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Abstract

Which shocks drive U.S. real GDP volatility? We address this question by

identifying a vector autoregressive (VAR) model via non-Gaussianity. A simple

reparameterization of a VAR with t-distributed shocks yields the first Gibbs

sampler for this model, thereby accommodating larger VARs. Applying our

framework to U.S. data shows that no single shock dominates GDP fluctuations:

a weakly inflationary demand shock matters at short horizons, while a supply

shock takes over at longer horizons. Crucially, no single shock explains more

than 20 percent of GDP volatility at any horizon, indicating that multiple shocks

shape U.S. GDP.
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1 Introduction

Since at least Tinbergen (1939), economists have recognized that economic outcomes

depend on both endogenous responses to economic conditions and unexpected changes

– or shocks – that we want to interpret. A natural question then arises: Which shocks

account for the bulk of business cycle fluctuations? In a key contribution, Angeletos

et al. (2020) provide a contemporary answer. They use structural vector autoregres-

sions (SVARs) to identify a shock that maximizes fluctuations in key measures of U.S.

real activity. Specifically, they use a variant of the “max-share” approach of Uhlig

(2004), which identifies a shock that maximizes the share of the forecast error variance

for a given variable. However, this identification scheme delivers an estimated shock

series that can be a linear combination of multiple underlying structural shocks. Wolf

(2020) refers to this phenomenon as the “masquerading problem” in sign-restricted

VAR settings, and Francis and Kindberg-Hanlon (2022) show that this issue can also

arise with the max-share identification scheme.1

To offer a different perspective on what drives business cycles and GDP more

broadly, we use the same observables as Angeletos et al. (2020) but adopt alternative

identification assumptions. In particular, we assume that US economic data are non-

Gaussian – specifically, that structural shocks follow independent t-distributions – so

that all SVAR parameters, including the shocks, are automatically identified. This

result follows from Comon (1994), who shows that if at most one shock is Gaussian,

the SVAR is identified up to sign and column permutations of the impact matrix, a

normalization we solve in this paper.2 After identifying these shocks, we compute vari-

ance decompositions at various horizons to determine which shocks explain most of the

variance of real GDP at business cycle frequencies. Importantly, while our assumption

of non-Gaussianity serves as an identification tool, it is also testable: we can check

ex-post whether a Gaussian model would fit the data better. The estimated degrees

of freedom of the t-distributed shocks measure the strength of identification – higher

degrees of freedom mean the data are closer to Gaussian, leaving less information to

exploit. We use a Bayesian approach, so weaker identification (i.e. larger degrees of

freedom) naturally leads to an increase in the width of our posterior intervals.3

1Angeletos et al. (2020) acknowledge this and refer to their identified shock as a “reduced-form”
shock. Unless one adopts strong assumptions about which shocks truly drive the data, this leaves the
door open to the masquerading problem.

2If only a subset of structural shocks is non-Gaussian, those shocks remain identified (Maxand,
2020).

3For a frequentist approach that provides correct coverage when the deviations from Gaussianity
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Applying this method to the same data as Angeletos et al. (2020) reveals a shock

whose impulse responses resemble their “main business cycle shock,” yet it does not

account for the majority of GDP fluctuations. Nevertheless, among the shocks we

identify, it remains one of the two most influential shocks for GDP, explaining 15-20

percent of GDP variance across horizons. The other key shock, especially relevant

at longer horizons, moves total factor productivity and resembles a supply shock,

consistent with traditional real-business-cycle (RBC) models (Kydland and Prescott,

1982).

The existing literature that uses non-Gaussianity for identification in VARs (e.g.

Brunnermeier et al., 2021) has faced technical challenges that have limited the scope of

applications. In particular, Bayesian inference has relied on the Metropolis-Hastings

algorithm to estimate the matrix capturing how variables respond to the structural

shocks, which is inefficient at exploring large parameter spaces and cannot handle

the larger VARs commonly used in Gaussian settings.4 Furthermore, while non-

Gaussianity removes any meaningful economic identification issues, the aforementioned

impact matrix is only identified up to scale and sign. If not handled properly, lack

of normalization can produce misleading posterior uncertainty estimates (Hamilton

et al., 2007). Existing solutions to this problem are generally only applicable in mod-

els with relatively few observables. Relative to this existing literature, the techni-

cal contributions of our paper are (i) to develop a convenient sampling procedure

for a non-Gaussian SVAR model in which the structural shocks are assumed to be

t-distributed, and (ii) to provide a new normalization algorithm to tackle the sign

and column switches of the impact matrix of the structural shocks, extending the

likelihood-preserving normalization of Waggoner and Zha (2003b) and deriving a new,

efficient algorithm to implement this normalization. Notably, our Gibbs sampler and

normalization algorithm work for large-scale VARs, which have grown in popularity

(Bańbura et al., 2010).

Student t distributions have attracted substantial interest in the literature, not

only because they provide a natural framework to identify structural shocks, but also

thanks to their ability to model fat tails, compared to Gaussian models (Cúrdia et al.,

2014, Chiu et al., 2017). Previous important contributions that exploit t-distributed

shocks for identification in SVARs include Lanne and Luoto, 2020, and Anttonen

are small, see Hoesch et al. (2024)
4Bayesian inference is especially useful in VAR settings because of the regularization that a judi-

cious prior choice allows. In larger VAR systems direct maximization of the likelihood is generally
not feasible, so full-information frequentist inference is not commonly used in our setting.
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et al., 2024. Our paper also relates to an important recent contribution by Jarociński

(2024), who identified monetary policy shocks in the US using t-distributed shocks.

In the forecasting literature, researchers often rely on a recursive ordering to estimate

VAR models with independent t-distributed shocks equation by equation (Clark and

Ravazzolo, 2015; Chiu et al., 2017; Chan, 2020), which scales well to larger VARs.5

However, this assumption imposes strong timing restrictions on the shocks’ within-

period effects, making it less suitable for structural analysis.6

We follow a Bayesian approach and propose a new parametrization of the model

that allows us to derive in closed form the conditional posterior distributions of the

parameters that currently require a Metropolis-Hastings step. By doing so, we are in

a position to propose a Gibbs sampler to explore the joint posterior distribution of

the model. To the best of our knowledge, this is the first paper that develops a Gibbs

sampler for SVAR models with t-distributed structural shocks. Gibbs samplers exploit

conjugate prior distributions so that the conditional posterior in each block is of known

form. Because we want all our identification to come from the non-Gaussianity of the

data, we derive a Gibbs sampler that puts an uninformative prior on the effects of the

structural shocks on impact.

Our paper relates to the broader literature on non-Gaussianity in SVARs, even

when shocks are not assumed to be t-distributed. For instance, Braun (2023) and

Herwartz (2018) use non-parametric procedures, while Drautzburg and Wright (2023)

combine moment conditions on higher order moments with sign restrictions. Using

these higher order moments, they can detect whether the identified shocks are inde-

pendent and discard parameter values that would imply shocks that are not indepen-

dent. We also maintain the assumption of independent shocks to aid identification.7

Andrade et al. (2023) present a methodology to directly use flexible restrictions on

higher moments and combine those with standard sign restrictions. By assuming t-

distributed shocks, our approach provides direct estimates of the degrees of freedom,

which measure deviations from Gaussianity. It is also more parsimonious than non-

parametric methods, though any parametric assumption risks misspecification. We

therefore provide Monte Carlo evidence that our method still performs well even if the

5Another approach that allows researchers to estimate the model equation by equation is to
introduce as many Gaussian residuals as observables, in addition to any non-Gaussian shocks, thus
effectively introducing a factor structure in forecasts errors (Prüser, 2024).

6This is the same argument that has traditionally been levied against early SVAR studies that
assumed exactly such a relationship between shocks and variables (Sims, 1980).

7For theoretical results on what conditions can replace independence in non-Gaussian models to
achieve identification, see Mesters and Zwiernik (2024).
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true process is not t-distributed, confirming previous results in the literature (Sims,

2021; Gourieroux et al., 2017). Our paper extends the Gibbs-sampling framework

for SVARs with Gaussian errors (Waggoner and Zha, 2003a) to a non-Gaussian set-

ting. Like recent work on Gibbs samplers for structural VARs with stochastic volatility

(Chan et al., 2024; Wu and Koop, 2023), our approach is invariant to variable ordering.

The paper is structured as follows: Section 2 provides an illustration that highlights

how higher moments help with identification in non-Gaussian settings. Section 3

then presents details of our VAR model, while Section 4 presents our results on US

GDP. Section 5 reports the results on Monte Carlo simulations using our methodology.

Section 6 concludes.

2 An Illustration

In this section, we use a bivariate model to illustrate how higher moments iden-

tify structural parameters when shocks follow independent t-distributions rather than

Gaussian distributions. We consider the following data generating process:(
y1t

y2t

)
=

(
b11 b12

b21 b22

)(
ϵ1t

ϵ2t

)
, (1)

where ϵt = (ϵ1t, ϵ2t) are independently t distributed structural shocks with degrees of

freedom v = (v1, v2)
′. We normalize the variance of these shocks to 1 (which means

that we assume the variance is finite and thus v1, v2 > 2). Model (1) can be rewritten

as

yt = BcQϵt, (2)

where we define Σ = BB′ as the covariance matrix of yt, Bc the Cholesky decompo-

sition of Σ, and Q = B−1
c B an orthogonal matrix so that QQ′ = I. Finally, we define

the individual elements of B as B =

(
b11 b12

b21 b11

)
. Our goal is to identify (B,v), or

equivalently, (Bc, Q,v).

Gaussianity appears here as a special case with vi = ∞, i = 1, 2. Under Gaus-

sianity, only second moments distinguish different parameter values of the model, so

identification relies on Σ = BB′ because higher moments do not vary across Gaussian

distributions. The following restrictions on elements of B hold under both Gaussianity
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and more generally with a t-distribution:

E(y21t) = b211 + b212, (3a)

E(y1ty2t) = b11b21 + b12b22, (3b)

E(y22t) = b221 + b222. (3c)

Because these three equations involve four unknowns, Bc is identified, but B is not

(Kilian and Lütkepohl, 2018). Thus, in the Gaussian setting, we would need to impose

a restriction (e.g., b12 = 0 to obtain B = Bc).

We now demonstrate how non-Gaussianity helps with identification of B. To do

so, in this example, we assume higher moments exist and show that information in

these moments can be exploited. It is important to note, however, that identification

via non-Gaussianity does not rely on the existence of higher moments, see e.g. Kagan

et al. (1973), ch. 10, Eriksson and Koivunen (2004). We assume their existence only

to streamline the exposition in this example. Since we assume symmetric distributions

(Gaussian or t), third moments vanish, so any arguments based on moments has to use

at least fourth moments. In this bivariate example, the relevant expressions (derived

in the Online Appendix) are:

E(y41t) = b411κ1 + 6b211b
2
12 + b412κ2, (4a)

E(y31ty2t) = b311b21κ1 + 3b11b
2
12b21 + 3b211b12b22 + b312b22κ2, (4b)

E(y21ty
2
2t) = b211b

2
21κ1 + b212b

2
21 + 4b11b12b21b22 + b211b

2
22 + b212b

2
22κ2, (4c)

E(y1ty
3
2t) = b11b

3
21κ1 + 3b11b21b

2
22 + 3b12b

2
21b22 + b12b

3
22κ2, (4d)

E(y42t) = b421κ1 + 6b221b
2
22 + b422κ2, (4e)

with κi both the fourth moment and kurtosis of ϵit, since it holds that κi = E(ϵ4it) due to

E(ϵit) = 0, E(ϵ2it) = 1. Gaussianity implies κ1 = κ2 = 3, and all equations (4) become

constant in the orthogonal matrix Q. Hence, the fourth moments provide no additional

information to identify B. To see this, note that under Gaussianity, the right-hand

sides of (4) can be written as functions of the right-hand sides of the second-moment

conditions in (3). Since those second moments are invariant to orthogonal rotations,

so must be the fourth moments under Gaussianity. Instead, under a t distribution,

where κi ̸= 3, the expressions in (4) vary with Q (i.e., with alternative choices of B

such that BB′ = Σ). As a result, the fourth moments provide additional information

beyond what is contained in the second moments.
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To illustrate the above point, we provide a numerical example by setting

Btrue =

(
1 −1.25

2 0.5

)
.

Although these parameter values are arbitrary, one motivation might be the following:

If yt includes output and prices, and ϵt includes a demand shock and a supply shock (in

that order), then a positive demand shock increases output and prices, while a positive

supply shock decreases output and increases prices. To highlight identification issues

that persist even as sample size grows, we work in population, assuming knowledge of

all moments of the data yt.
8

Equations (3) and (4) form a system of eight polynomial equations (up to fifth order)

in six parameters,
(
b11, b12, b21, b22, κ1, κ2

)
.

To reduce the parameter space, we set

Q = Q(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, (5)

a Givens rotation that produces an orthogonal matrix with det
(
Q(θ)

)
= 1. This

assumption is standard in the literature (Canova and De Nicoló, 2002) and loses

no generality aside from fixing the determinant (a restriction we come back to be-

low). Next, we impose v = (v, v)′, reducing the unknown parameter space from(
b11, b12, b21, b22, κ1, κ2

)
to (θ, v), and we treat Bc as known (since Bc is identified by

second moments alone). The value of θ consistent with Btrue is θtrue = 0.29π, and we

set vtrue = 6. We then compute the fourth moments implied by
(
θtrue, vtrue

)
. Checking

whether these fourth moments identify the model parameters amounts to asking if the

system (4) has a solution other than
(
θ, v
)
=
(
θtrue, vtrue

)
. By construction, any θ is

consistent with the second moments alone.

Each of the three panels in Figure 1 show the fourth moments from equation (4)

evaluated over a grid of θ, conditioning on a value of v shown in each panel. The

moments are shown in percentage deviation from the true moments associated with

(θtrue, vtrue). Panel A) reports the case when evaluating moments (4) for v = ∞, hence

κi = 3, i = 1, 2 (Gaussianity). The moments are constant in θ, showing that fourth

moments do not provide any information when the model is Gaussian. As an example,

8We examine our approach in finite samples, under a more realistic data-generating process, in
Section 5.
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the true moments E(y41t) = 30.01 and E(y21t) = 2.56 imply the population kurtosis of

y1t equal to
E(y41t)

(E(y21t))
2 = 4.57. Evaluating (4) using κi = 3, i = 1, 2 gives E(y21t) = 19.70

and kurtosis
E(y41t)

(E(y21t))
2 = 3 for any value of θ, with E(y41t) being 34% below the true

value (red thick line), showing that the Gaussian model is misspecified. Since the

likelihood function of model under Gaussianity is uniquely pinned down by the first

and second moments, higher moments provide no additional information.

Things change dramatically when we set κi = 6 for i = 1, 2, the true value in

our illustration. The middle panel of Figure 1 shows that the fourth moments in

(4) are no longer constant in θ. Instead of infinitely many possibilities (as in the

Gaussian case), there are now exactly four values of θ that match the five moments

from (4):
(
0.29π, 0.78π, 1.26π, 1.78π

)′
. We return to this residual identification issue

below when we discuss normalization. In the middle panel, we specifically evaluate the

moments at the true degrees of freedom. This step matters only if the data’s fourth

moments let us infer the correct degrees of freedom in the first place. Panel C of

Figure 1 demonstrates that using v ̸= vtrue (specifically v = 9 here) prevents an exact

match of all moments. Hence, the model’s fourth moments - and thus the likelihood

function - are informative about both the degrees of freedom in the t-distribution and

the elements of B.

Table 1 clarifies how the four values of θ identified in Panel B of Figure 1 relate to

B. Following Lanne et al. (2017), the likelihood function of the t-distributed model

has 2! · 22 = 8 modes, which differ from Btrue by the sign or the ordering of the shocks.

Matrix a in Table 1 shows Btrue. The remaining matrices on the left differ from Btrue

by flipping the sign of one or both columns, while those on the right swap the columns.

From Lanne et al. (2017), we know that the model’s likelihood peaks at these eight

solutions. Economically, all solutions produce the same impulse responses, once we

account for shock ordering and sign. The four θ-values from Panel B of Figure 1

correspond to matrices a, f, g, and d in Table 1. To generate all solutions listed in the

table, we can generalize the example to

yt = BcQ(θ)P ϵt,

where P is a permutation matrix. Under this specification, θ = 0.29π yields matrix a

(no column permutation) or matrix b (with column permutation), but the implied Q

for matrix b has determinant −1 and thus cannot be generated by a Givens rotation.

The same reasoning applies to the remaining θ-solutions.
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Figure 1: Illustrative example
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Note: Fourth moments are computed using equations (4) evaluated for B = Bchol ·Q, with Bchol

set equal to the Cholesky decomposition of Btrue · B′
true and Q set as from equation (5) over a

grid on θ. The figure shows the moments in percentage deviation from the true values associated
with Btrue. The top panel evaluates equations (4) for κi = 3, i = 1, 2. The middle and lower
panel set κi implied by v = vtrue = 6 or v = 9.

Table 1 also shows why it is important to address the inference challenges posed

by identification up to the sign and ordering of shocks. Although the eight modes

in Table 1 are economically identical, if the posterior sampler jumps among them,

the resulting posterior approximation can be highly misleading about the genuine
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Table 1: Modes of the likelihood of the model in Panel B) from Figure 1

B θ permute B θ permute

a)

(
1 −1.25
2 0.5

)
0.29π no b)

(
−1.25 1
0.5 2

)
0.29π yes

c)

(
−1 −1.25
−2 0.5

)
0.78π yes d)

(
1.25 1
−0.5 2

)
1.78π no

e)

(
1 1.25
2 −0.5

)
1.78π yes f)

(
−1.25 −1
0.5 −2

)
0.78π no

g)

(
−1 1.25
−2 −0.5

)
1.26π no h)

(
1.25 −1
−0.5 −2

)
1.26π yes

Note: Btrue =

(
1 −1.25
2 0.5

)
corresponds to matrix a). The remaining matrices c, e, g on the left

differ from Btrue up to the sign of the first or second column, or both. Matrices b, d, f, h differ
from Btrue regarding the ordering of the columns, and sign of the columns.

uncertainty (Hamilton et al., 2007). To avoid this problem, prior work has proposed

normalization schemes (Jarociński, 2024; Waggoner and Zha, 2003b). In this paper, we

adopt their insight of selecting parameter draws closest to a particular mode during

sampling, and we demonstrate how to implement this strategy efficiently, even in

large-scale systems.

3 Our Approach

This section describes our linear VAR model with independent t-distributed struc-

tural shocks. We present our proposed reparametrization, explain how it yields a

Gibbs sampler, and then detail the computational steps we use to address the model’s

identification issues due to sign and permutation switches of the impact responses.

We refer to Appendix E of the Online Appendix for a full description of the posterior

sampling procedure.

3.1 The Model

The model is given by

yt = c+

p∑
l=1

Πlyt−l +Bϵt, (6a)

ϵit ∼ t(vi). (6b)
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The k× 1 vector yt collects the k endogenous variables of the model, whose evolution

depends on the k×1 vector of constants c as well as p lags of the endogenous variables.

The k×m matrix Π = [c,Π1, ..,Πp] contains the constant terms and the autoregressive

parameters, with m = 1+kp. We will refer to ϕ = vec(Π) as the vector that stacks the

columns of Π vertically. The k × 1 vector ϵt = (ϵ1, .., ϵi, .., ϵk)
′ contains the structural

shocks whose effects we want to study. Following previous work such as Jarociński

(2024) and Brunnermeier et al. (2021), we assume that the structural shocks are t-

distributed, statistically independent across time and cross-sectionally. vi represents

the degrees of freedom of shock i, where we define v = (v1, .., vi, .., vk). We set the scale

parameters of the t-distribution to normalize the variance of the structural shocks to

unity, and assume vi > 2, ∀ i.
Following Geweke (1993), we use a first reparametrization that delivers an equiv-

alent model that explicitly interprets the t distributions as scale-mixtures of Normal

distributions. We introduce the variable Dt = diag(d1t, .., dit, .., dkt) and specify this

model as

yt = c+

p∑
l=1

Πlyt−l +BD
1
2
t et, (7a)

et ∼ N(0, I). (7b)

The entries {Dt}Tt=1, which are combined into the kT × kT block diagonal matrix

D = diag(D1, .., Dt, .., DT ), are treated as unknown parameters. Conditioning on D,

model (7) is Gaussian. Geweke (1993) derives a distribution of Dt so that the two

models imply the same distribution for yt, as we discuss next.

3.2 Prior Distributions

We define p(ϕ, B,v) as the joint prior distribution for the parameters of model (6),

and use the same prior for the same parameters in (7). We then introduce an inverse

Gamma prior on the latent variables dit parametrized as

p(dit|hi, ri) =
rhi
i

Γ(hi)
· d−hi−1

it e
−ri· 1

dit , (8a)

hi =
vi
2
, (8b)

ri =
vi − 2

2
. (8c)
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dit is prior independent across (i, t) and prior independent on (ϕ, B). As shown by

Geweke (1993) in the context of univariate models, when prior (8) is used, the pos-

terior distribution from the alternative model (7) after marginalizing out D coincides

with the joint posterior distribution from the original model (6). Yet, working with

the alternative model (7) is convenient because, conditioning on D, the model is Gaus-

sian and hence existing results from the Gaussian literature apply. In employing this

approach, we follow a large literature on univariate and multivariate models, see, for

instance, Clark and Ravazzolo (2015), Chiu et al. (2017), Karlsson and Mazur (2020)

and Karlsson et al. (2023).

More precisely, we work with the following prior distribution:

p(ϕ, B,v, D) = p(ϕ, B,v) · p(D|v), (9)

= p(ϕ) · p(B) · p(v) · p(D|v), (10)

p(D|v) =
T∏
t=1

k∏
i=1

p(dit|vi). (11)

The prior p(dit|vi) is the inverse Gamma prior from equation (8). We work with a

Normal prior for ϕ, which nests priors already used for large VARs (Bańbura et al.,

2010), but our method can be extended to other priors specifically derived for large

VARs with many observables (Chan, 2022). We use a flat, improper prior on B, and

discuss alternative possible priors in the next section. Last, our method works with

a wide range of candidate priors for v. In our simulations and application we use a

truncated Normal prior with a large upper bound so that our prior allows for shocks

that basically indistinguishable from Gaussian shocks.

3.3 Posterior Sampling

We want to explore the joint posterior distribution of model (7) via a Gibbs sampler.

This, in turn, requires deriving the conditional posterior distributions of each of the

parameters of the model.

The literature already knows how to conveniently draw from some of these distri-

butions. It is straightforward to show that p(ϕ|Y,B,D,v) is a Normal distribution,

and Geweke (1993) shows that p(D|Y,ϕ, B,v) is a Gamma distribution. These results

have been extensively used in the literature, see for instance Chiu et al. (2017), Lanne

and Luoto (2020) and Anttonen et al. (2024). For a Gibbs sampler to be feasible

12



for this model, it remains to derive a convenient way of sampling from the remaining

conditional distributions,

p(B|Y,ϕ, D,v), (12)

p(v|Y,ϕ, B,D). (13)

We concentrate our analysis on these two, starting from the former.

Developing a convenient way of sampling from p(B|Y,ϕ, D,v) has so far proved

challenging. Following Cogley and Sargent (2005), many papers in the literature

parametrize the model using

A = B−1, (14)

and achieve a computationally convenient sampling procedure for p(B|Y,ϕ, D,v) that
is feasible under the assumption that A (and hence B) is triangular (Clark and Ravaz-

zolo, 2015, Chiu et al., 2017, Karlsson and Mazur, 2020 and Karlsson et al., 2023).

However, since the shocks of the model are independent and non-Gaussian, all ele-

ments in A and B are identified, and the triangular restrictions on (A,B) become

over-identifying. So far, the literature that introduces no zero restrictions on (A,B)

has resorted to simulation-based methods, either employing a Metropolis-Hastings

step on p(B|Y,ϕ,v, D) (as in Lanne and Luoto, 2020, Brunnermeier et al., 2021), or

employing a more involving MCMC procedure on the full joint posterior distribution

p(ϕ, B,v, D|Y ) (Anttonen et al., 2024). Our main contribution is to develop a way

of drawing from the conditional posterior distributions (12) and (13) using only dis-

tributions of common form. This means that no Metropolis-Hastings step is required,

which makes the analysis computationally much less demanding.

The core insight for how to sample from (12) hinges on a new reparametrization,

which, to our knowledge, has not been used in Bayesian econometrics. Although our

benchmark approach sets a flat prior on B, here we parametrize A instead, introducing

the decomposition

A = ΛLU, (15)

where Λ is a diagonal k×k matrix with entries λi, and L and U are lower- and upper-

triangular k × k matrices, respectively, both constrained to have ones on their main

diagonals. We assume λi ̸= 0 for all i, which is a necessary and sufficient condition for

(15) to exist and be unique.9

9Under this reparametrization, B = U−1 L−1 Λ−1.
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The choice between using the A or B parametrization is inconsequential for our

method: the Jacobian of the inverse mapping is straightforward to derive, so one could

also impose a flat prior directly on A, which we do in the Online Appendix. Our de-

composition is related to, but distinct from, the standard LDU decomposition. One

can derive it in two steps: first, apply a LU decomposition to A, then decompose the

resulting L into the product of a diagonal matrix and a lower triangular matrix with

unit diagonal entries. Thus, the existence and uniqueness conditions match those of

the LU decomposition. However, since the likelihood is invariant under premultiplica-

tion of A by any permutation matrix, for every non-singular A, there always exists a

permutation matrix P such that PA admits the (unique) LU decomposition. Hence,

essentially (15) entails no restrictions other than the nonsingularity of B (or A). As

a consequence, we can think of (15) much like other reparametrizations employed in

the SVAR literature.10

As is well known (see, for example, Brunnermeier et al., 2021), the determinant of

A enters the likelihood function, complicating posterior derivation unless additional

assumptions are imposed (see, e.g., Kociȩcki et al., 2012; Arias et al., 2018). However,

our
(
Λ, L, U

)
reparametrization in (15) conveniently yields

|det(A)| =
k∏

i=1

|λi|, (16)

meaning the determinant depends only on the diagonal entries of Λ (because L and

U both have ones on their main diagonals). Moreover, |det(A)| depends on Λ in a

way that resembles the kernel of a Gamma distribution. These two properties make

a Gibbs sampler feasible, because they imply a Gamma conditional posterior for a

function of Λ and a Normal conditional posterior for a function of both L and U .

Details of those posterior distributions can be found in the Online Appendix.

Our Gibbs sampler requires a flat prior on either B or A. In an independent, non-

Gaussian framework, B and A are identified (up to sign and column permutations,

addressed in the next section), so the exact form of the prior is less critical than in

the Gaussian case, where it encodes necessary identification restrictions (Baumeister

and Hamilton, 2015; Arias et al., 2019; Inoue and Kilian, 2020).

10For example, Arias et al. (2018) apply sign restrictions by setting A = Qh(Σ), where Σ is
the reduced-form covariance matrix of a Gaussian VAR, h(·) is a unique decomposition, and Q is
orthogonal. In contrast, Wu and Koop (2023) use the eigenvalue-eigenvector decomposition of Σ to
simplify sampling in large-scale VAR models.
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This design streamlines posterior sampling for B. To complete our Gibbs proce-

dure, we must also show that the conditional posterior for the degrees of freedom in

(13) has a tractable form. We accomplish this via a Griddy-Gibbs sampler (Ritter

and Tanner, 1992), which discretizes v. In our simulations and empirical application,

we let v range over a fine grid between 3 and 60, specifying a truncated Normal prior

over this interval.11Further details appear in the Online Appendix.

3.4 Identification up to Sign and Permutations of the Shocks

Because the model features independent non-Gaussian shocks, theoretical restrictions

are not needed for statistical identification. However, as Lanne et al. (2017) show,

identification holds only up to the sign and permutation of the columns of B (or

equivalently, the rows of A). Accounting for this indeterminacy can pose computa-

tional challenges: any k×k matrix B the algorithm samples corresponds to as many as

k! · 2k alternative matrices that differ solely by column sign or permutation. Although

these differences are economically meaningless, they must be managed in the sampler

to avoid mixing shocks of different types.

A second methodological contribution of our paper is thus a new, computation-

ally efficient way to handle sign and permutation indeterminacies in VARs with non-

Gaussian shocks.12 We first compute a matrix B̂ that approximates one of the model’s

modes, which serves as a target in the Gibbs sampler. For example, B̂ could be the

maximum-likelihood estimator of B. Let Ps be a signed-permutation matrix of dimen-

sion k × k, with non-zero elements equal to either 1 or -1. In each sampler iteration,

we draw (Λ, L, U), thus obtaining A and B. We then store BPs, where Ps minimizes

∆ = trace
[(
BPs − B̂

)′(
B̂B̂′)−1(

BPs − B̂
)]
. (17)

In other words, we choose the signed-permutation matrix Ps that minimizes the

weighted distance between BPs and the target B̂. As shown in Appendix D of the

11In principle, we could set the lower bound to 2, which is a bound we need to impose because
we want to study the response to a one standard deviation shock. However, when doing so, we
encountered the problems identified by Fernandez and Steel (1999). As shown by their Theorem
5, when v approaches 2, since the scale parameter of the t-Student distribution, defined in Online
Appendix B, tends to zero in such a case, the t-Student likelihood function can become arbitrarily
large and ultimately leading to an improper posterior.

12A researcher could use restrictions to remove this multiplicity, as we do, or sample the full
unnormalized posterior. In the latter case, strategies from mixture-model sampling that address
permutation issues (Geweke, 2007; Frühwirth-Schnatter, 2001) might be applied.
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Online Appendix, minimizing ∆ generalizes the Likelihood Preserving (LP) normal-

ization of Waggoner and Zha (2003b) - originally designed for Gaussian SVARs - to

non-Gaussian SVARs (including t-distributions). We therefore refer to this approach

as a generalized LP normalization.

The most important feature of our approach is computational. Naively, one might

compute the distance (17) for all k! · 2k possible signed-permutation matrices in each

Gibbs iteration, which is infeasible. Instead, as we discuss in Appendix D of the

Online Appendix, we show how to apply the Hungarian algorithm from combinatorial

optimization to this problem, which finds the optimal Ps at negligible computational

cost-even for large models.

Our method also differs from other approaches to identification up to sign and

permutation in non-Gaussian SVARs. Compared to Lanne et al. (2017), our method

reduces the risk of mode-switching by explicitly targeting a single mode B̂. Relative to

Brunnermeier et al. (2021), we avoid imposing an informative prior on A, letting the

likelihood’s shape provide identification. Finally, unlike Jarociński (2024), we do not

evaluate a target function for each of the k! · 2k permutations every Gibbs iteration.

This makes our approach tractable for large systems. For example, on a standard

laptop, we can solve the minimization problem for a 20-variable VAR in 0.0001 seconds

(during each Gibbs iteration). Evaluating the target function for each permutation

for such a large model would require 20! · 220 ≈ 2.5 · 1024 functions evaluations. See

the Online Appendix for details and additional speed comparisons.

4 What Shocks Drive Real GDP?

We now apply our framework to determine which shocks matter most for real GDP in

the United States. Angeletos et al. (2020) use a structural VAR with Gaussian shocks

to uncover a “Main Business Cycle” shock that explains the bulk of volatility in real

activity over business-cycle frequencies. They show that (i) a single shock can account

for almost 80% of GDP volatility at business cycle frequencies when GDP itself is used

to measure real activity,13 (ii) the shock behaves like a weakly inflationary demand

shock based on impulse responses, (iii) it is largely unrelated to TFP dynamics, and

(iv) it does not explain long-run fluctuations in real activity.

We revisit and extend these findings under non-Gaussian shocks. Specifically, we

13When they instead target unemployment, they still find that their shock explains more than half
of the business cycle fluctuations of GDP.
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ask whether the business cycle can be attributed to a single shock or if multiple shocks

share responsibility for GDP volatility. Our specification closely follows Angeletos

et al. (2020), using 10 variables (GDP, investment, consumption, hours worked, un-

employment rate, labor share, Fed funds rate, inflation, labor productivity, and TFP),

all in log levels. All variables are real and in per capita terms where applicable. The

sample is quarterly from 1955Q1 to 2017Q4, and, as in the original study, we include

two lags.

We specify the baseline prior for the analysis as follows. For the autoregressive

parameters we use the traditional Minnesota prior. For the contemporaneous impulse

responses, we use a flat prior. For the degrees of freedom we use a Normal distribution

centered at 20 and with variance 4, truncated to be positive to be between (3, 60).

Posterior sampling is carried out using the method discussed in Section 3, generating

50,000 draws.

Before interpreting our results, we first check the credibility of our identification

assumption. Under our framework, shocks are t-distributed, and we estimate their

degrees of freedom as a natural measure of identification strength. Lower degrees of

freedom imply stronger deviations from Gaussianity. This contrasts with previous

studies, such as Brunnermeier et al. (2021), that fix the degrees of freedom. Figure 2

reports the posterior distributions for the degrees of freedom for the 10 shocks in our

model. We see that the prior is updated sharply downward for all shocks, suggesting

non-Gaussian shocks. This finding supports our approach, since our identification

strategy relies on non-Gaussianity.

Next, we turn to our main question: Is there one key shock that drives GDP? To

answer this question, we compute forecast error variance decompositions at different

horizons. To be more specific, we denote by yi,t+h the i-th element of yt+h and by si

the selection vector of the same dimension as yt+h that has zeros everywhere except

at position i. The formula for the forecast error variance decomposition (FEVD) of

variable i of yt at horizon h due to the k-th structural shock is:

FEVDi,k(h) =

∑h−1
m=0 (s

′
iΘmsk)

2∑h−1
m=0 s

′
iΘmΘ

′
msi

,

where Θm are the impulse response coefficients that can be obtained by repeated

substitution into the VAR model.14 We use this time domain variance decomposition

as it is arguably more common in the literature than the frequency domain version

14For details on this derivation, see Lütkepohl (2005).
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Figure 2: Evidence of non-Gaussianity: prior and posterior on the degrees of freedom
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Note: The dashed black line shows the prior distribution, which is a N(20, 20) truncated to be
positive in the support [3,60]. The solid blue line shows the posterior distribution obtained from
50,000 posterior draws.

used in Angeletos et al. (2020). It is, however, worth noting, that Angeletos et al.

(2020) find that in their model, their frequency domain-based variance decomposition

based identification behaves similarly to a time domain variance decomposition-based

identification at horizon h = 4. We consider variance decompositions up to 24 quarters

and find that no shock explains more than 25 % of the relative forecast error variance

of real GDP at any horizon.15 The two shocks that matter most are shock 3, peaking

around four quarters, and shock 7, peaking at about three years. What do these shocks

represent?

Figure 4 shows the impulse responses to these shocks, normalized to a unit standard

deviation impulse. The top two rows show the responses to shock 3, which generally

raises real activity, lowers unemployment, but has no effect on TFP and one a small

(if any) effect on inflation. Thus, this shock closely resembles the main business cycle

shock of Angeletos et al. (2020), with the caveat that we find it is less important than

suggested in that work (albeit still one of the two key drivers of GDP in the US). The

15In contrast, Figure 12 in their online appendix shows that even the version of their shock that
targets unemployment and not GDP directly in the identification gives Angeletos et al. (2020) a time
domain forecast error variance decomposition where their shock explains more than 50 percent of
GDP fluctuations at horizons up to 5 quarters.
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Figure 3: Forecast Error Variance Decomposition of real GDP
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Note: The solid lines show the pointwise posterior median, the shaded areas show the 68% and
90% pointwise posterior credible sets.

second shock we identify, which is important at longer horizons, also increases real

activity, but at the same time lowers inflation and moves TFP. Thus, it is reminiscent

of standard TFP shocks (Kydland and Prescott, 1982). In fact, in the canonical Smets

and Wouters (2007) model, a TFP shock leads to lower inflation, just as we find.

Before describing our robustness checks, one might wonder how we arrive at dif-

ferent conclusions from Angeletos et al. (2020) regarding the demand shock (shock 3).

After all, we use the same data and lag length, and we find similar impulse responses.

The difference stems from our assumption of t-distributed shocks, which changes the

shape of the likelihood function and thus affects all parameter estimates. We see clear

evidence of non-Gaussianity in this dataset, which influences the posterior distribu-

tion and differentiates our results from those of Angeletos et al. (2020). While we still

recover a shock that resembles their main business cycle shock, our model’s better fit

reveals a second shock that significantly affects GDP.16

In the Appendix, we show that our results are robust to many alternative specifi-

cations. In particular, we consider a model with 4 lags, a model with a flat prior on

16Our model estimates low degrees of freedom for the t-distribution. If the degrees of freedom were
high, the model would be nearly Gaussian, matching the fit of the model in Angeletos et al. (2020)
more closely (remember that we have a nearly uninformative prior on the degrees of freedom that, if
anything, favors Gaussianity).
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Figure 4: Impulse responses

Shock 3: demand shock
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Shock 7: supply shock
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Note: The solid lines show the pointwise posterior median, the shaded areas show the 68% and
90% pointwise posterior credible sets.

A rather than B = A−1, a model with a longer sample (where the Fed Funds rate is

replaced with a T-bill rate), and a model with credit spreads.

5 Validation Using Simulated Data

We use a simulation exercise to validate our methodology, and to further illustrate

how it operates. The data-generating process (DGP) is a bivariate VAR of order 6

20



with no constant term, where the structural shocks are t-distributed. Specifically,

yt =
6∑

l=1

Π̃lyt−l + B̃ϵt, (18)

p(ϵt) =
2∏

i=1

p(ϵit), (19)

ϵit ∼ t(ṽi). (20)

The model generates the dynamics of two variables, which we label as “output” (or-

dered first) and the “price level.” The driving shocks-labeled “demand” (ordered first)

and “supply”-are t-distributed.

Following Canova et al. (2024), we set the true parameter values of the data-

generating process by first specifying a functional form for the impulse responses, then

choosing (Π̃, B̃) to match those responses. We parametrize the true impulse responses

via the Gaussian basis functions of Barnichon and Matthes (2018), adapted by Canova

et al. (2024). Let ψ̃ij,h be the true impulse response of variable i to shock j at horizon

h. We specify

ψ̃ij,h = aij · exp
[
−
((h− bij)

2

c2ij

)
+
b2ij
c2ij

]
, (21)

where aij governs the impact effect of shock j on variable i, bij is an integer marking the

horizon at which the peak response occurs (and equals 0 if there is no hump shape),

and cij captures the persistence of the response. Hence, each response over H + 1

horizons is fully determined by three parameters, (aij, bij, cij).

We set {aij, bij, cij} to generate the following impulse responses. The first shock

is a demand shock that raises output and the price level on impact by 0.6 and 0.7,

respectively. Both responses then decline to zero, reaching half their impact effect

5 and 3 horizons later, respectively. The second shock is a supply shock that raises

output by 0.4 on impact but lowers the price level by 0.7. These responses both exhibit

a hump shape: output peaks 4 horizons after the shock at 50% above its impact level,

and the price level peaks 5 horizons later at 100% above (in absolute value) its impact

effect.

We specify impulse responses up to horizon H = 6, matching the number of lags

in the true model. As discussed by Canova et al. (2024), there is a unique solution

in
(
Π̃, B̃

)
such that the VAR-implied responses coincide with the true responses from

equation (21) for h ≤ 6. In our baseline analysis, we set ṽi = 6 for i = 1, 2. See the
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Online Appendix for additional details on the data-generating process.

We first generate a single dataset from our specified data-generating process. We

initialize the simulation at the unconditional mean (zero) and create 350 observations.

We discard the first 100, retain the next 50 as a training sample, and use the remaining

200 for estimation. We then estimate a VAR with 6 lags (no constant) on the simulated

data, applying the following priors: For the autoregressive parameters, we use a Normal

prior centered at zero, calibrated according to Kadiyala and Karlsson (1997) and

Canova (2007) (using the aforementioned training sample). For the impact matrix

B, we specify a flat prior. Finally, for the degrees of freedom, we adopt a truncated

Normal prior (support between 3 and 60), centered at 20 with variance 20 for each

degrees-of-freedom parameter.

We compute an initial estimate B̂ by maximizing the likelihood function via the

three-step estimator of Lanne et al. (2017). We initialize the sampler as described in

Appendix E of the Online Appendix. The sampler runs for 21,000 draws, discarding

the first 1,000 as burn-in. On a standard computer with an Intel i7-7700K 4.2GHz

Quad Core processor and 64GB RAM, this takes about four minutes.

Figure 5 presents our methodology’s performance in estimating impulse responses.

The blue solid line and shaded regions depict the pointwise median and 68/90% cred-

ible sets, respectively. The red dashed line shows the true impulse response from the

data-generating process. For comparison, the black squared line shows an alternative

set of responses identical to the true ones except that the supply shock’s response is

flipped in sign.

The figure shows that the sampler correctly recovers the true sign of the impact

effects. It also captures that a demand shock exhibits no hump-shaped response, while

a supply shock does generate a delayed response. In addition, both the persistence

and timing of each response are estimated precisely.

Figure 6 illustrates why our sampler succeeds in recovering the true impulse re-

sponses. The solid line represents the posterior distribution of B under our normal-

ization procedure, which addresses sign and permutation indeterminacies. The dotted

line shows the posterior without normalization. The blue diamonds mark the true

values of B, while the blue dots depict the corresponding entries of the target matrix

B̂. By comparing these two, we see that B̂ ranks the demand shock first, treating

a positively signed shock as expansionary - both consistent with the data-generating

process.

Indeed, once our normalization is applied, the marginal posterior for the demand
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Figure 5: Impulse response functions
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Note: The red dashed lines show the true impulse responses associated with the data generating
process. The blue lines and shaded areas show the pointwise posterior median and 68%/90%
credible sets. The black squared lines show the sign/permutation of the true impulse responses
that is closest to the impulse responses estimated in the posterior.

shock’s impact effect concentrates tightly around the true value. In contrast, B̂ in-

terprets a positively signed supply shock as contracting output, while the true supply

shock actually raises output. The red star shows the true impact effect of the supply

shock, but with its sign flipped to match B̂. After correcting for this sign, the model

recovers the shock’s true impact.

Figure 7 displays the marginal prior (dashed line) and posterior (solid lines) dis-

tributions for the degrees of freedom. Our prior on v is relatively uninformative, yet

the figure shows that our method uncovers clear evidence of non-Gaussianity in this

sample. The demand shock’s degrees of freedom are estimated more precisely than

23



Figure 6: Impact effect of the shocks (B)
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Note: The blue diamond indicates Btrue. The blue dots indicate the target matrix B̂ used for
the normalization. The red star indicates the sign/permutation of Btrue that is the closest to B̂.
The continuous line shows the marginal posterior of the entries of B from 20,000 posterior draws
when applying the generalized LP normalization. The dotted line shocks the marginal posterior
when no normalization is used.

that of the supply shock. However, our estimated impulse responses show that impulse

responses are estimated precisely for both shocks. Figure A-3 in the Online Appendix

confirms that our ability to estimate vtrue improves with larger samples, as expected.

So far, we have illustrated our Bayesian procedure using a single pseudo-dataset.

Figure 8 summarizes results from 100 replications. We hold the data-generating pro-

cess fixed and draw new pseudo-datasets for each replication. The black squared line

shows the true impulse response, matching the sign and ordering of the shocks in Fig-

ure 5. The blue lines depict the pointwise medians of the estimated responses for each
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Figure 7: Degrees of freedom
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Note: The blue dot indicates the true value of the degrees of freedom. The dashed black line
shows the prior distribution, which is a N(20, 20) truncated to be positive in the support [3, 60].
The solid blue line shows the posterior distribution obtained from 20,000 posterior draws.

of the 100 replications. When necessary, we reorder and flip the sign of the estimated

shocks so they match the sign and ordering of the black squared line. Figure 8 indicates

that our method reliably recovers the true dynamics behind each pseudo-dataset.

We find that our approach succeeds at uncovering the true impulse responses even

when the model is misspecified. Figure 9 replicates Figure 8 under a scenario where

the data-generating process features Laplace (rather than t-distributed) shocks, nor-

malized to have unit standard deviation. As the figure shows, the estimated impulse

responses remain accurate. This aligns with the remarks by Sims (2021) and Brun-

nermeier et al. (2021) (see their footnote 8) that if the true shocks are mutually inde-

pendent, symmetric around zero, and fat-tailed (though not necessarily t-distributed),

a t-based SVAR can still recover the model’s true dynamics.

We refer to Appendix F in the Online Appendix for additional Monte Carlo results.

There, we study what happens when we target the identity matrix in our normaliza-

tion, highlighting that an informative normalization target is necessary. We also vary

the prior on the degrees of freedom and use a flat prior on B−1 instead of B, showing

that our results are robust. Finally, the appendix also shows the estimated posterior

credible sets for each Monte Carlo replication.
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Figure 8: Impulse response functions
Robustness across 100 samples

Note: See also Figure A-6 in the Online Appendix
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Figure 9: Impulse response functions
Robustness across 100 samples and DGP featuring Laplace shocks

Note: See also Figure A-7 in the Online Appendix
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6 Conclusions

This paper introduces a new Gibbs sampler for structural VARs with t-distributed

shocks. A simple reparametrization allows each conditional posterior to take a stan-

dard form, eliminating the computational bottlenecks that often arise in non-Gaussian

models. Because our identification relies on non-Gaussianity alone, we avoid the strong

theoretical restrictions that often accompany traditional approaches.

Applying this method to U.S. data shows that no single shock dominates GDP

volatility. Instead, both demand and supply shocks play meaningful roles in explaining

GDP. These findings suggest that understanding macroeconomic dynamics requires

considering multiple sources of variation, rather than attributing most outcomes to a

single “main” business-cycle shock.
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A Derivations of the fourth moments in section 2

of the paper

The bivariate illustrative model is given by(
y1t

y2t

)
=

(
b11 b12

b21 b22

)(
ϵ1t

ϵ2t

)
, (A-1)

where

B =

(
b11 b12

b21 b11

)
, (A-2)

and ϵt = (ϵ1t, ϵ2t) are independently t distributed structural shocks with degrees of

freedom v = (v1, v2)
′ and variances normalized to 1. E(ϵit) = 0 implies E(yit) = 0,

i = 1, 2. Then

E(y41t) = E(b11ϵ1t + b12ϵ2t)
4, (A-3)

= E(b411ϵ
4
1t + 4b311ϵ

3
1tb12ϵ2t + 6b211ϵ

2
1tb

2
12ϵ

2
2t + 4b11ϵ1tb

3
12ϵ

3
2t + b412ϵ

4
2t), (A-4)

= b411E(ϵ
4
1t) + 6b211b

2
12 + b412E(ϵ

4
2t), (A-5)

with the last step deriving from the independence assumption between ϵ1t and ϵ2t, and

E(ϵit) = 0, E(ϵ2it) = 1. section 2 of the paper defines ki the kurtosis of ϵit. Since ϵit

has mean 0 and variance normalized to 1, it holds that

E(ϵ4it) = κi =
3(νi − 2)

νi − 4
. (A-6)

Hence

E(y41t) = b411κ1 + 6b211b
2
12 + b412κ2, (A-7)

while similar derivations give

E(y42t) = b421κ1 + 6b221b
2
22 + b422κ2. (A-8)
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Next:

E(y31ty2t) = E(b11ϵ1t + b12ϵ2t)
3(b21ϵ1t + b22ϵ2t), (A-9)

= E(b311ϵ
3
1t + 3b211ϵ

2
1tb12ϵ2t + 3b11ϵ1tb

2
12ϵ

2
2t + b312ϵ

3
2t)(b21ϵ1t + b22ϵ2t), (A-10)

= E(b311ϵ
3
1tb21ϵ1t + 3b211ϵ

2
1tb12ϵ2tb21ϵ1t + 3b11ϵ1tb

2
12ϵ

2
2tb21ϵ1t + b312ϵ

3
2tb21ϵ1t+

+ b311ϵ
3
1tb22ϵ2t + 3b211ϵ

2
1tb12ϵ2tb22ϵ2t + 3b11ϵ1tb

2
12ϵ

2
2tb22ϵ2t + b312ϵ

3
2tb22ϵ2t),

(A-11)

= E(b311ϵ
4
1tb21 + 3b11ϵ

2
1tb

2
12ϵ

2
2tb21 + 3b211ϵ

2
1tb12ϵ

2
2tb22 + b312ϵ

4
2tb22), (A-12)

= b311b21κ1 + 3b11b
2
12b21 + 3b211b12b22 + b312b22κ2. (A-13)

E(y1ty
3
2t) = E(b11ϵ1t + b12ϵ2t)(b21ϵ1t + b22ϵ2t)

3, (A-14)

= E(b11ϵ1t + b12ϵ2t)(b
3
21ϵ

3
1t + 3b221ϵ

2
1tb22ϵ2t + 3b21ϵ1tb

2
22ϵ

2
2t + b322ϵ

3
2t), (A-15)

= E(b11ϵ1tb
3
21ϵ

3
1t + 3b11ϵ1tb

2
21ϵ

2
1tb22ϵ2t + 3b11ϵ1tb21ϵ1tb

2
22ϵ

2
2t + b11ϵ1tb

3
22ϵ

3
2t+

+ b12ϵ2tb
3
21ϵ

3
1t + 3b12ϵ2tb

2
21ϵ

2
1tb22ϵ2t + 3b12ϵ2tb21ϵ1tb

2
22ϵ

2
2t + b12ϵ2tb

3
22ϵ

3
2t),

(A-16)

= E(b11b
3
21ϵ

4
1t + 3b11ϵ

2
1tb21b

2
22ϵ

2
2t + 3b12ϵ

2
2tb

2
21ϵ

2
1tb22 + b12b

3
22ϵ

4
2t), (A-17)

= b11b
3
21κ1 + 3b11b21b

2
22 + 3b12b

2
21b22 + b12b

3
22κ2, (A-18)

E(y21ty
2
2t) = E(b11ϵ1t + b12ϵ2t)

2(b21ϵ1t + b22ϵ2t)
2, (A-19)

= E(b211ϵ
2
1t + 2b11ϵ1tb12ϵ2t + b212ϵ

2
2t)(b

2
21ϵ

2
1t + 2b21ϵ1tb22ϵ2t + b222ϵ

2
2t), (A-20)

= E(b211ϵ
2
1tb

2
21ϵ

2
1t + b212ϵ

2
2tb

2
21ϵ

2
1t+

+ 4b11ϵ1tb12ϵ2tb21ϵ1tb22ϵ2t+

+ b211ϵ
2
1tb

2
22ϵ

2
2t + b212ϵ

2
2tb

2
22ϵ

2
2t), (A-21)

= b211b
2
21κ1 + b212b

2
21 + 4b11b12b21b22 + b211b

2
22 + b212b

2
22κ2. (A-22)
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B The model

The model is given by

yt =

p∑
l=1

Πlyt−l + c+ Ut, (A-23)

= Πxt + Ut, (A-24)

Ut = Bϵt, (A-25)

p(ϵt|σ,v) =
k∏

i=1

p(ϵit|σi, vi), (A-26)

ϵit ∼ t(σi, vi), (A-27)

p(ϵit|σi, vi) = σ−1
i · v−

1
2

i ·
Γ
(

vi+1
2

)
π

1
2Γ
(

vi
2

) ·
(
1 +

ϵ2it
vi · σ2

i

)− vi+1

2
. (A-28)

The k× 1 vector yt contains the endogenous variables of the model. The m× 1 vector

xt = (y′
t−1, ..,y

′
t−p, 1)

′ contains the lagged variables and the constant term, with p

the number of lags in the model and m = k · p + 1. The structural shocks ϵt are

i.i.d. with zero mean. Individual components of ϵt, i.e. ϵit, are mutually independent

and possess a univariate t distribution, possibly with different degrees of freedom.

Following, for example, Geweke (1993), the probability density function of each shock

is parametrized according to equation (A-28), with (σi, vi) the shock-specific scale and

degrees of freedom, and v = (v1, .., vi, .., vk)
′, σ = (σ1, .., σi, .., σk)

′. As in Brunnermeier

et al. (2021) (see their footnote 11), we set the scale parameter to:

σi =

√
vi − 2

vi
, (A-29)

which implies that the variance of each structural t-distributed shock is normalized to

unity,

V (ϵit) = 1. (A-30)

Under this normalization, the k × k matrix B captures the impact effect of a one

standard deviation shocks.1

1This normalization implies that the set of observationally equivalent models differ only up to sign
and permutation of the shocks, but not up to the scale of the shocks (Lanne et al., 2017). We exploit
this feature in order to build the generalized LP normalization, see subsection 3.4 of the paper and
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As in Geweke (1993), we use the following, alternative specification of the model:

yt =

p∑
l=1

Πlyt−l + c+ Ut, (A-31)

= Πxt + Ut, (A-32)

Ut = B
√
Dtet, (A-33)

et ∼ N(0, I), (A-34)

Dt = diag(d1t, .., dit, .., dkt), (A-35)

p(dit|hd,i, rd,i) =
r
hd,i

d,i

Γ(hd,i)
· d−hd,i−1

it e
−rd,i· 1

dit , (A-36)

hd,i =
vi
2
, rd,i =

vi − 2

2
. (A-37)

The k stochastic terms in the new specification, et, are Gaussian with the identity

covariance matrix. The latent variables dit are treated as unknown parameter with

inverse Gamma prior that is independent across i and t, parametrized according to

(A-36), and
√
Dt = diag(d

1
2
1t, .., d

1
2
it, .., d

1
2
kt). It is assumed that Dt is independent of es,

for every t and s. The shape and rate parameters (hd,i, rd,i) of p(dit|hd,i, rd,i) are set as
in (A-37), which comply with the normalization V (ϵit) = 1 made in the original model

specification.

Rewrite the parametrization of the model as

ϕ = vec(Π), (A-38)

D = diag(D1, .., Dt, .., DT ). (A-39)

The vector ϕ is of dimensions km × 1. The array D is sparse and of dimensions

kT × kT . The joint prior distribution for the alternative specification of the model is

p(ϕ, B,D,v) = p(ϕ) · p(B) · p(D|v) · p(v). (A-40)

Our approach requires the prior on ϕ to be Normal. While we set ϕ as a priori

independent of (B,D,v), this modelling assumption can be removed. As discussed

above, the prior p(D|v) is given by (A-36), with hyperparameters calibrated according

to (A-37). By contrast, the prior on (B,v) can be more flexibly selected by the

Appendix D.

A-5



researcher, as discussed below.

C Derivations of the conditional posterior distri-

butions

Posterior sampling is achieved by means of a Gibbs sampler. The conditional posterior

for the parameters (ϕ, D,v) are standard in the literature and are reported here for

completeness. The conditional posterior of B is discussed in greater length and exploits

the reparametrization discussed in the paper.

C.1 Conditional posterior p(ϕ|Y,B,D,v)

The likelihood function of model (A-31)-(A-34) can be written as

p(Y |ϕ, B,D) = (2π)−
Tk
2 · |B|−T · |D|−

1
2 · e−

1
2
(ỹ−Wϕ)′

(
(IT⊗B)D(IT⊗B′)

)−1

(ỹ−Wϕ), (A-41)

with

Y = [y1, ..,yt, ..,yT ], (A-42)

ỹ = vec(Y ), (A-43)

X = [x1, ..,xt, ..,xT ], (A-44)

W = (X ′ ⊗ Ik). (A-45)

Using (A-41), we can derive

p(ϕ|Y,B,D,v) ∝ p(ϕ) · p(Y |ϕ, B,D), (A-46)

∝ e−
1
2
(ϕ−µ)′V −1(ϕ−µ) · e−

1
2
(ỹ−Wϕ)′

(
(IT⊗B)D(IT⊗B′)

)−1

(ỹ−Wϕ), (A-47)

= e−
1
2
(ϕ−µ)′V −1(ϕ−µ) · e−

1
2
(ỹ−Wϕ)′Ω−1(ỹ−Wϕ), (A-48)

∝ e−
1
2
(ϕ′V −1ϕ−2ϕ′V −1µ+ϕ′W ′Ω−1Wϕ−2ϕ′W ′Ω−1ỹ), (A-49)

A-6



ϕ|Y,B,D,v ∼ N
(
µ∗, V ∗), (A-50)

V ∗ =
(
V −1 +W ′Ω−1W

)−1
, (A-51)

µ = V ∗[V −1µ+W ′Ω−1ỹ], (A-52)

Ω = (IT ⊗B)D(IT ⊗B′). (A-53)

C.2 Conditional posterior p(D|Y,ϕ, B,v)

The conditional posterior for D is also standard. After defining

gt = B−1[yt − Πxt], (A-54)

model (A-31)-(A-34) coincides with gt ∼ N(0, Dt), hence

p(D|Y,ϕ, B,v) =
T∏
t=1

k∏
i=1

p
(
dit|yt,xt,Π, B, vi

)
, (A-55)

p
(
dit|yt,xt,Π, B, vi

)
∝ p(dit|hd,i, rd,i) · p(gt|Π, B,v, Dt), (A-56)

∝
[ r

hd,i

d,i

Γ(hd,i)
· d−hd,i−1

it e
−rd,i· 1

dit

]
· d−

1
2

it · e−
1
2

g2it
dit , (A-57)

∝ d
−(hd,i+

1
2
)−1

it · e−(rd,i+
g2it
2
) 1
dit , (A-58)

= d
−h∗

d,i−1

it · e−r∗d,it
1

dit , (A-59)

dit|yt,xt,Π, B,v ∼ iΓ(h∗d,i, r
∗
d,it), (A-60)

h∗d,i = hd,i +
1

2
, (A-61)

r∗d,it = rd,i +
g2it
2
. (A-62)
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C.3 Conditional posterior p(v|Y,ϕ, B,D)

The conditional posterior for v is

p
(
v|Y,Π, B,D

)
∝ p(D|v) · p(v) (A-63)

∝
[ T∏

t=1

k∏
i=1

r
hd,i

d,i

Γ(hd,i)
· d−hd,i−1

it e
−rd,i· 1

dit

]
· p(v), (A-64)

=
[ k∏

i=1

( r
hd,i

d,i

Γ(hd,i)

)T
·

T∏
t=1

(
d
−hd,i−1
it e

−rd,i· 1
dit

)]
· p(v), (A-65)

=
[ k∏

i=1

( r
hd,i

d,i

Γ(hd,i)

)T
·
( T∏

t=1

dit
)−hd,i−1

e
−rd,i·

(∑T
t=1

1
dit

)]
· p(v). (A-66)

We assume prior independence across v, i.e. p(v) =
∏k

i=1 p(vi). Since (hd,i, rd,i)

only depend on entry i of v, prior independence implies independence in conditional

posterior:

p
(
v|Y,Π, B,D

)
=

k∏
i=1

p
(
vi|Y,Π, B,D

)
, (A-67)

p
(
vi|Y,Π, B,D

)
∝
( r

hd,i

d,i

Γ(hd,i)

)T
·
( T∏

t=1

dit
)−hd,i−1

e
−rd,i·

(∑T
t=1

1
dit

)
· p(vi). (A-68)

Last, we use a Griddy-Gibbs sampler and discretize the support for vi.

C.4 Conditional posterior p(B|Y,ϕ, D,v)

Posterior sampling on B is achieved indirectly via sampling on the parametrization

A = B−1. After defining

zt = yt − Πxt, (A-69)

model (A-31)-(A-34) coincides with zt ∼ N(0, A−1DtA
−1′), hence the likelihood func-

tion is

p
(
Z|Π, A,D

)
= (2π)−

Tk
2 · |A|T ·

( T∏
t=1

|Dt|−
1
2

)
· e−

1
2

∑T
t=1 z

′
tA

′D−1
t Azt , (A-70)

with Z = [z1, ..,zt, ..,zT ]. Note that in fact |A| := |det(A)|
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We rewrite A as

A = ΛLU. (A-71)

where Λ = diag(λ1, .., λi, .., λk) is a k × k diagonal matrix, L and U are lower and

upper triangular matrices, respectively, of dimension k × k, both with unit diagonal

entries. Assuming that all λi are nonzero, the underlying decomposition of A exists

and is unique. The free entries of (L,U) are (L,U), respectively. We use the notation

vec(L) = s+ SLL, (A-72)

vec(U) = s+ SUU, (A-73)

with (L,U) of dimension k(k − 1)/2× 1, (SL, SU) of dimension k2 × k(k − 1)/2, s of

dimension k2× 1, and (SL, SU , s) having zero or one entries as appropriate. Note that

because (L,U) are triangular matrices with unit diagonal entries, the determinant of

A evaluated in the parametrization (Λ, L, U) is only a function of Λ, namely

|A| =
k∏

i=1

|λi|. (A-74)

Define pA(A) as the prior distribution on A. In order to write it down explicitly,

one should take a stand on the chosen parametrization of the SVAR model i.e. whether

A or B is our basic parameter. In either case our baseline prior setup assumes flat

prior. Hence two cases are of interest for us:

pA(A) ∝ 1, (A-75)

pA(A) ∝ |A|−2k. (A-76)

(A-75) is the case in which the researcher expresses an uninformative prior directly on

A (hence implicitly the SVAR uses A as its basic parameter). (A-76) is the case in

which the researcher expresses an uninformative prior on B, with |A|−2k the Jacobian

term in the transformation from B to A, assuming the entries of B are functionally

unconstrained (Kociȩcki, 2010). When evaluated in the (Λ, L, U), (A-76) is only a

function of λi’s via equation (A-74).

Combining (A-70)-(A-75)-(A-76) gives the conditional posterior for A:

p(A|Y,ϕ, D,v
)
∝ pA(A) · |A|T · e−

1
2

∑T
t=1 z

′
tA

′D−1
t Azt . (A-77)

A-9



In order to proceed further we need the Jacobian of the transformation from A to

(Λ, L, U). It may be shown that:

J(A→ Λ, L, U) =
k∏

i=1

|λi|k−1. (A-78)

Hence, (A-77) implies the following conditional posterior jointly for (Λ, L, U):

p(Λ, L, U |Y,ϕ, D,v
)
∝
( k∏

i=1

|λi|k−1
)
· pA(ΛLU) ·

( k∏
i=1

|λi|T
)
· e−

1
2

∑T
t=1 z

′
tU

′L′ΛD−1
t ΛLUzt ,

(A-79)

=
( k∏

i=1

|λi|T+k−1
)
· pA(ΛLU) · e−

1
2

∑T
t=1 z

′
tU

′L′ΛD−1
t ΛLUzt . (A-80)

Our approach to sample from p(Λ, L, U |Y,ϕ, D,v
)
consists in showing that the

conditional posteriors of Λ, L and U all have a common form. Starting with L, under

either (A-75) or (A-76) we can derive

p(L|Y,ϕ, D,v,Λ, U) ∝ e−
1
2

∑T
t=1 z

′
tU

′L′ΛD−1
t ΛLUzt , (A-81)

= e−
1
2
vec(L)′

∑T
t=1

(
Uztz′

tU
′⊗ΛD−1

t Λ
)
vec(L), (A-82)

= e−
1
2
vec(L)′

∑T
t=1

(
Uztz′

tU
′⊗Λ2D−1

t

)
vec(L), (A-83)

p(L|Y,ϕ, D,v,Λ, U) ∝ e−
1
2
(s+SLL)

′WL(s+SLL), (A-84)

∝ e−
1
2
(L′S′

LWLSLL+2L′S′
LWLs), (A-85)

hence,

L|Y,ϕ, D,v,Λ, U ∼ N
(
µ∗

L, V
∗
L

)
, (A-86)

V ∗
L = (S ′

LWLSL)
−1 (A-87)

µ∗
L = −V ∗

LS
′
LWLs, (A-88)

WL =
T∑
t=1

(
Uztz

′
tU

′ ⊗ Λ2D−1
t

)
, (A-89)
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The derivations for U are similar. Under either (A-75) or (A-76) we can derive

p(U |Y,ϕ, D,v,Λ, L) ∝ e−
1
2

∑T
t=1 z

′
tU

′L′ΛD−1
t ΛLUzt , (A-90)

= e−
1
2
vec(U)′

∑T
t=1

(
ztz′

t⊗L′ΛD−1
t ΛL

)
vec(U), (A-91)

= e−
1
2
vec(U)′

∑T
t=1

(
ztz′

t⊗L′Λ2D−1
t L
)
vec(U), (A-92)

p(U |Y,ϕ, D,v,Λ, U) ∝ e−
1
2
(s+SUU)′WU (s+SUU), (A-93)

∝ e−
1
2
(U ′S′

UWUSUU+2U ′S′
UWUs), (A-94)

hence

U |Y,ϕ, D,v,Λ, L ∼ N
(
µ∗

U , V
∗
U

)
(A-95)

V ∗
U = (S ′

UWUSU)
−1, (A-96)

µ∗
U = −V ∗

US
′
UWUs, (A-97)

WU =
T∑
t=1

(
ztz

′
t ⊗ L′Λ2D−1

t L
)
. (A-98)

It remains to derive the conditional posterior for Λ, which is

p(Λ|Y,ϕ, D,v, L, U) ∝
( k∏

i=1

|λi|T+k−1
)
· pA(ΛLU) · e−

1
2

∑T
t=1 z

′
tU

′L′ΛD−1
t ΛLUzt , (A-99)

=
( k∏

i=1

|λi|T+k−1
)
· pA(ΛLU) · e−

1
2

∑T
t=1 z

′
tU

′L′D−0.5
t Λ2D−0.5

t LUzt ,

(A-100)

=
( k∏

i=1

|λi|T+k−1
)
· pA(ΛLU) · e−

1
2

∑T
t=1 c

′
tΛ

2ct , (A-101)

=
( k∏

i=1

|λi|T+k−1
)
· pA(ΛLU) · e−

1
2

∑k
i=1

∑T
t=1 c

2
itλ

2
i , (A-102)

=
k∏

i=1

|λi|T+k+α−1 · e−
1
2
λ2
i

∑T
t=1 c

2
it , (A-103)

where α = 0 if we adopt (A-75), or α = −2k if we use (A-76).

Let us define xi = λ2i . Although this transformation is not 1-1 since λi may be
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both positive and negative, from standard probability we know that if λi has pdf p(λi)

then the pdf of xi is g(xi) =
1
2
x
− 1

2
i p(

√
xi) +

1
2
x
− 1

2
i p(−√

xi) , for xi > 0. Since in our

case p(
√
xi) = p(−√

xi), hence g(xi) = x
− 1

2
i p(

√
xi), it follows that

p(x1, x2, .., xk|Y,ϕ, D,v, L, U) ∝
k∏

i=1

x
− 1

2
i |x

1
2
i |T+k+α−1 · e−

1
2
xi

∑T
t=1 c

2
it , (A-104)

=
k∏

i=1

x
T+k+α

2
−1

i · e−
1
2
xi

∑T
t=1 c

2
it , (A-105)

hence

xi|Y,ϕ, D,v, L, U ∼ Γ(h∗λ,i, r
∗
λ,i), (A-106)

r∗λ,i =

∑T
t=1 c

2
it

2
, (A-107)

ct = D−0.5
t LUzt, (A-108)

where it holds

h∗λ,i =
T + k

2
, (A-109)

if prior (A-75) is used, and

h∗λ,i =
T − k

2
, (A-110)

if prior (A-76) is used. Note that we are using the following shape-rate parametrization

of the Gamma distribution

p(x|h, r) = rh

Γ(h)
· xh−1e−r·x. (A-111)

Having drawn xi we set λi =
√
xi with probability 1

2
, or λi = −√

xi with probability
1
2
, see Waggoner and Zha (2003a), p. 357, for analogous treatment.

D Identification up to sign and ordering

The non-Gaussian, statistically independent nature of the structural shocks combined

with the normalization of the variance to unity implies that the model is identified

up to sign and permutation of the shocks (Lanne et al., 2017). In order to avoid the
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associated multimodality of the posterior of A and B, we have to be sure that we

uncover the posterior uncertainty surrounding only one (possibly arbitrarily chosen)

mode. We achieve this via a normalization rule that builds on Waggoner and Zha

(2003b) (WZ hereafter). WZ work with the Gaussian SVAR model with variance of

the structural shocks normalized to 1, and develop the Likelihood Preserving (LP)

normalization that addresses the indeterminacy of the model up to the sign of the

shocks. We extend their method to address indeterminacy up to sign and ordering

(or permutation) of the shocks in a SVAR with independent t-distributed shocks. We

refer to this as the generalized LP normalization. In this section we first define the

generalized LP normalization and then relate it to the original specification by WZ.

Last, we show that existing combinatorial optimization techniques allow for a very

fast computation of the matrix needed to operationalize the normalization rule. This

makes the normalization rule feasible also for large models.

Let P denote the permutation matrix and Ps the signed permutation matrix. Our

criterion to choose Ps is

min
Ps

tr{(BPs − B̂)′Â′Â(BPs − B̂)}, (A-112)

where θ̂ denotes the Maximum Likelihood (ML) estimator of θ.2 By multiplying

matrices in (A-112) and using the fact that B̂ = Â−1, one can show that (A-112) is

equivalent to one of the following maximization problems:

max
Ps

tr{PsÂB} = max
Ps

tr{ÂBPs} = max
Ps

tr{ÂA−1Ps} = max
Ps

tr{P ′
sA

′−1Â′}. (A-113)

In order to appreciate the similarity of our criterion to the original LP normalization,

we show that if Ps were the diagonal matrix with ±1 on the diagonal, then the solution

to (A-112) would be exactly the LP normalization. Since WZ use the SVAR with its

transposed form, their (A, Â) are our (A′, Â′). Provided that Ps is a diagonal matrix

with ±1 on the diagonal, the last formula in (A-113) amounts to multiplying each

diagonal element of A−1Â by −1 if it is negative and by 1, if it is positive. Following

WZ’s notation, let ei denote the i−th column of Ik. Then the i−th diagonal element

2Note that using the notation in Proposition 4 in WZ, the minimizing function can be written
as ||BPs − B̂||Ω̂−1 , where Ω̂ = Â−1Â′−1 = B̂B̂′ is the ML estimate of the covariance of the reduced

form disturbances. The weighting function Ω̂−1 is important for the distance to be invariant under
changing the measurement units in the data. In particular, the solution to (A-112) remains the same
if instead of the original data yt we use Hyt, where H is any nonsingular matrix - see Proposition 5
in WZ.
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of A−1Â may be written as e′iA
−1Âei = e′iA

−1âi, where âi denotes the i−th column of

Â. An A draw is LP normalized if e′iA
−1âi > 0 for each i = 1, .., k. Multiplication of

the i−th diagonal element of A−1Â by −1 is equivalent to multiplication of the i−th

column of A by −1 since −1 ·e′iA−1âi = e′iI
∗
kA

−1âi = e′i(AI
∗
k)

−1âi, where I
∗
k is the k×k

identity matrix except its i−th diagonal element is set to −1. This is exactly the LP

normalization for Gaussian SVARs, rewritten in WZ’s notation.

In our general setup, we need to compute the signed permutation matrix Ps that

solves one of the equivalent problems in (A-113). To this end let us denote G = ÂA−1

and gi,j the (i, j)−th element of G. We focus on max
Ps

tr{PsG}. The problem is to

choose the permutation of rows of G (possibly multiplied by −1) such that tr{PsG}
attains its maximum. At the maximum tr{PsG} = p1gπ(1),1+p2gπ(2),2+ · · ·+pkgπ(k),k,
where π(i) denotes permutation of the row index and each pi = ±1. We first note

that at the maximum each term pigπ(i),i must be nonnegative. To realize it assume

by contradiction that at least one pigπ(i),i < 0. Then by setting p∗i = −1 · pi we have

p1gπ(1),1 + · · ·+ pigπ(i),i + · · ·+ pkgπ(k),i < p1gπ(1),1 + · · ·+ p∗i gπ(i),i + · · ·+ pkgπ(k),k, i.e.

contradiction. Hence at the maximum:

p1gπ(1),1 + p2gπ(2),2 + · · ·+ pkgπ(k),k = |p1gπ(1),1|+ |p2gπ(2),2|+ · · ·+ |pkgπ(k),k|,
= |p1||gπ(1),1|+ |p2||gπ(2),2|+ · · ·+ |pk||gπ(k),k|,
= |gπ(1),1|+ |gπ(2),2|+ · · ·+ |gπ(k),k|. (A-114)

This suggests the modified problem:

max
P

tr{P · |G|} = max
P

tr{P · |ÂA−1|}, (A-115)

where P is the usual permutation matrix and |G| means absolute values taken element-

wise for all entries in G matrix. At the maximum tr{P · |G|} = |gπ(1),1| + |gπ(2),2| +
· · ·+ |gπ(k),k|, hence though the space of permutation matrices is a subset of the space

of signed permutation matrices, the maximum of the original optimization problem

(A-113) is attained by the modified (i.e. constrained) optimization problem (A-115).

When working with (A-115), finding the signed permutation corresponding to this

maximum only requires picking pi = 1 or pi = −1 such that each pigπ(i),i is positive

(we omit considering the measure zero event such that gπ(i),i = 0 for some i, which

does not appear in practice).
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In practice, our problem

max
P

tr{P · |G|} = min
P

tr{P · −|G|}, (A-116)

could be addressed by evaluating the objective function of (A-112)-(A-113)-(A-115)-

(A-116) for every Ps. This would be computationally infeasible for even medium-

scaled models, since there exist k! permutation matrices, and this step is required

for every draw in the posterior sampler. However, the formulation in (A-116) shows

that the maximization problem is a linear assignment problem from combinatorial

optimization. The classic method to solve it is the so-called Hungarian algorithm and

its modern refinements, which are computationally really fast. Trying many versions

of this algorithm it turned out that the built-in MATLAB function ‘matchpairs’ is the

fastest. To appreciate its computational efficiency, take a generic number of variables

k. Set Â = 10 · Ik, draw the entries of B from independent N(0, 1), compute G = ÂB,

evaluate the time it takes to solve (A-116), and repeat. The following summarizes, on

average over 100,000 repetitions, how long it took to solve (A-116): 0.000056 seconds

for k = 5; 0.00007 seconds for k = 10; 0.0001 seconds for k = 20 and 0.0013 seconds

for k = 100 (computation done on an Intel Xeon E5-1603 v4 and 2.80 GHz). As the

illustration shows, the execution time of this optimization technique does not increase

substantially even for large k, hence making the normalization rule practical even for

large models.

With our method, once we find the permutation matrix P that solves (A-116), we

have to consider the diagonal elements in PG = PÂA−1 = PÂB. If the i−th diagonal

element in PÂB is negative we change the 1 in the i−th row of P to −1, otherwise

we do nothing. Doing so we accomplish the task of finding the signed permutation

matrix that solves (A-112). This completes the computation of Ps, which is required

at every iteration of the posterior sampler.

The following algorithm summarizes the steps required for the generalized LP nor-

malization:

Algorithm 1: generalized LP normalization:

Before starting the sampler compute the ML estimator Â. Then apply the

following steps at each iteration of the sampler, after drawing (A,B):

1. solve min
P

tr{P · −|ÂB|} using a version of the Hungarian algorithm,

where P is the usual permutation matrix and |ÂB| stands for the
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matrix of absolute values of all entries in ÂB (taken element-wise);

2. if the i−th diagonal element in PÂB is negative, change the 1 in the

i−th row of P to −1, otherwise do nothing. As as result, we get Ps

that solves (A-112);

3. replace B with BPs and A with P ′
sA.

We stress that this normalization rule can be applied to any non-Gaussian SVAR, and

not just to SVAR models with t-distributed shocks.

Recently, Jarociński (2024) proposed an alternative but similar rule to normalize

the draws of a SVAR model with independent t-distributed structural shocks. He

used the Gaussian approximation to the likelihood function of A as a criterion. In

particular, using our notation, his method amounts to solving

min
Ps

(vec(A′Ps)− vec(Â′))′V̂ −1(vec(A′Ps)− vec(Â′)), (A-117)

where V̂ is the asymptotic variance of vec(A′) i.e. the corresponding block of the

inverse of the (minus) Hessian of the likelihood evaluated at the mode. For better

comparison let us write our criterion (A-112) as

min
Ps

[(vec(BPs)− vec(B̂))′(Ik ⊗ Ω̂)−1(vec(BPs)− vec(B̂))], (A-118)

where Ω̂ = Â−1Â′−1 = B̂B̂′. Hence one difference between our method and his is

that we normalize B draws, whereas Jarociński (2024) normalizes A draws. He then

assumes large sample approximation of the covariance of vec(A′) as the weighting

function, whereas we assume block diagonal covariance for vec(B) with the same block

Ω̂ (which however follows directly from the LP normalization approach). However,

the main difference lies in how we solve the underlying minimization problem. We

use the highly efficient Hungarian algorithm, whereas Jarociński (2024) evaluates all

k! permutation matrices, see Algorithm 2 in his Online Appendix. As documented

above, the case of k = 20 requires about 0.0001 seconds to find the optimal permutation

matrix. Using the approach by Jarociński (2024) requires computing 20! = 2.432902 ·
1018 permutation matrices to find the one that solves (A-117).
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E Summary of the algorithm to sample from the

posterior of a SVAR with t-distributed strutural

shocks

All in all, our Gibbs sampling method for sampling from the joint posterior distribution

of a SVAR model with independent, t-distributed structural shocks can be summarized

as follows:

Algorithm 2: Gibbs sampler for SVAR models with independent t-distributed

structural shocks :

0. in a preliminary step to the sampler, estimate a target matrix B̂ using

a numerical maximum likelihood estimator, and compute Â = B̂−1.3

Then, at each iteration of the sampler:

1. draw ϕ from the Normal conditional posterior from equation (A-76);

2. draw L from the Normal conditional posterior from equation (A-86);

3. draw U from the Normal conditional posterior from equation (A-95);

4. draw x from the Gamma conditional posterior from equation (A-106);

5. compute Λ by setting each i, i entry as ±xi, with equal probability;

6. compute B̄ associated with (Λ, L, U) using equation (A-68) and B =

A−1;

7. set B = B̄Ps, with Ps computed using the generalized LP normaliza-

tion from Algorithm 1, Appendix D;

8. draw D from the inverse Gamma conditional posterior from equation

(A-60);

9. draw v from the discretized conditional posterior from equation (A-68);

10. repeat from step 1.

Note that placing the normalization step 7. before drawing (D,v) ensures that the

ordering of the structural shocks is consistent with the ordering of the degrees of

3To estimate the preliminary target matrix B̂ we found it convenient to use the 3-step maximum
likelihood estimator suggested by Lanne et al. (2017). This makes the procedure quite fast also for
our ten variable application from section 4 of the paper.
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freedom. We note, in passing, that the stored values of B are associated with a matrix

A that may not admit a decomposition via equation (A-68). This fact is without loss

of generality, as the decomposition is only employed as an operational procedure to

develop a Gibbs sampler.

F Additional material on the simulation exercise

The parameter values of the data generating process are

B =

(
0.60 0.40

0.70 −0.70

)
(A-119)

v =

(
6

6

)
(A-120)

Π1 =

(
1.0612 −0.0759

−0.2502 1.1404

)
(A-121)

Π2 =

(
−0.0660 0.0093

−0.0253 −0.0905

)
(A-122)

Π3 =

(
−0.0641 0.0109

0.0286 −0.0655

)
(A-123)

Π4 =

(
−0.0530 0.0119

0.0639 −0.0434

)
(A-124)

Π5 =

(
−0.0355 0.0113

0.0660 −0.0304

)
(A-125)

Π6 =

(
−0.0165 0.0084

0.0425 −0.0230

)
(A-126)

The target matrix used for the generalized LP normalization was estimated to

Btarget =

(
0.7015 −0.3279

0.7271 0.7236

)
(A-127)
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Figure A-1: Impact effect of the shocks (B) when the normalization
targets an arbitrary matrix: B̂ = I2
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Note: The blue diamond indicates Btrue. The blue dots indicate the target matrix B̂ used for
the normalization. The red star indicates the sign/permutation of Btrue that is the closest to B̂.
The continuous line shows the marginal posterior of the entries of B from 20,000 posterior draws
when applying the generalized LP normalization.
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Figure A-2: Generalized LP normalization
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Note: The vertical red line shows when the burn-in draws end. For each of the 21,000 posterior
draws, the figure indicates if the generalized LP normalization permutes the ordering of the
columns of B (vertical values 5-8) or not (vertical values 1-4). It also indicates if the sign of the
columns of B was not changed (values 1, 5), was changed for the first column only (values 2, 6),
second column only (values 3, 7), or both columns (values 4, 8).
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Figure A-3: Robustness for T = 1, 000

A) Degrees of freedom
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Note: In Panel A), the blue solid line shows the marginal posterior from the baseline specification
while the thick purple line shows the marginal posterior under the alternative specification. In
Panel B), the blue line and shaded areas show the pointwise median and credible sets correspond-
ing to the baseline estimation, while the red dotted lines show the pointwise credible sets in the
alternative specification. A-21



Figure A-4: Robustness for flat prior on v

A) Degrees of freedom
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Note: In Panel A), the blue solid line shows the marginal posterior from the baseline specification
while the thick purple line shows the marginal posterior under the alternative specification. In
Panel B), the blue line and shaded areas show the pointwise median and credible sets correspond-
ing to the baseline estimation, while the red dotted lines show the pointwise credible sets in the
alternative specification. A-22



Figure A-5: Robustness for flat prior on A

A) Degrees of freedom
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Note: In Panel A), the blue solid line shows the marginal posterior from the baseline specification
while the thick purple line shows the marginal posterior under the alternative specification. In
Panel B), the blue line and shaded areas show the pointwise median and credible sets correspond-
ing to the baseline estimation, while the red dotted lines show the pointwise credible sets in the
alternative specification. A-23



Figure A-6: Impulse response functions, robustness across 100 samples, 68% credible sets

Note: The figure shows all 68% credible sets associated with 100 repetitions over newly drawn
pseudo datasets. Each repetition applies the generalized LP normalization, as explained in the
paper. To improve comparability, the sign and ordering of the shocks from each repetition was
selected for this figure to improve comparability with the black dotted line, which corresponds to
the true impulse response shown in Figure 5
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Figure A-7: Impulse response functions, robustness across 100 samples and DGP
featuring Laplace shocks, 68% credible sets

Note: The figure shows all 68% credible sets associated with 100 repetitions over newly drawn
pseudo datasets. Each repetition applies the generalized LP normalization, as explained in the
paper. To improve comparability, the sign and ordering of the shocks from each repetition was
selected for this figure to improve comparability with the black dotted line, which corresponds to
the true impulse response shown in Figure 5.
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G Additional material on the application to the US

GDP
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Figure A-8: Robustness for p = 4 (1/2)

A) degrees of freedom
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Note: The figure shows the results when the lag length of the model is increased to 4. In panel
A the solid blue lines show the posterior distribution from the baseline specification, while the
dotted purple line shows the posterior distribution under the alternative specification. In panel B
the solid lines and shaded areas show the pointwise posterior median and 68% credible sets, while
the dotted purple lines show the 68% posterior credible sets under the alternative specification.
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Figure A-9: Robustness for p = 4 (2/2)
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Note: The figure shows the results when the lag length of the model is increased to 4. The solid
lines and shaded areas show the pointwise posterior median and 68% credible sets, while the
dotted purple lines show the 68% posterior credible sets under the alternative specification.
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Figure A-10: Robustness for flat prior on A (1/2)

A) degrees of freedom
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B) forecast error variance decomposition
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Note: The figure shows the results when using a flat prior on A rather than B. In panel A the
solid blue lines show the posterior distribution from the baseline specification, while the dotted
purple line shows the posterior distribution under the alternative specification. In panel B the
solid lines and shaded areas show the pointwise posterior median and 68% credible sets, while
the dotted purple lines show the 68% posterior credible sets under the alternative specification.
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Figure A-11: Robustness for flat prior on A (2/2)
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Note: The figure shows the results when using a flat prior on A rather than B. The solid lines
and shaded areas show the pointwise posterior median and 68% credible sets, while the dotted
purple lines show the 68% posterior credible sets under the alternative specification.
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Figure A-12: Robustness for 1948-2017 and 3m T-bill rate (1/2)

A) degrees of freedom
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B) forecast error variance decomposition
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Note: The figure shows the results when the sample starts in 1948Q1 and the federal funds
rate is replaced with the 3m T-bill rate. In panel A the solid blue lines show the posterior
distribution from the baseline specification, while the dotted purple line shows the posterior
distribution under the alternative specification. In panel B the solid lines and shaded areas show
the pointwise posterior median and 68% credible sets, while the dotted purple lines show the 68%
posterior credible sets under the alternative specification.
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Figure A-13: Robustness for 1948-2017 and 3m T-bill rate (2/2)

IRFs to a demand shock

0 4 8 12 16 20

0
0.2
0.4

0 4 8 12 16 20

0

1

2

0 4 8 12 16 20

0
0.2
0.4

0 4 8 12 16 20
-0.2

0
0.2
0.4

0 4 8 12 16 20

-0.2

-0.1

0

0 4 8 12 16 20

-0.4

-0.2

0

0 4 8 12 16 20

-2
0
2
4
6

0 4 8 12 16 20

0
0.05
0.1

0.15

0 4 8 12 16 20

0

0.2

0.4

0 4 8 12 16 20

-0.2

0

0.2

IRFs to a supply shock

0 4 8 12 16 20

-0.2
0

0.2
0.4
0.6
0.8

0 4 8 12 16 20

0

1

2

0 4 8 12 16 20

-0.2
0

0.2
0.4
0.6

0 4 8 12 16 20
-0.2

0
0.2
0.4
0.6

0 4 8 12 16 20

-0.3
-0.2
-0.1

0
0.1

0 4 8 12 16 20

-0.2

0

0.2

0 4 8 12 16 20

-15
-10

-5
0

0 4 8 12 16 20

-0.05

0

0.05

0 4 8 12 16 20

0

0.2

0.4

0 4 8 12 16 20

0

0.2

0.4

Note: The figure shows the results when the sample starts in 1948Q1 and the federal funds rate
is replaced with the 3m T-bill rate. The solid lines and shaded areas show the pointwise posterior
median and 68% credible sets, while the dotted purple lines show the 68% posterior credible sets
under the alternative specification.
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Figure A-14: Robustness for adding credit spreads (1/2)

A) degrees of freedom
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B) forecast error variance decomposition
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Note: The figure shows the results when adding the difference between BAA-rated corporate
bonds and the 10y US government bond rate. In panel A the solid blue lines show the posterior
distribution from the baseline specification, while the dotted purple line shows the posterior
distribution under the alternative specification. In panel B the solid lines and shaded areas show
the pointwise posterior median and 68% credible sets, while the dotted purple lines show the 68%
posterior credible sets under the alternative specification.
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Figure A-15: Robustness for adding credit spreads (2/2)
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Note: The figure shows the results when adding the difference between BAA-rated corporate
bonds and the 10y US government bond rate. The solid lines and shaded areas show the pointwise
posterior median and 68% credible sets, while the dotted purple lines show the 68% posterior
credible sets under the alternative specification.
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