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Abstract

Real GDP and industrial production in the US display substantial asymmetry and tail

risk. Is this asymmetry driven by a specific structural shock? Our empirical approach,

based on quantile regressions and local projections, suggests otherwise. We find that

the 10th percentile of predictive growth distributions responds between three and six

times more than the median to monetary policy shocks, financial shocks, uncertainty

shocks, and oil price shocks, indicating a common transmission mechanism. We present

two data-generating processes that are capable of matching this finding: A threshold

VAR model and a nonlinear equilibrium model.
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1 Introduction

Recent contributions in macroeconomics and finance (Adrian, Boyarchenko and Giannone,

2019; Giglio, Kelly and Pruitt, 2016) have highlighted that growth in measures of US output

is highly asymmetric and features substantial tail risk. To illustrate this feature, Figure

1 plots the quantiles of the one-year ahead forecast distribution of growth in Real Gross

Domestic Product (GDP) and Industrial Production (IP), commonly called “growth-at-risk”.

We present the findings from Adrian, Boyarchenko and Giannone (2019) based on quarterly

GDP, and also show that the findings are very similar when using the growth rate of industrial

production instead, which is available at a monthly frequency and that we will rely on in our

benchmark analysis.1

Quarterly Real GDP Industrial Production

Figure 1: Quantiles of One-Year-Ahead Growth for Various Measures.
Note: Quantiles of Average Growth over the Next Year of quarterly Real GDP Growth from 1983-Q1 to
2019-Q4 and monthly Industrial Production Growth from January 1983 to December 2019. Grey-shaded
bars indicate NBER-dated recessions.

Both panels convey the same asymmetry – the 10th quantile moves substantially more, in a

recession, relative to the median or the 90th percentile.2 While this fact is well documented,

it is not clear what the source behind this asymmetry is. Is this fact driven by a specific

structural shock or is there a common transmission mechanism that leads to this asymmetry?
1Giglio, Kelly and Pruitt (2016) focus on asymmetries in industrial production growth due to systemic risk.
2Details on the construction can be found in Section 3.1.

2



Previous empirical studies with a focus on nonlinearities have usually focused on one specific

shock (e.g. Primiceri, 2005; Tenreyro and Thwaites, 2016; Hamilton, 2011; Barnichon et al.,

2022; Forni et al., 2022). To answer the question we raised above we instead consider a

battery of shocks in a common framework and proceed in two stages.

In the first stage, we use a convenient two-step estimation routine that merges ideas from

Quantile Regression (Koenker and Bassett, 1978) to determine quantiles of the distribution of

interest with Local Projections (Jordà, 2005) to assess the effects of monetary policy shocks,

shocks to financial conditions, uncertainty shocks, and oil price shocks on the (predictive)

distribution of the growth rate of Industrial Production (IP).3 We devise a bootstrap algo-

rithm to capture all relevant statistical uncertainty in this approach and that might be of

independent interest to some readers. We find that responses to all shocks considered here

show substantial asymmetry - over the first year the 10th percentile moves at least 3.5 times

more than the median in response to the structural shocks.

In the second stage, we give two examples of data-generating processes (DGPs) that

can create nonlinearities similar to those we find in US data.4 We also use those DGPs as

laboratories to test our empirical machinery. The first DGP, a “semi-structural” threshold

model, makes transparent that a threshold VAR characterized by state-dependent elasticities

and/or variances is sufficient to generate the nonlinearities we observe. The second DGP,

the nonlinear DSGE model with financial panics by Gertler, Kiyotaki and Prestipino (2019),

confirms that a common propagation mechanism amplifies downturns, thus supporting the

plausibility of our empirical findings.

Our analysis is motivated by concerns that economic policymakers and market participants

have long harbored: They are generally not only concerned about what changes in economic

3We focus on Industrial Production because it is available at monthly frequency. In an earlier version of this
paper, we instead used a monthly measure of real GDP growth and found qualitatively very similar results.

4Clearly, those example are non-exhaustive: Many other data-generating processes are consistent with our
findings. Our empirical framework is general enough to capture asymmetries independently of what exact
DGP generated the data.
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conditions will do to the economy on average, but also how these changes affect both the

probability of large harmful events occurring as well as the magnitude of these events.5 We

borrow the concept of value-at-risk from the finance literature to operationalize the concept

of macroeconomic tail risk. To be more precise, we follow Adrian, Boyarchenko and Giannone

(2019) and study the distribution of macroeconomic risk by estimating a quantile forecast

regression of real GDP growth over the next year for various quantiles.

Standard impulse response functions in linear models such as Vector Autoregressions (VARs)

are not built to answer these questions, as they track average outcomes. While fully paramet-

ric VARs that specify the probability distribution of the one-step ahead forecast error could

be used to derive such measures of risk, these VARs put many restrictions on the behavior of

forecast densities.6 Our goal is to provide a flexible, yet simple framework that can directly

address these issues. A flexible approach is useful when studying GDP growth because GDP

growth is far from Gaussian, as can be seen from papers that interpret the non-normality

in GDP growth as coming from fat tails and/or stochastic volatility (Fagiolo, Napoletano

and Roventini, 2008, Cúrdia, Del Negro and Greenwald, 2014, and Justiniano and Primiceri,

2008). Our approach is constructed to be flexible through the following modeling choices: In

the initial quantile regression stage, we model each quantile separately instead of assuming

a specific distribution for the forecast distribution of real GDP growth. In the second stage,

we use local projections to impose as few restrictions on the data generating process as pos-

sible.7 By predicting each quantile using both financial conditions and lagged IP growth,

our approach can also shed light on whether any nonlinearities are transmitted via either of

5For research emphasizing that the Federal Reserve is concerned by downside risk, see Kilian and Manganelli
(2008). For direct evidence of a policymaker thinking about downside risk (which we will use synonymously
with tail risk), see March 2019 speech by Lael Brainard.

6Even non-linear time series models such as VARs with stochastic volatility and time-varying parameters
along the lines of Cogley and Sargent (2005) and Primiceri (2005) impose substantial structure. Carriero,
Clark and Marcellino (2020) propose an extension to the standard stochastic volatility structure embedded
in these models that helps to capture tail risks.

7As shown by Plagborg-Møller and Wolf (2021), local projections and VARs asymptotically estimate the same
impulse responses, but are on diametrically opposite ends of the bias-variance trade-off in finite samples.
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those predictors or both jointly, as we highlight in Section 4.2.

While the main focus of our paper is on the empirical relationship between various struc-

tural shocks and the distribution of real activity, our paper also provides key insights on how

to replicate growth-at-risk patterns in theoretical models via our two examples of classes of

DGPs that can generate such findings. So far, there have been limited efforts in trying to

rationalize results from the growth-at-risk literature and to use them as guidance for eco-

nomic modeling. One such effort is Adrian, Liang, Zabczyk and Duarte (2020) which adapt a

standard New Keynesian model to include “financial vulnerability” driven by movements in

endogenous and forward looking financial conditions and calibrate it to match growth-at-risk

patterns. Another example is Aikman, Bluwstein and Karmakar (2021) which build a semi-

structural New Keynesian model with financial frictions and obtain a fat-tailed distribution

of GDP. What distinguishes our approach is that we specifically build data-generating pro-

cesses that explain our empirical evidence on the asymmetric effects of shocks on the growth

outlook, as outlined above.

Our paper provides valuable insights for both policymakers and economists. We find that

adverse shocks disproportionately increase the risk of downturns, highlighting the importance

of nonlinearities in understanding the effects of standard shocks in equilibrium models for

business cycle analysis. Additionally, we offer new stylized facts that can serve as calibration

targets for macroeconomists building these equilibrium models.

The paper is organized as follows. Section 2 provides examples of impulse responses for

quantiles to help with interpretation of our empirical results. Section 3 gives an overview

of our methodology to estimate quantiles and their impulse responses to structural shocks.

We then introduce the specifications and data transformations used in our empirical analysis

in Section 4, which also presents our main results. In Section 5 we present a conceptual

framework to rationalize and shed light on the potential mechanisms behind our findings.

We offer concluding remarks and suggest avenues for future research in Section 6.
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2 Intuition for Impulse Responses of Quantiles

This section gives three examples in which an initial distribution of a variable changes after

a shock occurs. We show these examples to illustrate how a change in quantiles is linked to

changes in the distribution as a whole and how changes in specific moments translate into

changes in quantiles.8 Our scenario is as follows: After an initial distribution of a scalar

variable is hit by a shock, we trace out how this distribution changes on impact and in the

period after impact. We consider three experiments:9

1. The shock leads to an increase in the variance of our distribution.

2. The shock leads to an increase in the mean of our distribution.

3. The shock leads to a change in both the mean and variance of our distribution.

Figure 2 plots three panels for each experiment. The first panel in each row shows the initial

distribution, the distribution when the shock hits, and the distribution in the period after the

shock has materialized. The middle panel in each row shows the evolution of the 10th and

90th percentile for those three periods. The last panel in each row gives the impulse responses

for the 10th and 90th percentiles under the assumption that if the shock that moved the distri-

butions had not materialized, the distribution would have remained at its original position.10

As the impulse response plots the difference between the relevant percentiles and the original

values, the impulse response figures only show values for two time periods (the period when

the shock hits and the period after). Each row presents the figures for one experiment. Note

that the levels of the percentiles are not directly interpretable as IRFs because we do not
8These examples are not meant to be exhaustive. There can be many other changes in distributions that
lead to movements in quantiles similar to those displayed in this section.

9For simplicity all densities in this example are Gaussian. Our empirical approach makes no distributional
assumptions.

10For our purposes, impulse responses are defined as the difference between two conditional expectations,
where one of the expectations conditions on a specific value for one shock in one specific period.
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subtract the baseline value from the quantiles in those figures. As we can see, an increase in

the variance of a symmetric distribution makes the quantiles drift apart in a mirror-image

fashion, whereas a change in the mean of a symmetric distribution makes the quantiles move

in parallel, which in turn makes the impulse responses lie on top of each other. With a non-

symmetric distribution (or if a shock makes a distribution non-symmetric) the quantiles can

drift apart, but not necessarily in a mirror-image fashion, as highlighted in the third example.
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Figure 2: Illustration of Changes in Percentiles.
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Interpreting changes in multiple quantiles jointly can be challenging because we have to

envision how the entire distribution changes. As an example, let us focus on the third exper-

iment. As can be seen in the last panel on the bottom row of Figure 2, the 10th and 90th

percentile drift apart because the 90th percentile increases slightly, while the 10th percentile

decreases substantially. Thus, the distribution spreads out as a result of the shock—this can

also be seen by looking at the leftmost panel of the bottom row, where the yellow distribution

is more spread out than the original blue distribution. Let us for a second imagine that this

impulse response is the response to a contractionary shock and that quantiles react linearly

to those shocks (as will be the case in our local projections). Such shocks would not only

move the mean and median of the distribution (this can be seen from looking directly at the

Gaussian distributions in the bottom left panel, where the mean/median of the Gaussian

distribution moves from 5 to 3), but it actually moves the 10th percentile substantially more,

thus not only making average outcomes worse, but making outcomes in the left tail much

more likely. This is the relevant case in our empirical results.

Another scenario that could occur is that the impulse responses of various quantiles cross.

It is important to emphasize that this does not mean that the quantiles themselves cross.

In fact, a crossing of impulse responses of various quantiles can just mean that one quantile

reverts back to its pre-shock value faster than another. We discuss this in more detail in

Appendix A.

Our responses capture the difference between the expected path of the τth quantile at horizon

h after a given shock of specific (one standard deviation) size occurs and the expected path

of the τth quantile conditioning on such a specific shock value. That is, a response equal to

0 at horizon h means that the expected τth quantile at horizon h is the same independently

of whether we condition on a specific shock value in the initial period.
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3 Econometric Methodology

Our approach consists of two steps, which we outline in this section. First, we compute

quantiles of the predictive distribution of one-year-ahead IP growth. We focus on the 10th

percentile and, as reference points, the median and 90th percentile. We interpret this 10th

percentile of the predictive distribution of future IP growth as macroeconomic risk. Our

second step then uses local projections to assess how structural shocks affect macroeconomic

risk and the predictive distribution of average future IP growth more generally.

3.1 Conditional Quantiles

Quantile regression models (Koenker and Bassett, 1978) are a flexible tool to quantify risks

surrounding the growth outlook and to study its determinants.11 The first step in our anal-

ysis is to use this methodology to compute conditional quantiles of future IP growth as in

the quantile regression application in Adrian, Boyarchenko and Giannone (2019), with the

important difference of moving to monthly frequency to allow a timely assessment of devel-

opments in financial markets and the real economy. The data are illustrated in Appendix B.

Let us denote by ∆IPt the annualized (real) industrial production growth rate, by ∆̄IPt+1,t+12

its average over the next 12 months, and by NFCIt the Chicago Fed’s National Financial

Conditions Index. Formally, the conditional future IP growth quantiles are estimated from

a linear quantile regression (QR) model whose predicted value

qτ,t ≡ Q̂τ (∆̄IPt+1,t+12|NFCIt,∆IPt) = α̂τ + β̂τNFCIt+ γ̂τ∆IPt, τ ∈ (0,1) (3.1)

is a consistent estimator of the quantile function of ∆̄IPt+1,t+12 conditional on the variables

11For an introduction to the quantile regression methodology, see Koenker (2005).
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{∆IPt,NFCIt}.12,13 For the estimation of the parameters, we use data from January 1983

to December 2019 (except for our monetary policy shock application, where we use data from

February 1990 to December 2019 to align the QR sample with the sample available for our

proxy). The estimated QR coefficients are reported in Appendix C.

The time evolution of the one-year-ahead predictive IP growth distribution can be illus-

trated through the fitted values for the 10th quantile (left tail), the median, and the 90th

quantile (right tail). As previously shown in Figure 1, these quantiles (right panel) are simi-

lar to those obtained by Adrian, Boyarchenko and Giannone (2019) (left panel) at quarterly

frequency (originally run for the period from 1973:Q1 to 2015:Q4, conditioning on NFCI and

GDP growth).

3.2 Impulse Responses

Since the fitted quantiles summarize not only the median but, most importantly, the tails of

the future IP growth distribution, they constitute a measure of macroeconomic (downside and

upside) risk. Our interest lies in investigating whether and how these measures of risk respond

to aggregate shocks. We estimate the responses of different future IP growth quantiles to a

variety of aggregate shocks by applying the local projection method of Jordà (2005). As a

baseline, we run the following linear regression:

qτ,t+s = δsτ + θsτ shockt+ Ψ(L)sτ controlst+usτ,t+s, s= {0, . . . ,S} (3.2)

where qτ,t+s is the τth quantile computed in the previous section, shockt is the structural

shock of interest, and Ψ(L)sτ controlst is a lag polynomial of control variables which include

12Formally, the dependence between explanatory variables xt and a quantile of yt is measured by the coef-
ficient β̂τ = argminβτ∈R

∑T
t=1
(
τ ·1(yt≥xtβ)|yt−xtβτ |+ (1− τ) ·1(yt<xtβ)|yt−xtβτ |

)
, τ ∈ (0,1) where 1(·)

denotes the indicator function, taking the value one if the condition is satisfied. Note that no distributional
assumptions about the error term are required.

13A similar approach using factors in quantile regressions can be found in Giglio, Kelly and Pruitt (2016).
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the lagged quantiles and model-specific controls that we will discuss in detail later.14 Note

that there are two distinct notions of “horizon” in our application. First, the horizon in

the quantile regression h, which we keep fixed at one year and which captures how forward-

looking our measure of risk is. The second notion of horizon is s in the local projection,

which we vary as we trace out how risks respond at different horizons to a shock at time t.

The response of quantile qτ at time t+ s to a shock at time t is then given by θsτ .

We construct the impulse-response functions by estimating the sequence of the θsτ ’s in a

series of univariate regressions for each horizon. Confidence bands are based on the bootstrap

procedure described in Appendix D, which controls for serial correlation in the error terms

and the estimation error in the quantiles.

At this point, it is useful to contrast our approach with another approach that aims to combine

quantile regressions with local projections, an approach advocated for by Linnemann and

Winkler (2016). We interpret the 10th percentile of average future IP growth as a measure

of downside risk, and we then ask how this measure of risk reacts to different shocks. We

study a number of shocks and find it useful to use the same quantile (or measure of risk) for

all shocks we study in our local projections. Linnemann and Winkler (2016), instead, are

interested in one shock only and model the quantiles conditional on, among other things, a

fiscal shock and thus include the shock directly in the quantile regression. Linnemann and

Winkler (2016) cannot distinguish between the two horizons h and s that we emphasized

above (since they ask a different question, they probably would not want to).15 An advantage

of their approach is that they do not require a separate step to estimate the quantiles. An

14To be specific, we have Ψ(L)sτ = Ψs
1,τL+Ψs

2,τL
2 + ...+Ψs

p,τL
p so that Ψ(L)sτ controlst only contains p lags

of the control variables. We directly interpret shockt as a measure of the shock of interest. Alternatively,
one could use an instrumental variables approach. The first stage of a two-stage least squares estimation
would be the same across all quantiles, so all estimates would be rescaled by the same factor. We thank a
referee for pointing this out.

15Another approach in empirical macroeconomics that uses quantile regressions is introduced in Mumtaz
and Surico (2015), who use quantile autoregressive models to study state dependence in the consumption-
interest rate relationship. Recent work combining quantile regressions with VARmodels to estimate impulse
responses is presented in Chavleishvili and Manganelli (2017) and Kim, Lee and Mizen (2019).
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advantage of our approach is that it allows us to focus on the shocks’ impact on future

growth that operates solely through the conditioning variables of the quantile regression (in

our case, macroeconomic activity and financial conditions). We study this advantage further

via Monte Carlo simulations in Appendix H. Our approach also comes with the benefit of

reducing estimation uncertainty. We show this and provide a more detailed comparison of

the approaches in a simple example in Appendix J.16

4 The Response of Tail Risk to Macroeconomic Shocks

We estimate how quantiles of average industrial production growth over the next year respond

to the following aggregate shocks: a monetary shock, a financial shock, an uncertainty proxy,

and an oil price shock. We choose these shocks because they represent very different sources

of economic fluctuations - if the response patterns are similar across these shocks, this gives

us confidence that a common propagation mechanism is at play. We identify these shocks

via standard proxies in the literature. In particular, as much as possible we use proxies that

not only have been used in the literature before, but that also can be directly computed

from the data without needing to estimate an auxiliary statistical model. Next, we introduce

the specifications and data transformations. More details on our data sources are provided

in Appendix B. A large battery of robustness checks can be found in Appendix E. These

include alternative samples, alternative monetary policy shocks, using a monthly measure of

real GDP growth (Caldara et al., 2020) instead of IP, and studying six-month ahead growth

instead of one-year ahead growth.

All local projections are estimated using the same sample size as our quantile regression

(January 1983 to December 2019), with the aforementioned exception of the monetary policy
16If we denote by yt our variable of interest, xt the vector of conditioning variables and ε1

t the structural
shock of interest, the “one-step” approach of Linnemann and Winkler (2016) estimates quantiles of the
distribution p(yt|xt−1,ε

1
t ). Our approach instead first estimates the quantiles of the distribution p(yt|xt)

and then estimates the effects of shocks on those quantiles.
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shock, in which case we reduce the sample size for the quantile regression to align samples.

Monetary Policy Shocks Our proxy for a monetary policy shock is the surprise in the

three-months ahead Fed Funds futures (Gertler and Karadi, 2015) around FOMC meetings.17

To deal with the potential confounding issues that have been raised around high-frequency

monetary surprises (see, e.g., Nakamura and Steinsson (2018), Jarociński and Karadi (2020),

Miranda-Agrippino and Ricco (2021), and Zhang (2022)) we control for lagged values of both

the shock and a set of macroeconomic variables in our local projections. We thus estimate

the following regression for the sample February 1990 to December 2019:

qτ,t+s = δsτ + θst surpriset+ Ψ(L)sτ
[
surpriset,∆IPt,πcpit ,πcommodityt , it

]′
+usτ,t+s (4.1)

where we control for twelve lags of: the monetary policy surprise surpriset, industrial pro-

duction growth ∆IPt, CPI inflation πcpit , commodity inflation πcommodityt and the federal

funds rate it.

Credit Spread Shocks We use the Gilchrist and Zakrajšek (2012) excess bond premium

(EBP) updated by Favara, Gilchrist, Lewis and Zakrajšek (2016) to construct an aggregate

credit spread shock. This shock can be identified by setting the controls in the local projection

appropriately.18 For the identification of EBP shocks, we assume that no other shocks can

affect the excess bond premium on impact within a month. The effect of an EBP shock is

then equal to θsτ because that coefficient encodes the effect of unexpected movements in the

Excess Bond Premium after controlling for lags of the Excess Bond Premium, CPI inflation,

IP growth, and the nominal interest rate.

17We follow Gürkaynak et al.’s (2022) construction of this surprise.
18For a further discussion of how timing restrictions such as this can be incorporated into local projections,
see Barnichon and Brownlees (2019) and Plagborg-Møller and Wolf (2021).
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We estimate the following regression for the sample from January 1983 to December 2019:

qτ,t+s = δsτ + θsτ EBPt+ Ψ(L)sτ
[
EBPt, π

cpi
t , ∆IPt, it

]′
+usτ,t+s, (4.2)

where we include twelve lags of all controls.

Oil Price Shock We investigate the effects of oil price shocks on growth quantiles by

using the asymmetric measure of net oil price increase proposed by Hamilton (2003). We

thus define an oil price shock as the percentage increase (negative changes are censored out)

in the monthly oil price over the peak experienced in the previous thirty-six months:

shock36m,t = 100max(0, logpt−max(logpt−1, logpt−2, ..., logpt−36))

where pt stands for the producer price index for crude petroleum.

We run the following local projection for the sample from January 1983 to December 2019:

qτ,t+s = δsτ + θsτ shock36m,t+ Ψ(L)sτ
[
shockt, π

cpi
t , ∆IPt, it

]′
+usτ,t+s, (4.3)

where πcpit is the CPI inflation rate, ∆IPt industrial production growth and it the federal

funds rate. We include twelve lags of the shock itself and of the control variables.

Uncertainty Shock We investigate the effects of uncertainty shocks on growth quantiles

by using the uncertainty proxy constructed by Piffer and Podstawski (2018), updated to

December 2019. This proxy is obtained by calculating changes in the price of gold around

uncertainty events. We estimate the following local projection from January 1983 to Decem-

ber 2019:

qτ,t+s = δsτ + θst proxyt+ Ψ(L)sτ [proxyt,∆IPt]′+usτ,t+s, (4.4)

where twelve lags of the proxy and of industrial production growth ∆IPt are included.
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Summarizing Estimation Uncertainty Our approach is subject to two key sources of

statistical uncertainty: not only are the coefficients in the local projections step subject to

estimation uncertainty, but the quantiles that are used as data in the local projection step

themselves are estimated with uncertainty. We thus design a bootstrap procedure to obtain

confidence intervals that capture the uncertainty of both the quantile regression and the local

projection step. The full details are provided in Appendix D.

Interquantile Ranges The uncertainty around the IRFs of single quantiles estimated in

separation from each other cannot readily answer the question of whether quantile responses

are statistically different from each other because they represent marginal responses that

disregard the correlation between the responses of the various quantiles. This is why we

estimate, for all shocks, another regression in which we recognize that the quantiles come from

a common data-generating process and thus compute the impulse responses of interquantile

ranges directly. The specification reads:

qτ1,t+s− qτ2,t+s = δsτ + θsτ shockt+ Ψ(L)sτ Xt+usτ,t+s, (4.5)

where τ1 and τ2 are the quantiles of the interquantile range and Xt the shock-specific controls.

4.1 Results

We present the impulse responses of the one-year-ahead industrial production growth quan-

tiles and interquantile ranges in Figure 3 and Figure 4. In the top panel, we plot the impulse

responses of the quantiles after a contractionary shock. To make the responses comparable

across shocks, we rescale the responses across quantiles such that the median falls by 25

basis points on impact (this procedure does not distort the sign of the response). The key

takeaway from Figures 3 and 4 is that there is a clear asymmetry in the response to all shocks

we consider: The 10th percentile moves more than the median, which in turn moves more
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than the 90th percentile. The responses of the difference between the 10th and 50th quantiles

are statistically different from zero, whereas the same cannot be said about the responses of

the difference between the 50th and 90th quantiles.

Figure 3: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Year to Contractionary Shocks.
Note: Red is response of the 10th quantile, black is the median response, blue is response of the 90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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Figure 4: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Year to Contractionary Shocks.
Note: Red is response of the 10th quantile, black is the median response, blue is response of the 90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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These differences are economically significant. To give a sense of the quantities, Table 1

shows the average ratio of the impulse responses of the 10th percentile relative to the median

for the first year (in other words, we look at the value of the red line in the top panels of

Figures 3 and 4 divided by the black line in the same panels).

On average, the response of the 10th percentile can be more than three and a half times

that of the median in the first year: the average ratio is 5.9 for the monetary policy shock,

3.7 for the credit spread shock, 3.8 for the oil price shock and 4.7 for the uncertainty proxy.

Table 1: Ratio of Impulse Responses (10th Quantile to Median) Over First Year.

Average Ratio
Monetary Policy Shock 5.9
Credit Spread Shock 3.7
Three-Year Net Oil Price Increase 3.8
Uncertainty Proxy 4.7

This means that a contractionary shock not only worsens average (median) outcomes, it

also moves probability mass to the left tail of the industrial production growth distribution

even relative to what one would expect from median outcomes. This statement holds true

for all shocks we consider. These results stress the importance of assessing how shocks move

the entire distribution of future outcomes, and not just measures of central tendency.

As we show in the next section, a linear model cannot generate this asymmetry. Hence, our

results emphasize that nonlinearities are important to understand macro risk.19 Furthermore,

these nonlinearities cannot be tightly linked to the response to one specific shock, as they are

present in all shocks we study. Our results thus imply that these asymmetries are a feature of

the propagation mechanism of shocks. In the next section, we describe two data-generating

processes that rationalize the asymmetries we find in the data.

19As highlighted in Koenker (2005), even linear quantile regressions such as those used here can capture
nonlinearities because each quantile is modeled separately.
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4.2 Inspecting the Relevance of Macro and Financial Conditions

In this section, we modify our estimation procedure to gain insight into the sources of the

asymmetry in response to shocks that we established in the previous section. Specifically, in

the quantile regression step (3.1) we set to zero, post estimation, the coefficients associated

with industrial production growth and otherwise keep the coefficient on financial conditions

unchanged when recomputing the quantiles. That is:

Q̂IP−partial,τ (∆̄IPt+1,t+12|NFCIt,∆IPt) = α̂τ + β̂τNFCIt+ γ̂τ︸︷︷︸
=0

∆IPt, τ ∈ (0,1) (4.6)

These recomputed quantiles, which partial out the effect of IP growth are then passed on

to the local projection step. This modification allows us to explore how important financial

conditions are for the asymmetries that we find in US data.

The resulting quantiles are shown in Figure 5: They all display markedly less noise, and

while the 90th quantile has become nearly constant, both the 10th quantile and the median

display broadly similar paths as in the benchmark.

Figure 5: Quantiles of Average Industrial Production Growth over the Next Year
Constructed with the Coefficients on IP Growth Set to Zero in the QR (3.1).
Note: Red is the 10th quantile, black is the median, blue is the 90th quantile. Grey-shaded bars indicate
NBER-dated recessions.
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Consequently, the responses of these quantiles to the four shocks obtained in the second

step of the routine are also very similar to their baseline counterparts, although smoother

(Figures 6 and 7). This suggests that financial conditions are essential for explaining the

non-linear impact of shocks on the growth outlook.

Figure 6: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Year to Contractionary Shocks. Quantiles are Con-
structed with Coefficients on IP Growth Set to Zero in the QR (3.1).
Note: Red is response of the 10th quantile, black is the median response, blue is response of the 90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.

This notion is supported by an analogous exercise in which the local projection step uses

quantiles constructed by setting to zero the coefficients on NFCI, instead of those on IP
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growth, that is:

Q̂NFCI−partial,τ (∆̄IPt+1,t+12|NFCIt,∆IPt) = α̂τ + β̂τ︸︷︷︸
=0

NFCIt+ γ̂τ∆IPt, τ ∈ (0,1) (4.7)

This exercise supports our conclusion: Although industrial production is a source of non-

linearity in its own right, this appears to be muted in comparison to the one produced by

financial conditions only (Figures F-2 and F-3 in the Appendix).

Figure 7: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Year to Contractionary Shocks. Quantiles are Con-
structed with Coefficients on NFCI Set to Zero in the QR (3.1).
Note: Red is response of the 10th quantile, black is the median response, blue is response of the 90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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5 Inspecting the Economic Mechanism

As noted in our introduction, there are at least two key competing theories on the sources

of Growth-at-Risk. The first is that a specific shock has an independent, nonlinear effect on

growth. The second is that shocks share a common, nonlinear propagation mechanism.

In the previous section, we established that macroeconomic risk is not driven by one shock

only. Indeed, we found that all shocks we consider generate an asymmetric response in the

quantiles of future IP growth. In this section, we shed light on potential economic mechanisms

underlying our empirical findings. As a by-product, we also validate our approach. To do

so, we perform Monte Carlo experiments that draw on a “semi-structural” VAR model with

switching coefficients and volatilities, as well as on the nonlinear DSGE model of Gertler,

Kiyotaki and Prestipino (2019) featuring bank panics and financial accelerator mechanisms.

These DGPs serve as examples that can replicate our findings. This section is not meant as

an exhaustive description of all possible DGPs that can replicate our findings. Indeed, we do

not want to take a stand on a specific DGP - our empirical approach is intentionally agnostic

about the data-generating process, which we view as a strength of our approach.

5.1 A “Semi-Structural” Threshold VAR Model

We start by considering a specific version of a “semi-structural” threshold VAR model which

features the following key mechanism: Whenever financial conditions and macroeconomic

conditions worsen considerably, the effect of the shock on these variables is more pronounced.

This reflects the idea that during recessions nonlinearities arise which exacerbate the effect

of adverse shocks. We provide specific numerical values for parameters because we simulate

these DGPs to evaluate our approach.
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Model I Our shock of interest “shockt” has a nonlinear effect on the growth outlook through

a common state-dependence governed by ft and mt.

The VAR model consists of three endogenous variables and three innovations:

yt = β0 +β1ft+β2mt+σye
y
t (5.1)

ft = α1ft−1 +α2mt+α3(ft−1,mt−1)shockt+ eft (5.2)

mt = γ1mt−1 +γ2ft−1 +γ3(ft−1,mt−1)shockt+ emt (5.3)

α3(ft,mt) =


5, if ft > f∗ & mt <m∗

1, normal state
, γ3(ft,mt) =


−5, if ft > f∗ & mt <m∗

−1, normal state

where yt, ft, mt respectively denote the growth rate of real activity, a financial factor,

and a macroeconomic factor and eyt , e
f
t and emt are shocks to these variables; shockt is

the structural shock of interest for the impulse response functions. All shocks are drawn

from an independent standard normal distribution. Note that α3(ft,mt) and γ3(ft,mt) are

functions of ft and mt. In particular, when ft is greater than a threshold f∗ and mt is

smaller than a threshold m∗ the effect of an adverse shock on future real activity growth

is more pronounced. This captures the idea that due to amplification mechanisms, adverse

shocks that hit during already bad times, as measured by tight financial conditions and

weak macroeconomic activity, make the growth outlook particularly vulnerable. The other

parameter values can be found in Appendix G.

This model encodes the view that some recessions (i.e. situations where mt is low) can be

more severe than others; for instance, if the financial variable ft is not above the threshold,

the associated recession tends to be milder. A similar idea is pursued in Jordà, Schularick

and Taylor (2020). Although we focus on one structural shock here for parsimony, our results

would be qualitatively the same if instead we had more than one structural shock (i.e. if we
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replaced α3shockt and γ3shockt with
∑I
i=1α

i
3shock

i
t and

∑I
i=1 γ

i
3shock

i
t, respectively, where

shockit is the time t realization of the ith structural shock of interest and the number of

structural shocks I is larger than 1). We show results for Monte Carlo simulations in such

an environment in Appendix H.

Impulse Responses We simulate the model 1000 times for 444 periods (the number of

periods between January 1983 and December 2019, as in the credit shock specification) and

store {yt,ft,mt, shockt} for each simulation. We first construct average future real activity

growth over the next four periods and estimate its quantiles conditional on the financial and

the macroeconomic factor. In Figure 8 we report the impulse responses of the quantiles to the

(contractionary) shock of interest, computed via local projection as in our empirical exercise.

We normalize the responses such that, on impact, the median drops by 25 basis points.

Threshold VAR Linear VAR

Figure 8: Impulse Responses of Quantiles of Simulated Future Real Activity
Growth from Threshold VAR (Left Panel) and Linear VAR (Right Panel) Model.

Note: Straight lines are medians across simulations. Shaded areas are 68% confidence bands.

There are two important results that emerge. The first is that in the case of the threshold

VAR model (left panel), the shock pushes down the left tail more strongly than other parts

of the distribution, as in our empirical findings. This can be explained by the fact that
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when the shock hits during times of financial and macroeconomic distress, its effect is more

pronounced, thus making the growth outlook more vulnerable. The second result is that,

not surprisingly but reassuringly, no asymmetry is found when we shut down non-linearities

in the DGP and thus consider a linear VAR model (right panel). The parameter values for

the linear model can also be found in Appendix G.

Alternative Specifications of the DGP Several data-generating processes can deliver

the results shown above. This happens, for instance, in model II below. In this model the

shock has a linear effect on financial and macro conditions but the propagation mechanism is

such that the latter are nonlinearly related to real activity growth. In particular, it features

the following mechanisms. First, whenever financial conditions or macroeconomic conditions

worsen, their effect on future real activity growth is more pronounced and so is its variance.

(This is governed by the terms β1(ft,mt) and β2(ft,mt) in the first equation.) This reflects the

idea that during recessions nonlinearities arise which can prolong and exacerbate downturns.

Second, both macroeconomic and financial conditions are still driven by a common shock

(structural shocks affect multiple aggregates at the same time), but this shock has a linear

effect on these variables in this model.

Model II Shock affects ft and mt linearly, but their effect on yt is larger during bad times.

yt = β0 +β1(ft,mt)ft+β2(ft,mt)mt+ eyt (5.4)

ft = α1ft−1 +α2mt+α3shockt+ eft (5.5)

mt = γ1mt−1 +γ2ft−1 +γ3shockt+ emt (5.6)

β1(ft,mt) =


−1.5, if ft > f∗ & mt <m∗

−0.5, normal state
, β2(ft,mt) =


1.5, if ft > f∗ & mt <m∗

0.5, normal state
,

If we simulate data from this competing model, use it in our estimation procedure and
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compute impulse responses, the model would again signal that the effect of the shock on

growth is nonlinear – as evident in the right panel of Figure 9. In particular, we again obtain

the result of model I, in the left panel, that the lower tail moves down more than the median.

This result is not surprising since financial and macro conditions are the key variables gov-

erning the nonlinearity of future growth in our threshold VAR and both of these variables

are in turn driven by that common shock.

Model I Model II

Figure 9: Comparison of Impulse Responses of Quantiles of Simulated Future
Real Activity Growth from Threshold VAR. Model I vs. Model II.

Note: Straight lines are medians across simulations. Shaded areas are 68% confidence bands.

Finally, these same patterns can also be replicated by other DGPs, in which nonlinearity

is modeled like in model III below, in which, once we condition on mt, the financial fac-

tor does not feature asymmetric responses to the shock of interest - all asymmetries in this

model are determined by the asymmetric response of the macro factor to the shock.20 Model

III thus acknowledges how the interdependence between macro and financial conditions can

confound inference on which variables are responsible for the asymmetric response of real

activity growth to shocks.

20Naturally, we could write down a model with the exact opposite role of factors.
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As mentioned above, we think of these models as laboratories that highlight possible sources

of our empirical findings. We intentionally made them as simple as possible. Nevertheless,

some readers might find it useful to think about how to distinguish between these models.

One possible approach is the one we take in Section 4.2, where we examine the role of the con-

ditioning variables in the first stage quantile regression. This can help researchers understand

whether all or only a subset of conditioning variables lead to asymmetries. Alternatively, one

could directly study the dynamics of the conditioning variables in the quantile regressions.

While correctly specified regressions for the macro and financial factors of the form (5.8) and

(5.9) would asymptotically uncover the correct source of asymmetry, alternative specifica-

tions (such as a specification that replaces mt with mt−1 in Equation (5.8)) could easily lead

researchers astray. Telling models I and II apart is thus a daunting task.

Distinguishing between the mechanism present in model II (where nonlinearities come from

the relationship between factors and output growth) and the mechanism present in models

I and III (where nonlinearities come from the dynamics of the factors themselves) is instead

more straightforward by either following the approach in Section 4.2 or by estimating quan-

tile regressions of the financial and macro factors, as these regressions can tell us whether

these variables exhibit nonlinearities.

Model III Asymmetry from macroeconomic conditions mt is inherited by ft and yt.

yt = β0 +β1ft+β2mt+σye
y
t (5.7)

ft = α1ft−1 +α2mt+α3shockt+ eft (5.8)

mt = γ1mt−1 +γ2ft−1 +γ3(mt−1)shockt+ emt (5.9)

Appendix G displays the IRFs for a variant of the threshold VAR Model II with non-

constant variance as well as for Model III.
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Additional Models In Appendix G we also present additional models to show how our

approach, which computes conditional quantiles using quantile regression (QR) in a first step

and then their dynamic responses using local projection (LP) in a second step, is useful in at

least two ways. First, it can detect whether a conditioning variable is behind the asymmetry

displayed by the impulse responses. Second, it can be informative as to whether the shocks

propagate to the growth quantiles through a common propagation mechanism.

5.2 A Macroeconomic Model with Financial Panics

Next, we show that the nonlinear DSGE model of Gertler, Kiyotaki and Prestipino (2019) can

also rationalize our empirical findings. We briefly discuss the key mechanism that generates

the nonlinearity in this model. We refer interested readers to the original paper for details of

the model.21 The model is fully microfounded and extends the conventional New Keynesian

model with investment by introducing bankers. Bankers are more efficient than households

in handling loans. However, bankers are constrained in their ability to raise external funds

and are subject to runs. The latter gives rise to multiple equilibria: one with and one without

a financial panic.

A financial panic forces the banking system into liquidation, expanding the share of cap-

ital held by households. The reallocation of capital holdings from bankers to less efficient

households increases the cost of capital, which ultimately disrupts firms’ borrowing. Con-

sequently, investment drops substantially more than in the equilibrium without a bank run.

A self-fulfilling financial panic equilibrium exists if and only if, in the event of all other de-

positors’ run, an individual household will be better off to follow the run. When financial

conditions are strong, the economy fluctuates around a standard equilibrium. In contrast,

when the financial system is weak (i.e., at the edge of the bank-run regime), even a small

shock can push the economy into a self-fulfilling bank-run equilibrium. Combined with a
21The full model consists of 40 equations which we do not include here for the sake of brevity.
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sunspot shock, this triggers a financial panic and a deep recession.

We solve the model nonlinearly using a global solution method, and then simulate 1,000

samples of the same length as our benchmark sample. With those samples in hand, we then

estimate the quantile regression and the local projections as in our empirical application for

each sample. We follow the original paper in focusing on a capital quality shock as a rep-

resentative structural shock. Details of the model solution, simulation, as well as additional

results for this model can be found in Appendix I.

Impulse Responses Figure 10 presents the impulse responses of the quantiles of log GDP

(in deviation from its steady state) to the (contractionary) capital quality shock, computed

as in our empirical exercise. Also in this example, we normalize the responses such that, on

impact, the median drops by 25 basis points. We again find that the shock pushes down the

left tail more strongly than other parts of the distribution, as in our empirical findings.

Note: Straight lines are medians across simulations. Shaded areas are 68% confidence bands.

Figure 10: Impulse Responses of Quantiles of Simulated log(GDP) to a Capital
Quality Shock from Gertler, Kiyotaki and Prestipino (2019) Model.
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6 Conclusion

This paper studies tail risk in U.S. aggregate outcomes. In particular, we study how macroe-

conomic shocks affect tail risk. All shocks considered affect tail risk disproportionately more

than other quantiles (on average, the response of the 10th percentile over the first year after

impact is at least 3.7 times larger than the median). Contractionary shocks thus deserve even

more attention than what their effect on average outcomes suggests to the extent that they

make poor economic conditions more likely. Our results suggest that policymakers should be

especially weary of unexpected adverse changes in the economy.

The fact that all shocks we study display this tail-risk asymmetry points to a common

mechanism lying behind these asymmetries. Indeed, the two data-generating processes we

use as laboratories to test this hypothesis can replicate our findings: In the first experiment,

a threshold VAR model, a common mechanism (which could be thought of as a financial

accelerator mechanism in a more structural model) amplifies the negative effect on economic

growth of a deterioration in financial and macroeconomic conditions. In the second, a macroe-

conomic model with financial panics, the bank-run equilibrium features nonlinearities that

magnify the effects of a financial panic on economic activity. Consequently, we argue that

nonlinear equilibrium models are necessary for modeling and studying macroeconomic risk.

Our paper helps researchers in this endeavor by presenting stylized facts on asymmetric

effects of shocks that researchers can use to calibrate their models.
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A Some Additional Intuition for Impulse Responses of

Quantiles

Next, we show an example in which the impulse responses of the quantiles cross. By con-

struction, however, the quantiles themselves cannot cross because we directly model changes

in the entire distribution. The example is similar to the first example from the main text,

but we change the sequence of variances for the Gaussian distribution to achieve the crossing

of the impulse responses of the 10th and 90th percentiles.
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Figure A-1: Example Where Impulse Responses Cross But Quantiles Don’t.
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B Data

This section gives a brief overview of the data we use throughout this paper.

B.1 Growth-at-Risk Data

In the quantile regression, industrial production growth (Figure B-1) serves both as the

dependent variable and as a conditioning variable alongside the National Financial Conditions

Index of the Chicago Fed (Figure B-2). Both series can be retrieved from FRED (Mnemonics:

INDPRO; NFCI). For Figures E-5 and E-6, we use a measure of monthly GDP growth

constructed by Caldara, Cascaldi-Garcia, Cuba Borda and Loria (2020) instead of industrial

production growth, both at the quantile regression stage and at the local projection stage.

Figure B-1: Dependent and Conditioning Variable in the Quantile Regression.

Figure B-2: Second Conditioning Variable in the Quantile Regression.
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B.2 Local Projection Variables

The series of high-frequency surprises in the fourth Federal Funds Futures around FOMC

meetings was provided by the Federal Reserve’s Division of Monetary Affairs. Multiple

observations within the same month are summed up. The excess bond premium is taken

from Favara, Gilchrist, Lewis and Zakrajšek (2016)22. We construct the oil price shock using

the Producer Price Index by Commodity: Fuels and Related Products and Power: Crude

Petroleum, taken from FRED (Mnemonic: WPU0561). The uncertainty proxy is taken from

Piffer and Podstawski (2018)23. The monetary shocks used in Figure E-9 are the Federal

Funds rate shock and the policy news shock around all FOMCmeetings taken from Nakamura

and Steinsson (2018)24. Multiple observations within the same month are summed up.

Most control variables used in the local projection stage are available in FRED. The

source data are:

• Consumer Price Index for all Urban Consumers: All Items.

FRED Mnemonic: CPIAUCSL.

• Federal funds rate. FRED Mnemonic: FEDFUNDS.

• Industrial production. FRED Mnemonic: INDPRO.

• CRB Commodity Index. Haver Mnemonic: PZALL@USECON.

22The series can be downloaded at https://www.federalreserve.gov/econresdata/notes/feds-notes/
2016/updating-the-recession-risk-and-the-excess-bond-premium-20161006.html.

23The authors provide an updated series at https://sites.google.com/site/michelepiffereconomics/
research-1?authuser=0.

24We use the 1995-2014 series, which can be downloaded at https://eml.berkeley.edu/~enakamura/
papers.html
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B.3 Shocks

Note: The Excess Bond Premium as plotted here is itself not a proxy for a shock, but is used to construct a
proxy for the EBP shock, see Equation (4.2).

Figure B-3: Shocks and Proxies.

MS MPS PNS EBP UP OPS
Monetary Surprise 1
Monetary Policy Shock (N&S) 0.82 1
Policy News Shock (N&S) 0.89 0.80 1
Excess Bond Premium -0.13 -0.13 -0.19 1
Uncertainty Proxy (P&P) 0.05 0.07 0.06 0.17 1
Oil Price Shock (H) 0.11 0.00 0.03 -0.01 0.02 1

Note: Common sample is February 1995 to March 2014.
Table B-1: Correlations Between Shocks (and the EBP).
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C First Stage QR Estimates: Equation (3.1)

Table C-1: Quantile Regression Estimates (January 1983 - December 2019).
Standard Errors in Parentheses.

Dependent variable: Average of Industrial Production Growth over the Next Year
10th Quantile Median 90th Quantile

(1) (2) (3)
NFCI −5.747∗∗∗ −1.636∗∗∗ 0.278

(1.931) (0.531) (0.688)
Industrial Production Growth 0.245∗∗∗ 0.056∗∗ 0.117∗∗∗

(0.049) (0.025) (0.039)
Constant −5.114∗∗∗ 1.808∗∗∗ 5.758∗∗∗

(1.113) (0.307) (0.383)
Observations 432 432 432

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table C-2: Quantile Regression Estimates (February 1990 - December 2019).
Standard Errors in Parentheses.

Dependent variable: Average of Industrial Production Growth over the Next Year
10th Quantile Median 90th Quantile

(1) (2) (3)
NFCI −10.681∗∗∗ −2.010∗∗ −0.090

(1.908) (0.942) (0.700)
Industrial Production Growth 0.163∗∗∗ 0.043 0.066∗

(0.061) (0.030) (0.036)
Constant −8.381∗∗∗ 1.652∗∗∗ 5.368∗∗∗

(1.161) (0.559) (0.444)
Observations 347 347 347

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

39



D Bootstrap Procedure

This section gives a brief overview of the bootstrap procedure used to obtain the confidence

bands. The procedure is designed to capture the uncertainty involved both with the quantile

regression and with the local projection step of our estimation approach.

Quantile Regression Step The first step of the bootstrap procedure involves quantifying

the uncertainty around the quantile regression estimates. To do so, we use the stationary

“blocks-of-blocks” bootstrap of Politis and Romano (1994). For a total number of K = 100

bootstrap replications, blocks of data are randomly drawn to form a new sample of the same

size as the original data. Importantly, the blocks are resampled in the same order for both the

dependent variable y and the regressors X, a key step which preserves the time-dependency

in the data. The procedure is asymptotically valid for stationary processes if the block size l

increases at a suitable rate as T →∞. We set m= 3√T , where T is the sample size. Finally,

this bootstrap procedure preserves the quantile regression feature of being agnostic about

the underlying distribution of the error terms, as this is not a residual-based approach.

Local Projection Step For each resampled dataset of quantiles obtained in the previous

step, we now estimate a local projection for each horizon. The local projection coefficient

θ̂sτ,k then captures the effect of the shock on the quantile τ at horizon s, for each bootstrap

replication k. To incorporate estimation uncertainty at this second stage, we obtain 100

parameter values for the local projection parameters for each k by drawing the impulse

response coefficients from their asymptotic distribution. This distribution is known and

given by θsτ ∼N
(
θ̂sτ,k, Σ̂s

u,k

)
, where θ̂sτ,k is the point estimate for bootstrap sample k and Σ̂s

u,k

is the estimated variance-covariance matrix of the local projection residuals ust+s,k in sample

k, estimated by Newey and West (1987) with lag order s− 1 due to the serial correlation
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in the error term induced by the successive leading of the dependent variable in the s-step

ahead direct forecasting regression.

Combining the Uncertainty We collect all draws for one specific impulse response co-

efficient (pooling draws across all bootstrap samples). 68 percent confidence intervals are

constructed by looking at the 16th and 84th percentile of that distribution. These intervals

are then centered around the point estimate θ̂sτ obtained with the original sample.

Decomposing the Uncertainty In Figure D-1 we decompose the uncertainty of the

growth quantiles responses to a monetary policy shock presented in Figure 3. The first

set of bands (darkest color) captures local projection uncertainty only, the second set quan-

tile regression uncertainty only, while the third combines the LP and QR uncertainty into

one following our procedure.
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Figure D-1: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Year to Contractionary Shocks. Uncertainty Decomposi-
tion.
Note: Red is response of the 10th quantile, black is the median response, blue is response of the 90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points. The first set of bands captures LP uncertainty, the second QR uncertainty,
and the last combines these two uncertainties following our bootstrap procedure.
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E Robustness

Below we list details on all the robustness checks in this section. Throughout, we find the

same asymmetry that is present in our benchmark analysis.

Horizon - Average Industrial Production Growth over the Next Six Months We

explore the sensitivity of our results to the choice of a shorter horizon for the growth outlook.

In particular, we replicate our results for the choice of average industrial production growth

over the next six months as a dependent variable in the quantile regression. Figures E-1 and

E-2.

Starting the Quantile Regression in 1973 For the IRFs in Figure E-3 and E-4 the

quantile regression starts in 1973 instead of 1983 (instead of 1990 in the case of the monetary

policy shock).

Monthly GDP Instead of Industrial Production In Figures E-5 and E-6 we explore

the sensitivity of our baseline results to the choice of the dependent variable. In particular,

we replace the (month-over-month) growth in industrial production by monthly GDP growth

as estimated by Caldara et al. (2020).

Pre-Great-Recession Sample Local projection stops in September 2007. See Figures

E-7 and E-8.

Alternative Monetary Shocks Figure E-9 displays the IRFs to alternative monetary

policy shocks.
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Figure E-1: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Six Months to Contractionary Shocks.
Note: Red is response of the 10th quantile - 50th quantile, blue is response of the 50th-90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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Figure E-2: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Six Months to Contractionary Shocks.
Note: Red is response of the 10th quantile - 50th quantile, blue is response of the 50th-90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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Figure E-3: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Twelve Months to Contractionary Shocks. Estimation of
Quantile Regression Starts in 1973.
Note: Red is response of the 10th quantile - 50th quantile, blue is response of the 50th-90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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Figure E-4: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Twelve Months to Contractionary Shocks. Estimation of
Quantile Regression Starts in 1973.
Note: Red is response of the 10th quantile - 50th quantile, blue is response of the 50th-90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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Figure E-5: Impulse Responses of Quantiles of Average GDP Growth over the
Next Year to Contractionary Shocks. Specification using Monthly GDP Instead
of Industrial Production as Dependent Variable.
Note: Red is response of the 10th quantile - 50th quantile, blue is response of the 50th-90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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Figure E-6: Impulse Responses of Quantiles of Average GDP Growth over the
Next Year to Contractionary Shocks. Specification using Monthly GDP Instead
of Industrial Production as Dependent Variable.
Note: Red is response of the 10th quantile - 50th quantile, blue is response of the 50th-90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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Figure E-7: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Year to Contractionary Shocks. Sample Stopping Before
Great Recession.
Note: Red is response of the 10th quantile - 50th quantile, blue is response of the 50th-90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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Figure E-8: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Year to Contractionary Shocks. Sample Stopping Before
Great Recession.
Note: Red is response of the 10th quantile - 50th quantile, blue is response of the 50th-90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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Figure E-9: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Year to Contractionary Shocks. Local Projection Includes
Control Variables.

Note: Red is response of the 10th quantile, black is the median response, blue is response of the 90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points. The monetary shocks are the FFR shock and the policy news shock from
Nakamura and Steinsson (2018) (1995 to 2014 sample). Local projection controls for the lagged values of:
the shock itself, FFR, CPI inflation, commodity inflation, industrial production growth.
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F Inspecting the Relevance of Industrial Production

Note: Red is the 10th quantile, black is the median, blue is the 90th quantile. Grey-shaded bars indicate

NBER-dated recessions.

Figure F-1: Quantiles of Average Industrial Production Growth over the Next
Year Constructed with the Coefficients on NFCI Set to Zero in the QR (3.1).

53



Figure F-2: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Year to Contractionary Shocks. The Quantiles are Con-
structed with Coefficients on NFCI Set to Zero in the QR (3.1).
Note: Red is response of the 10th quantile, black is the median response, blue is response of the 90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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Figure F-3: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Year to Contractionary Shocks. The Quantiles are Con-
structed with Coefficients on NFCI Set to Zero in the QR (3.1).
Note: Red is response of the 10th quantile, black is the median response, blue is response of the 90th quantile.
Confidence bands correspond to median response, 68% significance level, based on bootstrapped standard
errors. The x-axis gives the horizon of the impulse response, in months. The response on the y-axis is
measured in percentage points.
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G Details on Threshold VAR Model

We provide details on the parameter values of the models presented in Subsection 5.1.

The parameters f∗ and m∗ are chosen such that, on average, the constraint binds in

10% of the sample (on average, across simulations), which is about the percentage of NBER-

dated recessions over our sample. β1 = −0.5 and β2 = 0.5. Negative values for β1 mean

that an increase in ft is associated with a tightening in financial conditions, which depresses

growth. Conversely, positive values for β2 mean that an increase in mt is associated with an

improvement in macroeconomic activity, which fosters growth.

We assume β0 = 1, α1 = γ1 =0.7 for equal persistence of ft and mt, and α2 = γ2 =−0.15

as the financial and macroeconomic factor are negatively related, α3 = 1 and γ3 = −1 as a

positive (contractionary) shock increases the financial factor (tightens financial conditions)

and decreases the macroeconomic factor (weakens economic activity). Further σy is set to

0.1.

As to the switching parameters, in model I we assume the following:

α3(ft,mt) =


5, if ft > f∗ & mt <m∗

1, normal state
, γ3(ft,mt) =


−5, if ft > f∗ & mt <m∗

−1, normal state

In the symmetric model α3 and γ3 take on the values of the normal state.
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H Showcasing Properties of Our Procedure

Conditioning Variables We showcase how our approach can be informative about which

conditioning variable shapes the asymmetry observed in the IRFs. To do this, we consider

three models and inspect the IRFs of their conditional growth quantiles.

We start with model III. This is a model where macroeconomic conditions mt are behind

the asymmetry in the IRFs. The top panel of Figure H-1 shows the IRFs of the future real

activity growth quantiles that condition on both financial and macro conditions in the first

quantile regression (QR) step of our procedure. Not surprisingly the IRFs of the various

quantiles respond asymmetrically, similarly to what we documented in Section 5.1. The

bottom panel shows the IRFs of the quantiles obtained by setting to zero the coefficient on

macro conditions (left) and on financial conditions (right). This is equivalent to what we did

in Section 4.2 of the main text. When the partial effect of macro conditions is turned off,

our procedure correctly detects that there is no asymmetry in the IRFs of the conditional

growth quantiles. Likewise, when turning off the financial channel, our procedure correctly

detects that there still is an asymmetry in the IRFs.

Next, we consider model II. This is a model where both financial and macroeconomic

conditions are behind the asymmetry in the IRFs. As shown in Figure H-2, our procedure

correctly detects that even when considering either the financial or macro channel only, the

IRFs of the growth quantiles still exhibit asymmetry.
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Model III

Coefficient on mt Set to Zero Coefficient on ft Set to Zero

Figure H-1: IRFs of Simulated Future Real Activity Growth Quantiles from
Threshold VAR. Model III IRF Decomposition.
Note: IRFs of quantiles that condition on both financial and macro conditions (top panel), IRFs of quantiles
that only condition on financial (bottom left panel) and IRFs of quantiles that only condition on macro
(bottom right panel). Straight lines are medians across simulations. Shaded areas are 68% confidence bands.
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Model II

Coefficient on mt Set to Zero Coefficient on ft Set to Zero

Figure H-2: IRFs of Simulated Future Real Activity Growth Quantiles from
Threshold VAR. Model II IRF Decomposition.
Note: IRFs of quantiles that condition on both financial and macro conditions (top panel), IRFs of quantiles
that only condition on financial (bottom left panel) and IRFs of quantiles that only condition on macro
(bottom right panel). Straight lines are medians across simulations. Shaded areas are 68% confidence bands.
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Finally, we consider a modified version of model II (see below). This is a model where

macroeconomic conditions drive the asymmetric effect of shocks on real activity growth. As

shown in Figure H-3, also in this case our procedure detects that the asymmetry is mainly

coming from macroeconomic conditions. The procedure also correctly detects a small (al-

though not statistically significant) asymmetry when only financial conditions are active,

which is due to their feedback to macroeconomic conditions (specifically, γ3 =−0.15).

Modified Model II Shock affects ft and mt linearly, but their effect on yt is larger when

macroeconomic conditions are bad.

yt = β0 +β1ft+β2(mt)mt+ eyt (H-1)

ft = α1ft−1 +α2mt+α3shockt+ eft (H-2)

mt = γ1mt−1 +γ2ft−1 +γ3shockt+ emt (H-3)

β2(mt) =
{

2.5 if mt <m∗; 0.5 in normal state ,

where m∗ =−3.2 so as to maintain about 10% of bad periods in simulation.
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Modified Model II

Coefficient on mt Set to Zero Coefficient on ft Set to Zero

Figure H-3: IRFs of Simulated Future Real Activity Growth Quantiles from
Threshold VAR. Modified Model II IRF Decomposition.
Note: IRFs of quantiles that condition on both financial and macro conditions (top panel), IRFs of quantiles
that only condition on financial (bottom left panel) and IRFs of quantiles that only condition on macro
(bottom right panel). Straight lines are medians across simulations. Shaded areas are 68% confidence bands.
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Common Propagation Mechanism We next show that our procedure can be informa-

tive on whether shocks share a common propagation mechanism (CPM henceforth). In

particular, we show in a modified version of Model I (see below) that when different shocks

have a CPM, then their IRFs exhibit a similar pattern when conditioning on the variables

governing the CPM. This is illustrated in Figure H-4, which reports the IRFs to the two

shocks with asymmetric effects in the modified model I (that is, et and shockt), for the

baseline case of state-dependent effects (left column) as well as for the linear case where

all asymmetries are shut down in the data-generating process (right column). Both shocks

exhibit similar IRF patterns in both scenarios, thus confirming that our procedure can be

informative about whether a common propagation mechanism underlies the way that shocks

affect growth quantiles.

Modified Model I The two shocks (shockt and et) both have a nonlinear effect on the

growth outlook through a common state-dependence/propagation governed by ft and mt.

yt = β0 +β1ft+β2mt+σye
y
t (H-4)

ft = α1ft−1 +α2mt+α3(ft−1,mt−1)shockt+α4(ft−1,mt−1)et (H-5)

mt = γ1mt−1 +γ2ft−1 +γ3(ft−1,mt−1)shockt+γ4(ft−1,mt−1)et (H-6)

where all parameters common to model I take on the same values, and where

α4(ft,mt) =


3, if ft > f∗ & mt <m∗

0.5, normal state
, γ4(ft,mt) =


−3, if ft > f∗ & mt <m∗

−0.5, normal state

with f∗ = 2.25 and m∗ =−2.25 and where in the linear case α3 = α4 = 1 and γ3 = γ4 =−1.
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Modified Model I

IRF to et IRF to et – Linear

IRF to shockt IRF to shockt – Linear

Figure H-4: IRFs of Simulated Future Real Activity Growth Quantiles from
Threshold VAR. Modified Model I.

Note: Straight lines are medians across simulations. Shaded areas are 68% confidence bands.
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H.1 Additional Threshold VAR Models

Figure H-5 displays the IRFs for a variant of the threshold VAR Model II with non-constant

variance discussed in Section 5.1.

Model II - Non-Constant Variance

Figure H-5: IRFs of Simulated Future Real Activity Growth Quantiles from
Threshold VAR. Model II with switching variance.

Note: Straight lines are medians across simulations. Shaded areas are 68% confidence bands.
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I Details on the Gertler et al. (2019) Model

Model Solution The model is highly non-linear, and the non-linear effects of structural

shocks to the real economy depend on financial conditions. To allow for these non-linear

transition dynamics, the model is solved non-linearly using the collocation method with

policy functions solved by time iteration. We follow the original paper in focusing on a

capital quality shock as a representative structural shock. However, other shocks would give

rise to qualitatively very similar results because the mechanism creating asymmetry is not

specifically tied to one structural shock.

Parameterization We simulate the model using the original calibration of the deep param-

eters and of the capital quality shock process (the only fundamental shock in the model). In

order to generate rare financial crisis, we calibrate the process for the sunspot shock such that

a bank run equilibrium arises after a big negative shock (above two standard deviations).25

Simulation We simulate this model 1000 times for 408 periods (the number of periods

between January 1986 and December 2019) and store the level of GDP, the credit spread,

and the capital quality shock. In our analysis, we treat the credit spread as the equivalent of

the financial factor though results are robust to the use of alternative measures of financial

conditions in the model. The simulated data shown in the top panel of Figure I-1 indicate that

also in this model there is a non-linear relationship between growth and financial conditions.

Indeed, large credit spreads are associated with extremely negative growth realizations.

25Our calibration intends to make the bank run event (see Figure 2 of the original paper) re-occurring in the
simulated sample. In their event study, the authors feed in two consecutive negative capital quality shocks
of roughly one standard deviation to push the economy to the edge of the bank-run regime. A third shock,
together with a sun-spot shock, then produce the bank run event. We deviate slightly from their event
study by having sun-spot shocks occurring concurrently with a negative two standard deviations capital
quality shocks to ensure the probability of a bank run of 2.5% across simulated samples.
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Note: Example from one simulation. GDP (left axis) and Credit Spread (right axis).

Figure I-1: Simulated Data from Gertler, Kiyotaki and Prestipino (2019) Model.

Quantile Regression We focus on current GDP (in deviations from its steady state) as

the shocks are transitory and only create a sharp but short-lived recession. Further, we

only consider the credit spread as conditioning variable since the non-linearity in the model

is mainly coming from financial conditions. As shown in Table I-1, the quantile regression

picks up the nonlinear relationship between financial conditions and economic growth, sug-

gesting that financial conditions have a more negative effect on the left tail than on the

median.

Table I-1: Quantile Regression Coefficients Estimated on Simulated Data from
Gertler, Kiyotaki and Prestipino (2019) Model.

10th Quantile Median 90th Quantile
Credit Spread -10.8 -7.5 -3.7

* Note: Average Across Simulations.

Thus, the left tail of the distribution falls substantially during times of extreme financial

distress, characterizing a vulnerable growth outlook.
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J Comparison with Linnemann and Winkler (2016)

We now compare our approach in more detail with the approach in Linnemann and Winkler

(2016). Let us consider a linear and Gaussian environment where a vector xt follows a VAR

of order 1:
xt = Axt+Bεt (J-1)

with εt ∼iid N(0, I) being a K-dimensional vector of structural shocks. This environment

makes our approach substantially less interesting because it does not feature non-linearity.

However, it allows us to clarify important distinctions between the two approaches. We

can exploit the fact that the median of any Gaussian distribution (which is going to be the

quantile we focus on in this example) is equal to its mean. Suppose that we are interested

in estimating the effects of the first element of εt, which we call ε1
t , on a scalar variable

yt = cxt+wt, (J-2)

where c is a row vector and wt ∼iid N(0,Σw).26 Therefore, the “one-step” approach of

Linnemann and Winkler (2016) estimates quantiles of the distribution
p(yt|xt−1, ε

1
t ). (J-3)

The approach we use first estimates the quantiles of the distribution
p(yt|xt) (J-4)

and then estimates the effects of shocks on those quantiles. In the linear Gaussian case
p(yt|xt−1, ε

1
t ) =N(c(Axt−1 +B1ε1

t ),Σone-step) (J-5)

where a superscript 1 on the matrix B denotes the first column of that matrix. Σone-step

summarizes the effects of shocks wt and all elements of εt except the first one on yt. One

can show that Σone-step = Σw+cB(cB)′, where B is equal to B except for the first column,

which is set to 0. The effect of ε1
t on the median of this conditional distribution is cB1.

26We focus on the impact effect here for simplicity.
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Our approach first estimates the density and then estimates the effects of shocks on those

quantiles. In the linear Gaussian case
p(yt|xt) =N(cxt,Σw). (J-6)

Plugging in the law of motion of xt, we can see that
p(yt|xt) =N(c(Axt−1 +Bεt),Σw). (J-7)

The effect of ε1 on the median of the distribution used in the two-stage approach is then

also cB1. This is the effect that we uncover with the second stage Local Projection in

our approach. With the “two-step" approach, we identify c in the first stage (the quantile

regression) and B in the second, local projection, stage. Note that then, by setting elements

of c to 0, we can assess in the “two-step" approach how shocks are transmitted to the variable

of interest yt via specific elements of xt, something we cannot do in the “one-step" approach.

In empirical applications, we can implement this by constructing counterfactual quantiles

using the results from our first stage quantile regressions, as done in the main text.

We have thus shown that in this example both approaches share the same point estimate.

Nonlinearities and non-Gaussianity can break this equivalence.

Note that conditioning on xt in the first step approach would lead to finding no effect of ε1
t

because once one conditions on xt, there is no additional effect of the shock on yt.

This example also helps to clarify that both approaches will lead to different measures of

uncertainty. This can be seen by comparing the volatility for the density in the “one-step

approach” (Σone-step = Σw + cB(cB)′) with the corresponding volatility for the “two-step"

approach (Σw). As long as cB(cB)′ > 0 the “one-step" approach is associated with more

uncertainty.

Percentiles other than the Median Unless Σone-step = Σw (and thus cB(cB)′ = 0), the

variance of the distribution analyzed in the two-step approach will be smaller. The medians

of the two distributions do not coincide (unless Bεt = 0). These differences in first and second
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moments can lead to any ordering of percentiles across the two distributions. However, in

terms of impulse responses, B1 or changes in ε1
t only affect the mean (and not the variance)

of either distribution and therefore changes in B1 or shocks ε1
t result in parallel shifts of the

distribution and the associated percentiles. This is due to linearity and Gaussianity in this

simple example.
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