938 0.996

3 0.938 0.930 1.005

4 0.908 0.897 0.994

5 0.895 0.881 0.994

6 0.888 0.865 1.004

7 0.886 0.867 0.993

8 0.876 0.829 0.991
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Table 7: Monte Carlo results for one-time break of parameters.

Relative RMSE

[In-sample fit of parameter paths bt evaluated at posterior median]

Parameter iG half-Cauchy Fixed (κΩb
= 0.1)

µ1 1.587 1.640 1.286

µ2 1.601 1.637 1.376

B11 0.438 0.443 0.496

B12 0.631 0.630 0.679

B21 0.519 0.513 0.601

B22 0.494 0.493 0.555

[Out-of-sample forecast of first variable]

Horizons iG half-Cauchy Fixed (κΩb
= 0.1)

1 0.962 0.966 0.954

2 0.951 0.951 0.946

3 0.971 0.974 0.967

4 0.983 0.985 0.974

5 0.992 0.994 0.987

6 0.975 0.976 0.964

7 0.979 0.982 0.986

8 0.954 0.954 0.947

[Out-of-sample forecast of second variable]

Horizons iG half-Cauchy Fixed (κΩb
= 0.1)

1 0.904 0.904 0.910

2 0.990 0.986 0.977

3 0.953 0.950 0.956

4 1.012 1.011 0.995

5 0.984 0.980 0.982

6 0.959 0.960 0.956

7 1.016 1.016 1.018

8 0.991 0.994 0.987
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