
Online Appendix

Understanding the Size of the Government Spending Multiplier:

It’s in the Sign

Regis Barnichon, Davide Debortoli and Christian Matthes

This appendix provides (1) additional empirical results supporting our findings from the

main text, (2) independent evidence about multiplier asymmetry using the Blanchard and

Leigh (2013) approach, (3) details about the estimation of the FAIR model, (4) a discussion

on the use of auto-regressive models to capture asymmetric DGPs, (5) a description of the

numerical solution method, and (6) a quantitative study of the effect of persistence in the

public spending process on the size of the multiplier.

1 Additional empirical results

In this section, we report a number of additional checks: we report (i) the time series for

government spending used in the two identification schemes, (ii) the impulse responses and

the multiplier estimated using either a (symmetric) FAIR model or a VAR model, (iii) the

response of taxes to government spending shocks, (iv) the multiplier for non-defense spending

in the recursive identification case, (v) results from a more general model of state dependence

(where the persistence of the IRFs also depend on the state of the cycle), and (vi) impulse

responses depicting the state dependent results for the 1947-2014 sample.

1.1 Time series of government spending

Figure A1 plots the time series of government spending as a ratio to potential output estimated

as in Ramey and Zubairy (2018).
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1.2 VAR vs (linear) FAIR

In section 5.2 of the main text, we aimed to assess the magnitude of the bias introduced by

the FAIR approximation by contrasting our FAIR estimates from those of Local Projections.

In this subsection, we provide an additional robustness check to assess the size of the bias:

we contrast the estimates from a (symmetric) FAIR model with those of a standard VAR. As

shown in Figure A2, the impulse response point estimates are close and lie comfortably within

the uncertainty bands of the VAR estimates.1

1.3 The response of taxes

In this section, we report the response of taxes to our government spending shocks. In doing

so, we will explore whether asymmetry in the method of financing —taxes vs. deficit— for

positive and negative spending shocks could be behind the asymmetry in the multiplier.

Figures A3 and A4 show the responses of government spending, the average tax rate (ATR),

the average marginal tax rate (AMTR) and the fiscal deficit in response to a government

spending shock identified recursively or narratively. The ATR is computed as the ratio of

federal receipts to lagged nominal GDP (as in Ramey and Zubairy, 2018), the AMTR is the

income-weighted average of the individual marginal tax rates, taken from Barro and Redlick

(2011) and available over 1912-2014, and the deficit is total federal expenditures minus total

federal receipts as a ratio to nominal GDP (as in Ramey and Zubairy, 2018).

With the progressivity of the tax system, one would expect the ATR to co-move positively

with aggregate income, as the income distribution moves through the tax brackets. Consistent

with this mechanism, we find that the ATR co-moves positively with output. The only case

where there is no significant response of the ATR is when the output response is small and

non-significant (in response to an expansionary shock identified recursively (top row, Figure 2

in the main text)).

1Note that the VAR estimates should not be taken as the truth. The VAR is also a biased estimator because
the VAR is a finite-order VAR and thus also introduces a bias (see e.g., Barnichon and Matthes, 2018). What
is reassuring is that the FAIR and VAR estimates lie close to each other.
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Although the ATR mixes personal and corporate taxes, it is instructive to study the re-

sponse of AMTR which does not suffer from a systematic association with income (unlike the

ATR). We find no significant response of AMTR to government spending shocks, regardless of

the identification scheme. This shows that we are not systematically confounding government

spending shocks with shocks to the personal marginal income tax rates.

In line with the absence of changes in the AMTR, we find that these spending changes are

deficit financed to a large extent, although the precise magnitude of the deficit response varies

across identification schemes. Note that we do not find any systematic relationship between

the sign of the shock and the method of financing. For instance, under the narrative identifi-

cation contractionary shocks are associated with larger changes in deficits than expansionary

shocks, but the opposite happens under the recursive identification scheme. This indicates

that asymmetry in the method of financing is not be behind the asymmetry in the multiplier.

1.4 Defense vs. Non-defense spending

Perotti (2014) argues that defense spending and non-defense spending have different multipli-

ers. To verify that the defense/non-defense composition of the shocks is not behind our results,

we re-estimated our recursively-identified FAIR model using non-defense government spending

as our measure of government spending.

Figure A5 plots the same results as Figure 2 in the main text but using Non-Defense

spending as the g variable. The results are very similar to the baseline results, if anything

pointing to a larger contractionary multiplier.

1.5 A more general model of state dependence

In the main text we model state dependence by allowing the state of the cycle to affect the scale

of the impulse response but not its shape. A natural question is whether this is general enough.

In particular, a worry could be that the persistence of the effect of a government spending shock

depends on the state of the economy as well. To make progress on this question, recall that

3



c+ is the parameter governing persistence when the shock is positive (and similarly with c−).

To assess whether this persistence really depends on the state of the business cycle, we replace

c+ and c− with the following expressions:

c+t = |c+intercept + c+state ∗ zt| (1)

c−t = |c−intercept + c−state ∗ zt| (2)

zt is an observed business cycle indicator. We keep the same priors as in our benchmark (with

the cintercept parameters inheriting the priors of the original c± parameters except that we now

do not impose any positivity constraint), and the prior on c±state is a normal distribution with

mean 0 and standard deviation 2.

In Table A1, we show the estimated multipliers as a function of the business cycle (we use the

same indicator as in our benchmark analysis). For all cstate parameters, 0 is within the 5th-

95th percentile posterior band, and the estimated multipliers are very similar to our benchmark

case, if anything the state dependence in the contractionary multiplier is slightly stronger.

1.6 State dependence estimated over 1947-2014

To complement Table 3 from the main text, Figures A6 and A7 show how the impulse responses

of government spending and output vary with the state of the cycle.

2 Blanchard and Leigh (2013)

Blanchard and Leigh (BL, 2013) analyze the size of the multiplier from a very different angle.

Using a panel of EU countries over 2009-2012, BL regress the forecast error of real GDP growth

on forecasts of fiscal adjustments. Under rational expectations, and assuming that forecasters

use the correct model of forecasting, the coefficient on the fiscal adjustment forecast should be

zero. However, BL find that there is a significant relation between fiscal adjustment forecasts

and subsequent growth forecast errors, which indicates that the size of the multiplier was
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under-estimated during the last recession. Moreover, the magnitude of the under-estimation

is large: if forecasters had in mind a multiplier of about 0.5, BL’s estimates imply that the

multiplier was 1.6 during 2009-2012.

BL’s approach is an interesting testing ground for our findings. Since we find that only the

contractionary multiplier is above one, BL’s results should be driven by fiscal consolidations

alone, and not by fiscal expansions. As we show below, this is exactly what we find.

Specifically, BL run the regression

Forecast error of ∆Yi,t+1|t = α+ β
(
Forecast of ∆Fi,t+1|t

)
+ εi,t+1 (3)

on a cross-section of European countries where ∆Yi,t+1|t denotes cumulative (year-over-year)

growth of real GDP in economy i and the associated forecast error is ∆Yi,t+1|t− ∆̂Y i,t+1|t with

∆̂Y i,t+1|t the forecast made with information available at date t, and where ∆Fi,t+1|t denotes

the change in the general government structural fiscal balance in percent of potential GDP.

Under the null hypothesis that fiscal multipliers used for forecasting were accurate, the

coefficient β should be zero.2 In contrast, a finding that β is negative indicates that forecasters

tended to be optimistic regarding the level of growth associated with a fiscal consolidation,

i.e., that they under-estimated the size of the multiplier. Using World Economic Outlook

(WEO) forecast data, BL find that β ≈ −1.1 for forecasts over 2009-2012, indicating that the

multiplier was substantially under-estimated by forecasters, and implying that the multiplier

was 1.6 (0.5+1.1) during the recession.3

To test our prediction that BL’s findings is driven by fiscal consolidations, we re-estimate

BL’s baseline specification but allowing for different β coefficients depending on the sign of the

2In other words, information known when the forecasts were made should be uncorrelated with subsequent
forecast errors.

3BL conduct a number of robustness checks to argue that their non-zero β is symptomatic of an under-
estimated multiplier and is not due to other confounding factors. In particular, they verify that their results hold
after controlling for other factors that could trigger both planned fiscal adjustments and lower than expected
growth, or that the forecast error in fiscal adjustment was not correlated with the initial fiscal adjustment
forecast (which would bias β).
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fiscal adjustment –expansionary or contractionary–. Figure A8 shows the corresponding fitted

lines. To avoid confusion, note that a fiscal consolidation in BL’s framework shows up as in

increase in the fiscal balance and thus shows up as positive entries in Figure A8. We can see

that BL’s results are indeed driven by fiscal consolidations. Table A2 presents the regression

results. The β associated with fiscal expansions is not different from zero –suggesting an

expansionary multiplier of about 0.5 during the recession–, but the β associated with fiscal

consolidations is β−G ≈ −1.2 –suggesting a contractionary multiplier of about 1.7–. These

results are close to our estimates on the size of the multiplier during recessions.4

A caveat in our analysis so far is that fiscal adjustments include not only changes in

government purchases but also changes in revenues. To better map BL’s results with ours, we

follow BL and treat separately changes in spending and changes in revenues by running the

regression

Forecast error of ∆Yi,t+1|t = α+βG
(
Forecast of ∆Gi,t+1|t

)
+βT

(
Forecast of ∆Ti,t+1|t

)
+εi,t+1

(4)

where ∆Gi,t+1|t denotes the WEO forecast of the change in structural spending in 2010-11 and

∆Ti,t+1|t denotes the WEO forecast of the change in structural revenue in 2010-11, both in

percent of potential GDP.

Column (3) of Table A2 presents the results of regression (4) where we treat separately fiscal

consolidations and fiscal expansions. In line with our findings, the only significant coefficient

is β−G ≈ 1.6,5 corresponding to a contractionary spending multiplier of about 2 in recessions

(again in line with our findings), whereas β+G is not significantly different from zero, consistent

with an expansionary spending multiplier of about 0.5 in recessions.

4Throughout this exercise, we follow BL in keeping the assumption that forecasters had in mind a multiplier
of 0.5.

5The coefficient β−
G is positive because a fiscal consolidation corresponds to a decrease in government spend-

ing. In contrast, in columns (1) and (2), β− is negative because a fiscal consolidation corresponds to an increase
in the fiscal balance.
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3 SUR-FAIR models and External Instruments

The section describes a fast and efficient procedure we call SUR-FAIR to estimate impulse re-

sponses when the shocks have been previously identified through a narrative approach (possibly

with measurement error), that is when external instruments are available.

Denoting Yt a variable of interest and Gt government spending, the SUR-FAIR model writes

 Yt

Gt

 =

K∑
k=0

 ϕY (k)

ϕG(k)

 ξGt−k +

 uYt

uGt

 (5)

with ϕY and ϕG given by a functional approximation, ut =

 uYt

uGt

 the vector of residuals,

and where ξGt denotes a proxy (i.e., an instrument) for the government spending shock εGt .

The proxy can contain measurement error and is only correlated with the true shocks, that is

we have

ξGt = αεGt + ηt

with ηt i.i.d with variance σ2η. In the language of Instrument Variables, ξGt is correlated with

the shock of interest, but is uncorrelated with any other shocks.

To highlight the bias coming from measurement error only, we ignore the FAIR aspect of

our method here and consider the simpler model where ϕY and ϕG are left unrestricted (i.e.,

no functional parametrization). The model is then a simple Distributed Lags model with a

SUR structure.

Since ξGt is only correlated with the true shock εGt , the maximum-likelihood estimates ϕ̂Y

and ϕ̂G are biased estimates of the true impulse responses ψY and ψG with

ϕ̂G = νψG

ϕ̂Y = νψY
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with the bias given by

ν =
ασ2

εG

α2σ2
εG

+ ασ2η

where σ2
εG

is the variance of the true government spending shocks εGt .

Exactly like in an IV regression, an unbiased estimate ψ̂Y of the impulse response function

ψY can be recovered by appropriately re-scaling ϕ̂Y with ϕ̂G, i.e., from

ψ̂Y =
ϕ̂Y

ϕ̂G(k0)

with k0 some arbitrary horizon. The re-scaling ensures that ν –the term capturing the

measurement-error bias– drops out.

Estimation procedure

Next, we describe the estimation procedure of a SUR-FAIR model like (5). The computational

advantage of this SUR-FAIR approach (compared to a VMA-FAIR model as in section 4) is

that only the impulse responses of interest are parametrized and estimated, yielding a small

parameter space and a very fast estimation procedure.

For ease of exposition, we focus on a univariate model first, since the SUR model is a simple

extension of the univariate case. Recall that for a variable yt we have a model of the form

yt =

K∑
k=0

ψ(k)ξGt−k + ut (6)

with

ψ(k) =

N∑
n=1

ane
−( k−bn

cn
)2

where an, bn and cn can be functions of ξGt−k (in the non-linear case). Unlike the main text

where we approximate each impulse response with one Gaussian function, in this appendix,

we consider directly the more general case with N Gaussian functions.

8



Since {ut} is likely serially correlated by construction, in order to improve efficiency, we

allow for serial correlation in ut by positing that ut follows an AR(1) process. That is, we

posit that ut = ρut−1 + ηt where ηt is Normally distributed N(0, σ2η) with ση a parameter

to be estimated. We set η−1 and η0 to zero, and from (6), it is straightforward to build the

likelihood given a series of previously identified shocks
{
ξGt
}

. For prior elicitation, we use very

loose priors with σa = 10, σb = K and σc = K.

For a multi-variate model, the estimation proceeds along the same lines as above, except

that we take into account that the one-step forecast error ut is now a vector that follows a

VAR(1) process instead of an AR(1) process.

Estimation routine and initial guess

As estimation routine, we use a Metropolis-within-Gibbs algorithm, as described in more details

in section 4. Regarding the initial guess, an interesting advantage of a univariate FAIR is that

it is possible to compute a good initial guess, even in non-linear models:

Obtaining a non-linear initial guess

To obtain a good (possibly non-linear) initial guess in SUR-FAIR models, we use the following

two-step method:

1. Recover the {an} factors given {bn, cn}

Assume that the parameters of the Gaussian kernels –{bn, cn}Nn=1– are known, so that we

have a “dictionary” of basis functions to decompose our impulse response. Then, estimating

the coefficients {an}Nn=1 in (6), a non-linear problem, can be recast into a linear problem that

can estimated by OLS. In other words, compared to a direct non-linear least square of (6) that

treats all three sets of parameters an, bn and cn as free parameters, our two-step approach has

the advantage of exploiting the efficiency of OLS to find {an} given {bn, cn}.
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To see that, consider first a linear model where ψ(k) is independent of ξGt−k. We then

re-arrange (6) as follows:

K∑
k=0

ψ(k)ξGt−k =
K∑
k=0

N∑
n=1

ane
−( k−bn

cn
)2ξGt−k

=

N∑
n=1

an

K∑
k=0

e−(
k−bn
cn

)2ξGt−k.

Defining

Xn,t =
K∑
k=0

e−(
k−bn
cn

)2ξGt−k,

our estimation problem becomes a linear problem (conditional on knowing {bn, cn}Nn=1):

yt =

N∑
n=1

anXn,t + α+ βut (7)

where the {an} parameters can be recovered instantaneously by OLS. Assuming that ut follows

an AR(1), we can estimate the {an} with a NLS procedure.

The method described above is straightforward to apply to a case with asymmetry and

state dependence. Consider for instance the case with asymmetry

an(ξGt−k) = a+n 1ξG≥0 + a−n 1ξG<0.

Then, we can proceed as in the previous section and define the following right-hand side

variables 
X+
n,t =

K∑
k=0

hn(k)ξGt−k1ξ≥0

X−n,t =
K∑
k=0

hn(k)ξGt−k1ξ<0

and use OLS to recover a+n and a−n .

2. Choose {bn, cn}
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To estimate {bn, cn}Nn=1 (and therefore {an}Nn=1 from the OLS regression), we minimize the

sum of squared residuals of (7) using a simplex algorithm.

4 VMA-FAIR models

In this section, we describe the implementation and estimation of structural VMA-FAIR mod-

els, where government spending shocks are identified from a recursive ordering as in Auerbach

and Gorodnichenko (2012). As in the main text, for yt a vector of stationary macroeconomic

variables, the VMA model writes

yt =
K∑
k=0

Ψk(εt−k, zt−k)εt−k (8)

with Ψ given by a functional approximation.

The approach is identical to Barnichon and Matthes (2017) in the case of recursively-

identified monetary shocks, bar one non-trivial extension: We show how to identify (and

estimate) non-linear FAIR models with asymmetric and state dependent effects, i.e., where we

have Ψk = Ψk(εt−k, zt−k).

4.1 Likelihood function

We use the prediction error decomposition to break up the density p(yT |θ) as follows:

p(yT |θ) =

T∏
t=1

p(yt|θ,yt−1). (9)

To calculate the one-step-ahead conditional likelihood function needed for the prediction

error decomposition, we assume that all innovations {εt} are Gaussian with mean zero and

variance one,6 and we note that the density p(yt|yt−1,θ) can be re-written as p(yt|θ,yt−1) =

6The estimation could easily be generalized to allow for non-normal innovations such as t-distributed errors.
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p(Ψ0εt|θ,yt−1) since

yt = Ψ0εt +
K∑
k=1

Ψkεt−k. (10)

Since the contemporaneous impact matrix Ψ0 is a constant, p(Ψ0εt|θ,yt−1) is a straightfor-

ward function of the density of εt.

To recursively construct εt as a function of θ and yt, we need to uniquely pin down the

value of the components of εt from (10), that is we need that Ψ0 is invertible. We impose this

restriction by only keeping parameter draws for which Ψ0 is invertible.7 It is also at this stage

that we impose the identifying restriction that Ψ0 has its first two rows filled with 0 except

for the diagonal coefficients. Finally, to initialize the recursion, we set the first K innovations

{εj}0j=−K to zero.

In the non-linear case where we have Ψk = Ψk(εt−k, zt−k), we proceed similarly. However,

a complication arises when one allows Ψ0 to depend on the sign of the shock while also imposing

identifying restrictions on Ψ0. The complication arises, because with asymmetry the system

of equations implied by (10):

Ψ0(εt−k, zt−k)εt = ut (11)

where ut = yt −
K∑
k=1

Ψkεt−k need not have a unique solution vector εt, because Ψ0(εt), the

impact matrix, depends on the sign of the shocks, i.e., on the vector εt. In section 2.4, we

show that this is not a problem (so that (11) has a unique solution vector εt) in a recursive

identification scheme like the one considered in this paper.

Finally, when constructing the likelihood, to write down the one-step ahead forecast density

p(yt|θ,yt−1) as a function of past observations and model parameters, we use the standard

result (see e.g., Casella-Berger, 2002) that for Ψ0 a function of εt and zt, we have

p(Ψ0(εt, zt)εt|θ,yt−1) = Jtp(εt)

7Parameter restrictions (such as invertibility) are implemented by assigning a minus infinity value to the
likelihood whenever the restrictions are not met.
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where Jt is the Jacobian of the (one-to-one) mapping from εt to Ψ0(εt, zt)εt and where p(εt)

is the density of εt.
8,9

4.2 FAIR estimation algorithm

This section describes our FAIR estimation algorithm in more detail. We are interested in

estimating the parameter vector θ by combining the likelihood function p(yT |θ) with the

prior distribution p(θ). We want to generate N from the posterior by using a multiple-block

Metropolis-Hastings algorithm (Robert & Casella 2004) with the blocks given by the different

groups of parameters in our model (there is respectively one block for the a parameters, one

block for the b parameters, one block for the c parameters and one block for the constant

and other parameters). We use N tune draws to tune the proposal distributions, which we

update every ntune draws during the tuning process. We split the parameter vector into J

non-overlapping blocks θ1, ..., θJ . We denote θ−j the parameters in all blocks but block j.

• estimate a VAR on yT and compute the implied structural MA representation (imposing

a identification scheme that is consistent with the scheme used in the FAIR model).

Compute the parameter value θV AR that minimizes the quadratic distance between the

VAR-implied IRFs and the FAIR IRFs.

• starting from θV AR, use an optimizer to maximize the posterior kernel p(yT |θ)p(θ).10

Denote the resulting parameter estimate by θstart

• for j = 1, ..., J , compute the inverse of the Hessian of the posterior kernel Σj at θstartj

(holding all other blocks fixed at θstart−j ) and use this as the first guess for the variance of

the proposal density in block j

8Recall that we assume that the indicator variable zt is a function of lagged values of yt (so that zt is known
conditional on yt−1) or that zt is a function of variables exogenous to yt (and thus taken as given and known).

9In our case with asymmetry, this Jacobian is simple to calculate, but the mapping is not differentiable at
ε = 0. Since we will never exactly observe ε = 0 in a finite sample, we can implicitly assume that in a small
neighborhood around 0, we replace the original mapping with a smooth function.

10We initialize the parameters capturing asymmetry and state dependence at zero (i.e., no non-linearity).
This approach is consistent with the starting point (the null) of this paper: structural shocks have linear effects
on the economy, and we are testing this null against the alternative that shocks have some non-linear effects.
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• for n = 1 to Ntune

ntune

– for j = 1, ..., J , compute ntune draws for block j using the Metropolis-Hastings,

holding all other parameters fixed at the latest draws for the respective blocks

– if the acceptance probability is smaller than some threshold (say 0.15), multiply the

variance of the proposal density by a positive constant smaller than 1

– if the acceptance probability is larger than some threshold (say 0.5), multiply the

variance of the proposal density by a positive constant larger than 1

• for m = 1 to N

– for j = 1, ..., J generate a draw of θj (conditioning on θ−j) using the Metropolis-

Hastings algorithm

4.3 Prior elicitation

We use (loose) Normal priors centered around the impulse response functions obtained from

the benchmark (linear) VAR. Specifically, we put priors on the a, b and c coefficients that are

centered on the values for a, b and c obtained by matching the impulse responses obtained

from the VAR, as described in the previous paragraph. Specifically, denote a0ij,n, b0ij,n and c0ij,n,

n ∈ {1, N} the values implied by fitting a FAIR model to the VAR-based impulse response of

variable i to shock j. The priors for aij,n, bij,n and cij,n are centered on a0ij,n, b0ij,n and c0ij,n,

and the standard-deviations are set as follows σij,a = 10, σij,b = K and σij,c = K (K is the

maximum horizon of the impulse response function). While there is clearly some arbitrariness

in choosing the tightness of our priors, it is important to note that they are very loose.

4.4 Identifying restrictions in non-linear VMA models

We now detail how to impose the recursive identifying restriction used in the paper, and we

show that the structural shocks can be identified even with asymmetric and/or state dependent
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effects of shocks, i.e., when yt =
∞∑
k=0

Ψk(εt−k, zt−k)εt−k.

As described above, to recursively construct the likelihood at time t, one must ensure that

the shock vector εt is uniquely determined given a set of model parameters and the history of

variables up to time t. Specifically, the system of equations

Ψ0(εt, zt)εt = ut (12)

need to have a unique solution vector εt given ut = yt −
K∑
k=0

Ψk(εt−k, zt−k)εt−1−k. That

is, we must ensure that there is a one-to-one mapping from εt to Ψ0(εt, zt)εt. In the linear

case, this means that we must ensure Ψ0 is invertible. In the non-linear case, ensuring that

the shock vector εt is uniquely determined becomes more complicated, when we allow Ψ0 to

depend on the sign of the shock or on some state variable.11

Consider first the consequences of allowing for state dependence, i.e., when Ψk depends

on the value of the indicator vector zt, so that the likelihood also depends on the value

of the indicator vector zt. Technically, constructing the likelihood of this specification is a

straightforward extension of the linear case, when zt is a function of lagged values of yt.

To see that, note that we use the prediction-error decomposition to construct the likelihood

function. We build a sequence of densities for yt that conditions on past values of yt. Thus,

conditional on past values of yt, zt is known, and as long as Ψ0(zt) is invertible, there is

(one-to-one) mapping from εt to Ψ0εt, and the likelihood can be recursively constructed.12

Consider now the consequences of allowing for asymmetry, i.e., when Ψk depends on the

sign of εt. A complication arises when one allows Ψ0 to depend on the sign of the shock

11Note that if the impact matrix Ψ0 is a constant and does not depend on εt or zt (so that Ψk depends on
εt or zt only for k > 0), then one can construct the likelihood just as in the linear case, because as long as Ψ0

is invertible, there is (one-to-one) mapping from εt to Ψ0εt, and εt is uniquely defined from ut.
12If we wanted to use an indicator function that was not a function of the history of endogenous variables yt−1,

this would also be possible by using a quasi-likelihood approach. That is, we would build a likelihood function
that not only conditions on the parameters, but also the sequence of indicators zt. This would in general not be
efficient because the joint density of zt and yt could carry more information about the parameters in our model
than the conditional density we advocate using. As long as zt is highly correlated with elements of (functions
of) yt, this loss in efficiency will likely be small.
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while also imposing identifying restrictions on Ψ0. The complication arises, because with

asymmetry, the system of equations Ψ0(εt)εt = ut need not have a unique solution vector εt,

because Ψ0(εt), the impact matrix, depends on the sign of the shocks, i.e., on the vector εt.

In this appendix, we show how to address the issue when we allow the identified shocks to

have asymmetric and state dependent effects on the impulse response functions.

4.4.1 Recursive identification scheme

It will be convenient to adopt the following conventions for notation:

• Denote y`,t the `th variable of vector yt and denote y<`t = (y1,t, ..., y`−1,t)
′ the vector of

variables ordered before variable y`,t in yt. Similarly, we can define y≤`t or y>`t .

• For a matrix Γ of size L× L and (i, j) ∈ {1, ..., L}2, denote Γ<i,<j the (i− 1)× (j − 1)

submatrix of Γ made of the first (i− 1) rows and (j − 1) columns. Similarly, we denote

Γ>i,>j the (L − i) × (L − j) submatrix of Γ made of the last (L − i) rows and (L − j)

columns. In the same spirit, we denote Γi,<j the submatrix of Γ made of the ith row and

the first (j − 1) columns. Γi,<j is in fact a row vector. A combination of these notations

allows us to denote any submatrix of Γ. Finally, denote Γij the ith row jth column

element of Γ.

With these notations, we can now state the recursive identifying assumption

Assumption 1 (Partial recursive identification). The contemporaneous impact matrix Ψ0 of

dimension L× L is of the form

Ψ0 =



Ψ<`,<`
0

(`−1)×(`−1)
0<`,`

(`−1)×1
0<`,>`

(`−1)×(L−`)

Ψ`,<`
0

1×(`−1)
Ψ0,``
1×1

0`,>`
1×(L−`)

Ψ>`,<`
0

(L−`)×(`−1)
Ψ>`,`

0
(L−`)×1

Ψ>`,>`
0

(L−`)×(L−`)


.
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with ` ∈ {1, .., L}, Ψ<`,<`
0 and Ψ>`,>`

0 matrices of full rank and 0 denoting a conformable

matrix of zeros.

Assumption 1 states that the shock of interest ε`,t, ordered in `th position in εt, affects the

variables ordered from 1 to `− 1 with a one period lag, and that the first ` variables in yt do

not react contemporaneously to shocks ordered after ε`,t in εt.

We first consider a model with only asymmetry and then a model with asymmetry and

state dependence.

4.4.2 Asymmetric impulse response functions

Proposition 1. Consider the non-linear moving average model

Ψk(εt−k) = Ψk(ε`,t−k) (13)

=
[
Ψ+
k 1ε`,t−k>0 + Ψ−k 1ε`,t−k<0

]
, ∀k ∈ {0, ..,K}, ∀t ∈ {1, .., T} (14)

with ` ∈ {1, .., L}, ε`,t, the `th structural shock in εt and with Ψ0 satisfying Assumption 1.

Then, given {yt}Tt=1, given the model parameters and given K initial values of the shocks

{ε−K ...ε0}, the series of shocks {εt}Tt=1 is uniquely determined.

Proof. We first establish the following lemma:

Lemma 1. Consider a matrix Γ that can be written as

Γ =

 A B

C D


where A,B,C and D are matrix sub-blocks of arbitrary size, with A a non-singular squared
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matrix and D−CA−1B nonsingular. Then, the inverse of Γ satisfies

Γ−1 =

 A−1+A−1BF−1CA−1 −A−1BF−1

−F−1CA−1 F−1


with F = D−CA−1B.

Proof. Verify that ΓΓ−1 = I.

We prove Proposition 1 by induction, so that given past shocks {εt−1−K , ..., εt−1} (and

given model parameters {Ψk}Kk=0), we will prove that the system

ut = Ψ0(ε`,t)εt (15)

with ut = yt −
K∑
k=0

Ψk(ε`,t−1−k)εt−1−k, has a unique solution vector εt.

Notice that (15) implies the sub-system with ` equations

u≤`t =

 Ψ<`,<`
0 0<`,1

Ψ`,<`
0 Ψ0,``(ε`,t)

 ε≤`t (16)

and notice that the matrix in (16) depends on ε`,t only through the scalar Ψ0,``(ε`,t). Denoting

A ≡ Ψ<`,<`
0 a (`− 1)× (`− 1) invertible matrix (from Assumption 1), C ≡ Ψ`,<`

0 a 1× (`− 1)

matrix, B ≡ 0 of dimension (`− 1) × 1, and D(ε`,t)≡Ψ0,``(ε`,t) the (`, `) coefficient of Ψ0 (a

scalar), we can use Lemma 1 to invert the system (16) and obtain

ε≤`t =
1

D(ε`,t)

 D(ε`,t)A
−1 0<`,1

−CA−1 1

u≤`t . (17)

The last row of (17) provides the equation ε`,t = 1
D(ε`,t)

( −CA−1 1 )ut, which defines

ε`,t. Since the right hand side of that equation only depends on ε`,t through D(ε`,t), the sign

of the right hand side depends on ε`,t only through the sign of D(ε`,t) = Ψ0,``(ε`,t). But since
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Ψ0,``(ε`,t), the sign of the contemporaneous effect of the shock ε`,t on variable yl,t, is posited to

be positive as a normalization, the sign (and the value) of ε`,t is uniquely determined from the

last row of (17). Then, with Ψ<`,<`
0 and Ψ>`,>`

0 invertible, (15) has a unique solution vector

εt.

Proposition 1 ensures that the system (11) has a unique solution vector, even when the

shock ε`,t, identified from a recursive ordering, triggers asymmetric impulse response functions.

With Proposition 1, we can then construct the likelihood recursively. To write down the

one-step ahead forecast density p(yt|θ,yt−1) as a function of past observations and model

parameters, we use the standard result (see e.g., Casella-Berger, 2002) that for Ψ0 a function

of εt, we have

p(Ψ0(ε`,t)ε`,t|θ,yt−1) = Jtp(εt)

where Jt is the Jacobian of the (one-to-one) mapping from εt to Ψ0(εt)εt and where p(εt) is

the density of εt.
13

Finally, note that while we considered the case of a partially identified model, we can

proceed similarly for a fully identified model with Ψ0 lower triangular and show that the shock

vector εt is uniquely determined by (11) even when all shocks have asymmetric effects.

4.4.3 Asymmetric and state-dependent impulse response functions

We now consider a model with asymmetry and state dependence. For clarity of exposition,

we consider the simpler case of a univariate state variable zt ∈ [z, z] with z = min
t∈[1,T ]

(zt) and

z = max
t∈[1,T ]

(zt). The following proposition establishes the condition under which system (11)

has a unique solution even when the identified shock ε`,t has asymmetric and state dependent

effects.

13In our case with asymmetry, this Jacobian is simple to calculate, but the mapping is not differentiable at
ε`,t = 0. Since we will never exactly observe ε`,t = 0 in a finite sample, we can implicitly assume that in a small
neighborhood around 0, we replace the original mapping with a smooth function.
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Proposition 2. Consider the non-linear moving average model

Ψk(εt−k, zt−k) =
[
Ψ+
k (zt−k)1ε`,t−k>0 + Ψ−k (zt−k)1ε`,t−k<0

]
, ∀k ∈ {0, ..,K}, ∀t ∈ {1, .., T}

(18)

with zt ∈ [z, z], ` ∈ {1, .., L}, ε`,t, the `th structural shock in εt, and with Ψ0 satisfying

Assumption 1. Then, given {yt}Tt=1, given the model parameters and given K initial values

of the shocks {ε−K ...ε0}, the series of shocks {εt}Tt=1 is uniquely determined provided that

sgn
(
Ψ+

0,``(zt)
)

= sgn
(
Ψ−0,``(zt)

)
> 0, ∀zt ∈ [z, z].

Proof. The proof proceeds exactly as with Proposition 1 and consists in showing that the

system ut = Ψ0(ε`,t, zt)εt determines a unique solution vector εt. As with Proposition 1, this

is the case as long as Ψ0,``(ε`,t, zt) > 0 regardless of the value of zt.

Note that the restriction implied by Proposition 2 is very mild, in that it is in fact an

existence condition for the moving average model, since the diagonal coefficients of Ψk are

posited to be positive as a normalization. For instance, in our empirical application, it means

that that the coefficient of the impact response of G to a G shock is always positive, regardless

of the state of the cycle.

With Proposition 2 in hand, we can then construct the likelihood recursively as described

in the previous section.

5 Auto-regressive models and asymmetric DGPs

Baseline VARs are linear models, but a popular way to introduce non-linearities in VARs is

by means of regime-switching models, notably threshold VARs (e.g., Hubrich and Teräsvirta,

2013) and Markov-switching VARs (Hamilton, 1989). However, while regime-switching VARs

can capture certain types of non-linearities, notably state dependence (whereby the value of

some state variable affects the impulse response functions), regime-switching VARs face two

major issues when the underlying data-generating process (DGP) features asymmetric effects
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of shocks (whereby the impulse response to a structural shock depends on the sign of that

shock): (i) shock identification within the VAR is not possible, (ii) even if the underlying

shocks were known, there is no parsimonious regime-switching auto-regressive representation

of an asymmetric DGP.

To make our point, we consider an asymmetric DGP like the one considered in the main

text

yt =
K∑
k=0

ψ±k (εt−k)εt−k (19)

where

ψ±k (εt−k) = ψ+
k I(εt−k > 0) + ψ−k εt−kI(εt−k ≤ 0).

ψ+ is the impulse response triggered by a positive shock and ψ− the impulse response triggered

by a negative shock.

5.1 Shock identification

Intuitively, the identification problem with a regime-switching VAR boils down to the fact

that the parameters of that model are, as of period t, independent of the shock εt, the variable

responsible for the non-linearity (i.e., triggering the regime change).

More specifically, suppose a researcher had access to the true one-step ahead forecast errors

ut (so that misspecification of the conditional mean is for now not an issue, see the next section).

With a VMA representation like the one we used in the paper, identifying the structural shocks

of interest εt boils down to solving the equation

ut = ψ±0 (εt)εt (20)

where ψ±0 (εt) is the impact coefficient that depends on the sign of εt. By contrast, somebody
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working with regime switching models would try to solve an equation of the form

ut = ψ̃(st)ε̃t (21)

where st is the state variable of the regime switching model. It can be either a function of

lagged endogenous variables (as in a threshold model) or a random variable governed by a

discrete state Markov chain (as in a Markov-switching model). For the latter, the transition

probabilities of the discrete Markov state are either assumed to be exogenous (and independent

of the other shocks in the model, in particular independent of εt) or dependent only on lagged

endogenous variables (e.g., Sims et al., 2008). Importantly, for either case —a threshold model

or a Markov-switching model—, st ends up independent of εt and hence identification of the true

value of εt, i.e., solving (21), is not possible (unless we are back to the symmetric (linear) case

where ψ±0 (εt) does not depend on εt): the researcher can not find a ε̃t such that ε̃t = εt. Thus,

when shocks have asymmetric effects, it is not possible to use a regime-switching VAR and

identify stuctural shocks within the model, e.g., by using a recursive ordering as in Auerbach

and Gorodnichenko (2012).

5.2 Approximating asymmetric DGPs with AR models

When the shocks have been independently identified, for instance through a narrative approach,

shock identification is not an issue. However, even in that case a regime-switching model cannot

parsimoniously capture a DGP with asymmetric impulse responses.

To make this point, we consider a simple asymmetric Moving-Average (MA) model and

show that there is no parsimonious regime-switching Auto-Regressive (AR) representation of

that DGP. Specifically, consider as DGP a univariate asymmetric model14

yt =
H∑
k=1

(ρ±(εt−k))
k εt−k (22)

14We consider a univariate model for clarity of exposition, but the argument would be identical with a
multivariate model.
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with ρ±(εt−k) = ρ+I(εt−k > 0) +ρ−I(εt−k ≤ 0) and ρ+ < 1 and ρ− < 1 the model parameters.

Model (22) is like a generalized AR(1), in that the effect of a shock εt on y decays geometrically,

but the decay rate depends on the sign of the shock εt. The model reduces to a standard

(symmetric) AR(1) when ρ+ = ρ−.

Clearly it is not possible to invert (22), i.e., it is not possible to represent (22) with an

AR model, unless the MA is symmetric (ρ+ = ρ−). The more interesting question however is

whether it is possible to represent (22) as a regime-switching AR model of the form

yt = α(st)yt−1 + β(st)εt (23)

where st denotes the state at time t and where εt is known at time t (that is assuming that

the shocks have been independently identified, to avoid the problem highlighted in the previ-

ous section). This Regime-Switching AR (RSAR) representation allows for a new set of AR

coefficients in each state. The question is then whether it is possible to represent (22) with a

reasonable number of states.

Under standard regularity conditions, (23) will have a moving average representation of

the form

yt = β(st)εt +
∞∑
k=1

 k∏
j=1

α(st−j)

β(st−k)εt−k (24)

which implies that the RSAR model will capture (22) if the coefficients {α(st−k),β(st−k)}

satisfy the relation 
β(st−k) = ρ±(εt−k)

α(st−k) =
(ρ±(εt−k))

k∏k−1
j=1 α(st−j)

. (25)

This recursive definition of {α(st−k),β(st−k)} implies that, in order for the RSAR model to

capture the asymmetric MA process (22), a new state variable is needed for each new shock

realization. Given k − 1 state variables {st, ..., st−k+1}, the effect of the t− k shock εt−k on yt

cannot be captured by these k − 1 state variables. Instead, a new state variable st−k needs to
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be introduced at time t− k with α(st−k) and β(st−k) given by (25).

Since ρ+ < 1 and ρ− < 1, shocks only have a transitory effect on y, and only a finite

number of state variables are needed to approximate (22) with a RSAR model. However,

except for highly transitory processeses (and unlike the processes driving government spending

and output), a substantial number of states will be needed, far larger than the 2 to 3 number

of regimes encountered in typical applications (e.g., Hubrich and Terasvirta, 2013). To give an

order of magnitude, with a persistence parameter of .8 (roughly representative for quarterly

macro data) the effect of a shock is only 10 percent of its initial value after 10 periods, implying

that about 210 different regimes would be needed to capture a simple asymmetric AR(1) model

like (22), a prohibitively large parameter space.

6 Solution Method of the Theoretical Model

As explained in the main text, the model can be summarized by the following three equations:

Cet Yt + Cu (1− Yt) = Yt −Gt

(Cet )−σ = βR̄Πφπ
t exp{zt}Et

{(
Cet+1

)−σ
Π−1t+1

[
(1− δ) + δ

(
Cu

Cet+1

)−σ]}
(
Yt − Ȳ

)
[Πt − γ (1− Yt)] = 0

To solve the model, we approximate the expectation term on the RHS of the consumption

Euler equation through a Chebyshev polynomial (of order 7) for each of the two state variable

(zt, Gt), i.e. we approximate the function

X (zt, Gt) ≡ Et

{(
Cet+1

)−σ
Π−1t+1

[
(1− δ) + δ

(
Cu

Cet+1

)−σ]}
.

Approximating the expectation term rather than the policy functions is convenient in the

presence of occasionally binding constraint, since the expectation term is a smooth function,

while the policy functions would display some kinks at points where the constraint becomes

24



binding.

For both state variables (the exogenous shocks) we build a grid of 7 Chebyshev nodes,

so that the polynomial basis function are orthogonal at the gridpoints between -3 and +3

standard deviations of the shocks.

The numerical algorithm is the following:

1. Guess of the coefficient of the polynomial function and calculate X(·) at all grid points.

2. Given the values of X(·), calculate the policy functions (i.e. the values at all gridpoints)

of output, inflation, and consumption of employed households using the three equations

of the model.

3. Using the policy functions for consumption and inflation, calculate the implied expecta-

tion term in the consumption Euler equation, integrating over 100 Gaussian quadrature

nodes for innovations of the two shock processes.

4. If the difference between the guessed functions and the expectations calculated in point

3) is below a tolerance level, stop. Otherwise, iterate on 1) - 4) until convergence.

In practice, the solution is found using a quasi-Newton rootfinding method, iterating on

the coefficients of the polynomial until the residual calculated in point 4) is below the tolerance

level at all gridpoints.

As an accuracy test, we calculated the Euler residuals at 500 equally spaced nodes (not on

the original grid) in the domain of the state variables. As illustrated in Figure A9, the Euler

residuals are smaller than 10−6 throughout the entire domain, with a mean value below 10−7.

7 Model impulse responses

Figure A10 plots the model impulse responses to a government spending shock, showing how

government spending can have asymmetric effects on output.15. Following an expansionary

15The same reasoning also applies for state-dependence in the multiplier
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shock to government spending (blue line), output goes up and unemployment goes down.

In this case, total private consumption is crowded out by public spending (top-right panel,

dashed-blue line). As discussed in the main text, government spending stimulates total (pri-

vate) consumption through the “consumption gap” effect. However, with convexity in the

(AS) curve inflation goes up strongly following the increase in aggregate demand (left-bottom

panel, dashed-blue line), which leads to a strong interest rate response by the central bank and

thereby to an ultimate contraction in consumption. In contrast, following a contractionary

spending shock, output declines and unemployment increases, which lowers total private con-

sumption through the “consumption gap” effect (for comparability, the impulse responses to

contractionary shocks are multiplied by -1). However, this time the reaction of the central bank

is not enough to overcome the “consumption gap” effect: with convexity in the (AS) curve

the response of inflation is milder (bottom-left panel, plain-red line), and thus the associated

interest rate response is not enough to avoid a decline in consumption.

8 Government Spending Multiplier and Persistence

As is well known, one factor that may affect the size of the government spending multiplier is

whether shocks are expected to be temporary or persistent.

For instance, standard New-Keynesian models (see e.g., Gaĺı et al., 2007; Christiano et al.,

2011; Woodford, 2011) predict that more persistent government spending shocks are associated

with smaller fiscal multipliers.16 This is because consumption at any point in time depends

solely on the path of current and future real interest rates (as indicated by the consumption

Euler equation). For example, if the central bank follows a standard Taylor rule, an increase in

government spending leads to higher inflation and interest rates (both nominal and real), and

such an increase in real interest rates leads to a fall in consumption, thus partially counteracting

16Standard neo-classical models predict that increased persistence of government purchases leads to a larger
impact effects on output (see e.g. Barro (1989) and Baxter and King 1993), mainly due to stronger wealth
effects.
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the effects of the government spending increase. When the shock is temporary, only the current

real rate increases, leading to a small reduction in current consumption. Instead, if the shock

is persistent, both the current and the future real rates would increase, thus leading a larger

drop in current consumption. For these reasons, the fiscal multiplier is larger for temporary

shocks than for persistent shocks.

In that respect, one potential explanation for our empirical findings could be that expan-

sionary shocks have more persistent effects on government spending than contractionary ones,

and for that reason the corresponding multiplier is smaller. Our empirical analysis is not

conclusive about this aspect. Expansionary shocks seem to have less persistent effects on gov-

ernment spending than contractionary shocks under the recursive identification scheme, but

the opposite happens under the narrative identification scheme (Figs 2 and 3 in the main text).

Nonetheless, we can use our theoretical model to assess quantitatively the relationship

between persistence and multipliers. To that end, Figure A11 plots the spending multiplier

(sum over 20 quarters) for different degrees of ρg —the parameter controlling the persistence of

government spending—, both for expansionary and contractionary shocks, assuming the econ-

omy is initially at the average level of unemployment. The quantitative effects of persistence

can be gauged by looking at the size of the contractionary multipliers.17 For example, as the

persistence increases from 0.5 to 0.9 —a wide range of plausible values for ρg— the multiplier

declines from a value of about 1.4 to about 1.2. This suggests that the difference in the degree

of persistence could contribute, but would not suffice, to explain the large asymmetries between

contractionary and expansionary multipliers found in the data.

The comparison between the contractionary and expansionary multiplier in Figure A11

also suggests that the higher is ρg, the larger is the asymmetry between the multipliers. This

17Starting from a situation where the economy is at (or below) full-employment, a contractionary spending
shock will push (or continue to push) the economy below full employment, and nominal rigidities will start
binding —eq. (14) in the main text—. Thus, the effects of ρg on the multiplier is not interacting with the
asymmetric nature of downward wage rigidities. In contrast, after an expansionary shock, the nominal rigidities
may or may not be binding, because a positive shock may or may not push the economy to full employment,
at which point the multiplier is zero. This mechanism will blur the effect of persistence on the multiplier. For
instance, the more persistent is the expansionary shock, the more likely it is that the economy operates at full
employment (where the multiplier is zero), before the shock completely vanishes.
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is due to the interaction between the effects of persistence in government spending and wage

rigidities. In response to a positive spending shock, the more persistent is the shock the more

time the economy operates at high employment level, where wage rigidities are less binding,

crowding-out is larger and the multiplier is relatively small. Vice versa, in response to a

persistent negative shock, the economy stays longer at higher level unemployment, where wage

rigidities are more severe and crowding-out weaker, and the multiplier is relatively large.
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Hubrich, K. and T. Teräsvirta (2013). Thresholds and smooth transitions in vector autoregres-

sive models. VAR Models in Macroeconomics–New Developments and Applications: Essays

in Honor of Christopher A. Sims, 273–326.

Perotti, R. (2014). Defense government spending is contractionary, civilian government spend-

ing is expansionary. Technical report, National Bureau of Economic Research.

29



Ramey, V. A. and S. Zubairy (2018). Government spending multipliers in good times and in

bad: evidence from us historical data. Journal of Political Economy 126 (2), 850–901.

Sims, C. A., D. F. Waggoner, and T. Zha (2008). Methods for inference in large multiple-

equation markov-switching models. Journal of Econometrics 146 (2), 255–274.

Woodford, M. (2011). Simple analytics of the government expenditure multiplier. American

Economic Journal: Macroeconomics 3 (1), 1–35.

30



1890 1920 1950 1980 2010
0

0.1

0.2

0.3

0.4

0.5

 

 

1966 1976 1986 1996 2006 2016

0.15

0.2

0.25

 

 
1966−20141890−2014

Figure A1: Government spending to potential output over 1890-2014 (left-panel) and 1966-
2014 (right-panel)
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Figure A2: Recursive identification scheme — VAR, 1966-2014. Impulse response func-
tions (in percent) of government spending and output to a government spending shock along
with the corresponding multiplier M. Recursive identification as in Auerbach and Gorod-
nichenko (2012). Estimates from a standard VAR (plain-line) or from a linear FAIR with one
Gaussian basis function (dashed line). The shaded areas cover 90% of the posterior probability
of the VAR estimates.
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Figure A3: Narrative identification scheme, FAIR, 1912-2014. Impulse response func-
tions (in percent) of government spending, average tax rate (“ATR”), the average marginal
tax rate (“AMTR”) and the fiscal deficit “Deficit”) to a government spending shock. The
shaded areas cover 90% of the posterior probability. For ease of comparison between the top
and bottom panels, the responses to a contractionary shock are multiplied by -1 in the bottom
panels.
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tions (in percent) of government spending, average tax rate (“ATR”), the average marginal
tax rate (“AMTR”) and the fiscal deficit “Deficit”) to a government spending shock. The
shaded areas cover 90% of the posterior probability. For ease of comparison between the top
and bottom panels, the responses to a contractionary shock are multiplied by -1 in the bottom
panels.
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Figure A5: Recursive identification scheme, 1966-2014. Impulse response functions (in
percent) of non-defense government spending and output to a government spending shock
identified from a timing restriction. Estimation from a FAIR model (plain line). The shaded
areas cover 90% of the posterior probability. For ease of comparison between the top and
bottom panels, the responses to a contractionary shock are multiplied by -1 in the bottom
panels.
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Figure A6: Recursive identification scheme, FAIR, 1947-2014. Effect of (detrended)
unemployment (UR) on the impulse responses of government spending and output to a gov-
ernment spending shock. “UR high” , “UR average” and “UR low” respectively denotes values
of the detrended UR of +2, 0 and −1. With our modeling of state dependence (whereby the
level of slack only changes the amplitude of the impulse response), the impulse response of
government spending, normalized to peak at one, is constant. The thin lines cover 90% of
the posterior probability. For ease of comparison between the top and bottom panels, the
responses to a contractionary shock are multiplied by -1 in the bottom panels.

36



0 10 20
0

0.5

1

1.5
G

E
x
p
a
n
si
o
n
a
ry

sh
o
ck

0 10 20
−0.5

0

0.5

1

1.5

2
Y, UR low

0 10 20
−0.5

0

0.5

1

1.5

2
Y, UR average

0 10 20
−0.5

0

0.5

1

1.5

2
Y, UR high

0 10 20
0

0.5

1

1.5
G

C
o
n
tr
a
ct
io
n
a
ry

sh
o
ck

0 10 20
−0.5

0

0.5

1

1.5

2
Y, UR low

0 10 20
−0.5

0

0.5

1

1.5

2
Y, UR average

0 10 20
−0.5

0

0.5

1

1.5

2
Y, UR high

Figure A7: Narrative identification scheme, FAIR, 1947-2014. Effect of (detrended)
unemployment (UR) on the impulse responses of government spending and output to a gov-
ernment spending shock. “UR high” , “UR average” and “UR low” respectively denotes values
of the detrended UR of +2, 0 and −1. With our modeling of state dependence (whereby the
level of slack only changes the amplitude of the impulse response), the impulse response of
government spending, normalized to peak at one, is constant. The thin lines cover 90% of
the posterior probability. For ease of comparison between the top and bottom panels, the
responses to a contractionary shock are multiplied by -1 in the bottom panels.
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Figure A8: Blanchard and Leigh (2013) approach: Regression of forecast error for real
GDP growth in 2010 and 2011 relative to forecasts made in the spring of 2010 on forecasts of
fiscal consolidation for 2010 and 2011 made in spring of year 2010. The lines depict the regres-
sion lines for respectively fiscal consolidation (increase in budget surplus, blue line) and fiscal
expansion (decrease in budget surplus, red line). Note that a fiscal consolidation corresponds
to an increase in the fiscal balance and thus enters as a positive entry on the x-axis.
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Figure A9: Euler Residuals. The figure plots the Euler residuals resulting from our solu-
tion algorithm on 500 points in the domain of the government spending shocks. Each line
corresponds to a different realization of the discount factor shock
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Figure A10: Impulse responses to a Government Spending Shock. The figure plots
the impulse responses to a government spending shock for expansionary (blue dashed line)
and contractionary (red solid line). Each line represents the average impulse response across
realizations of the discount factor shock, which determine the state of the economy when the
government shock hits. For ease of comparison, the responses to a contractionary shock are
multiplied by -1.
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Figure A11: Multipliers and Persistence of Government Spending Process in Theo-
retical Model. The figure plots the government spending multiplier (sum of 20 quarters) for
expansionary (blue line with circles) and contractionary (red line with crosses) as a function
of the autocorrelation of the government spending process ρg. In all cases, the multiplier is
calculated assuming that the unemployment rate is initially at its average value (as implied by
the initial value of the discount factor shock).
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