
The Consumption Origins of Business Cycles: Lessons
from Sectoral Dynamics

Christian Matthes and Felipe Schwartzman∗

June 1, 2023

Abstract

We measure the impact of household consumption shocks on aggregate fluctuations. These

shocks affect household consumption directly, and production and prices indirectly through their

impact on aggregate consumption. We show how to identify such shocks using prior knowledge

of their differential impact across sectoral variables. Shocks independently affecting household

consumption demand have accounted for around 35% of business cycle fluctuations since the

mid-1970s, playing a central role in recessions within that period. The inferred household

consumption shock series correlates well with measures of changes in consumer confidence

and household wealth.
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1 Introduction

Household consumption accounts for more than two-thirds of GDP. Accordingly, cash transfers to
households are often used to mitigate recessions. Nevertheless, in canonical business cycle models
household consumption decisions play a role mainly as a propagation channel for shocks generated
elsewhere. We use cross-sectoral information to show that this is an important omission. We define
a consumption shock as one that affects aggregate consumption directly and then propagates to the
rest of the economy, for example, because firms may want to reduce their output and hire fewer
workers in response to lower consumer demand. One example of such a shock is a deterioration
in household expectations or “sentiments”, another would be a sudden and exogenous reduction
in household wealth. Other sources of a consumption shock with similar effects would include a
shock to consumer credit or employment uncertainty. We find that, in combination, such shocks
have accounted for close to 35% of output fluctuations since the mid-1970s.

Our findings are made possible by an identification strategy that allows us, with minimal
structural assumptions, to use rich cross-sectional information to infer aggregate responses to
shocks. We show that, given a large enough panel dataset, one can identify the time-path of an
aggregate shock based on information of its differential impact on cross-sectional observations. To
efficiently use this identification strategy, we devise a new time series model that can handle large
cross-sections of data while allowing for substantial heterogeneity across sectors.

We find that the identified household consumption demand shock generates not only a significant
impact on aggregate consumption but, more interestingly, also on GDP. The response of other
aggregate variables is furthermore consistent with the typical characteristics of “aggregate demand”
shocks: an increase in inflation and the interest rate. At the same time, the impact on corporate credit
spreads and measured TFP is small so that the shock is distinct from a productivity or corporate
credit shock. Overall, we find that shocks to household consumption have accounted for close to
35% of output fluctuations at business cycle frequencies from 1973 till 2017, and an increasing
fraction of output declines in recessions within that period. Those shocks had a maximal impact
in the 2008 recession, where they accounted for close to 70% of the shortfall relative to projected
output.

We show how we can identify the consumption shock based on information on its marginal
effect on a large enough panel of economic variables. Specifically, we propose to capture its effect
on sectoral prices and quantities by a sector’s degree of specialization in the production of goods
and services consumed by households. For example, apparel manufacturing, which mostly caters to
households will, all else equal, react more to a household demand shock than software, which also
caters to firms and government.

Our identification strategy is designed to be robust to a number of issues. First, we take into
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account that some industries are more likely to react to all macroeconomic shocks, for example
because they produce durables or luxury goods. Second, our procedure can identify consumption
shocks correctly even if there is another shock that has a correlated cross-sectoral impact. This
is because, as is usual in business-cycle analysis, shocks are assumed to be independent over
time. Third we explicitly take into account that our identification assumption can only hold as an
approximation. For example, reactions may also depend on inter-sectoral linkages, the differing
intensity of various frictions, and other factors. We formally account for this lack of precision
in identification assumptions by casting them in terms of uncertain prior distributions within a
Bayesian setting, so that our estimates reflect both estimation and identification uncertainty. We are
able to obtain reliable estimates in spite of that because of the use of rich cross-sectional data.

In order to be able to make the best use of detailed cross-sectoral data, we need a tractable
econometric methodology that allows us to estimate aggregate and idiosyncratic dynamics jointly
and efficiently. We accomplish that with the use of a Hierarchical Vector Autoregression (Hi-VAR).
Given that framework, we can then use established time-series techniques to identify the dynamic
response of the economy to the identified shocks, their relevance in explaining the variance of
aggregate variables, and their role in particular historical episodes.

How should we interpret the estimated household consumption shocks? To provide additional
interpretation, we compare the consumption shock that we infer to time series not used in estimation.
Specifically, we show that fluctuations in our inferred shock line up well with fluctuations in
household wealth and with a survey-based measure of consumer sentiment. The correlation with
household wealth is especially salient around the Great Recession, as one might expect, whereas the
correlation with consumer sentiment holds consistently over time. Together those exercises suggest
a role for both shocks to household wealth and household sentiment as central driving forces in
business cycles.

More generally, we verify that the consumption shock that we identify can be interpreted as a
shock to the Euler equation. We make this case both in a general theoretical framework and through
a specific calibrated multi-sector DSGE model. We verify that, in such a model, a discount factor
shock, which is one example of a consumption shock, has a larger impact on sectors with high
consumption shares. We then use the same model to inspect the effects of a TFP news shock and
find that those do not generate the same type of pattern. This distinction implies that, to the extent
that we are identifying expectational shocks, those are not the news shocks commonly used in the
literature. We find that, in a realistic calibration, the posterior median for the shock recovered by
our methodology is highly correlated with a shock to the discount factor.

We extend our methodology to identify several types of shocks simultaneously. While not
strictly necessary for identification of the consumption shock, in doing this, we can directly measure
the importance of the consumption against alternative sources of fluctuations. For our baseline
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analysis, we identify six structural shocks explicitly. To guard ourselves against misspecification,
we further add three shocks for which we do not impose any identifying restrictions. These three
additional shocks do not turn out to be important quantitatively.

Apart from the shock to household consumption, we identify shocks to technological progress,
government consumption, monetary policy, corporate financial conditions, and energy cost. To
identify the first three shocks, we rely on input or demand intensity shares that can be read directly
from input-output tables. Furthermore, we identify corporate credit shocks by exploiting hetero-
geneity in external financial dependence measures as in Rajan and Zingales (1998), and monetary
shocks using sectoral price stickiness data from Nakamura and Steinsson (2008). Together, we find
that those six shocks can account for most of the output fluctuations at business cycle frequencies.
Consumption (35%) accounts for the largest share. Credit (18%), government consumption (14%),
and energy (11%) play a significant if secondary, role. Lastly, monetary and technology shocks play
a relatively minor role (5.6% and 7.5%, respectively). In a robustness exercise in Appendix M.6,
we further consider an investment shock identified in an analogous manner, but do not find that it
changes results in meaningful ways.1

Since at least the 1990s, consumption shocks have been recognized as playing a potentially
important roles in business cycles (Blanchard (1993), Hall (1993)). Blanchard (1993) and Hall
(1993) focus in particular on the role of consumption shocks in the 1990-1991 recession, which
we also find to be largely driven by consumption shocks. In the Great Recession, consumption
fluctuations in response to the housing bust have been identified as a primary driving force (Mian
and Sufi, 2015). We provide evidence that consumption shocks have been an important contributor
to business cycles at least since the 1970s.

Our evidence is consistent with prior findings by Cochrane (1994), who finds that shocks
to technology, monetary policy, credit conditions, and energy prices cannot explain the bulk of
business cycle fluctuations. He then proposes that "consumption shocks" can be important drivers
of economic fluctuations. Where we differ is that Cochrane (1994) equates consumption shocks
with news shocks, while our consumption shocks have a broader interpretation in some aspects, but
also does not identify standard news shocks (which we show in section 2).

The shock that we identify can be interpreted as a shock to an aggregate consumption Euler
equation. Such a shock can emerge from fluctuations in aggregate disaster risk (Gourio, 2012) and
idiosyncratic income risk (Werning, 2015), among others, so long as they act primarily through the
consumption Euler equation, without other direct supply effects. Similar shocks have also been
incorporated as an element in estimated DSGE models (Smets and Wouters, 2003). Relative to

1The investment shock we identify may not align with the one identified by Justiniano et al. (2010). This is because
Justiniano et al. (2011) argues that the investment shock may be partially driven by financial market disturbances, which
we separately capture with our financial shock. In the model estimated in Appendix M.6, the two shocks together
explain 18.4 % of the variance of output (this is the posterior mean of this fraction).
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those economic model-based approaches, we identify consumption shocks using fewer identifying
restrictions.

The importance of consumption decisions is reflected in the usefulness of consumer sentiment
indices for forecasting (Matsusaka and Sbordone, 1995). The recognition of this fact has given rise
to explorations of consumer sentiment indices as a relevant source of information about frictions in
expectation formation (see Barsky and Sims (2012) and Bhandari, Borovička, and Ho (2019)). As
mentioned above, however, our identification assumption does not capture regular TFP expectations
shocks.

In recent years the interconnections between household wealth, consumption, and employment
have become the object of a rapidly expanding literature on quantitative models with heterogeneous
agents, summarized in Krueger, Mitman, and Perri (2016). Some of those approaches build in
feedbacks from consumption decisions to employment through the use of new Keynesian frictions
(Kaplan, Moll, and Violante, 2018). Such frictions matter because they allow shocks that primarily
affect consumption (or the household Euler equation) to generate co-movement between output,
hours, investment, and consumption (Basu and Bundick, 2017). Our results suggest that further
work may do well to concentrate on shocks that emerge within the detailed consumption block
implied by those models.

At different points in time, economists have been interested in evaluating the relative importance
of “demand” vs. “supply shocks”. Classic approaches include a priori long-run restrictions
(Blanchard and Quah (1989) and Gali (1999)). More recently, Angeletos, Collard, and Dellas
(2020) and Bachmann and Zorn (2013) have argued that demand shocks are the dominant driver
of output growth fluctuations in the US and Germany, respectively. Apart from relying on an
altogether different source of identification, our methodology singles out household consumption as
a particularly relevant source of demand shocks. However, it cannot be characterized as the main
business cycle shock as it accounts for less than half of GDP fluctuations and, in fact, does not
correlate well with the shock identified by Angeletos et al. (2020). More broadly interpreted, our
results suggest that business cycles are best explained as stemming from a variety of shocks, with
the consumption shock being a particularly important one.

Our methodological innovations are twofold: First, with our tractable time series model, we
provide a method to use a large number of variables (we use all PCE sectors in the United States
at a low level of aggregation) while emphasizing tractability and parsimony. As a result, we can
add a large number of relatively “soft” (i.e., non-dogmatic) identification restrictions that add
up to precise estimates. Second, we propose a new identification strategy that exploits the large
number of variables we can use in our time series model. We show how to create a large number of
identification restrictions using insights from general equilibrium models with sectoral heterogeneity.
This allows our approach to side-step the identification issues pointed out by Wolf (2020) for VARs
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with standard aggregate variables and number of sign restrictions.2 We build on Amir-Ahmadi
and Drautzburg (2020), who add sign and magnitude restrictions on selected sectoral responses to
identify aggregate shocks processes in a standard VAR framework, and ingeniously show that this
can lead to substantially improved identification. De Graeve and Karas (2014) also make the case
for using information on the relative magnitude of the responses to shocks to help identify shocks in
standard VARs. Compared to these papers, our econometric approach is able to handle much larger
panels. We also lever the restrictions for a very different economic question and use very different
identification assumptions.

In not imposing “hard” identifying restrictions, our approach also connects more generally to the
use of sign restrictions, pioneered by Uhlig (2005), Faust (1998), Canova and Nicolo (2002), and
Rubio-Ramirez, Waggoner, and Zha (2010). We also build on papers that propose using Bayesian
priors instead of hard identification restrictions (Kociecki (2010) and Baumeister and Hamilton
(2015)). 3

Our approach adds to efforts to find a “general-purpose” methodology for identification that
researchers can apply in a broad range of contexts. For example, recently Gabaix and Koijen (2020)
proposed to use weighted averages of idiosyncratic shocks as instruments in various settings.4 It
is also related to the extensive literature on Bartik instruments (Bartik (1991)) in applied microe-
conomics. We share with this approach the insight that differential exposure to aggregate shocks
can be a powerful tool for identification (Goldsmith-Pinkham et al. (2018)). The Hierarchical VAR
that we use adds to the existing suite of time series models designed to incorporate large panels,
including dynamic factor models (Stock and Watson (2005a)), factor augmented VARs (Bernanke
et al. (2005), Boivin et al. (2009)), and global VARs (Chudik and Pesaran (2016), Holly and Petrella
(2012)).

More broadly, the paper also contributes to the general trend within macroeconomics of using
cross-sectional data to inform inference on questions of relevance to macroeconomists (Holly and
Petrella (2012), Beraja et al. (2016), Sarto (2018), Chen et al. (2018), and Guren et al. (2019), for
example). In the terms laid out by Nakamura and Steinsson (2018), it highlights that the impact
elasticities of cross-sectional units to particular aggregate shocks are especially relevant “portable”
moments. The use of rich cross-sectional data allows for the use of minimal structural assumptions,

2While we use sectoral data to gain more information for identification, another approach to add identification
restrictions on aggregate data alone is to use zero restrictions and sign restrictions jointly along the lines of Arias et al.
(2018) and Arias et al. (2019).

3Also, Schwartzman (2014) and Fulford and Schwartzman (2015) use cross-sectional information to identify shocks.
Whereas the first paper uses a structural small open economy model, the second paper leverages the cross-sectional
impact of a shock identified from a historical narrative.

4The underlying idea is that shocks specific to ‘large’ idiosyncratic units can have sizeable aggregate effects. In our
setting we would call these shocks aggregate shocks (one example is the energy price shock that we model) even if they
emanate from one sector.
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which are, furthermore, allowed to be uncertain.
The paper proceeds as follows: In Section 2, we define the consumption shock, provide the

basic propositions that establish our identification method, and discuss the specifics of how we
implement it using the information on sectoral consumption and output. Section 3 provides the
details of the Hi-VAR econometric model used to infer aggregate dynamics from the cross-sectional
data. Section 4 provides the results, Section 5 interprets the inferred consumption shock in light of
information not used in the estimation. Section 6 shows the result of a Monte Carlos study using a
multi-sector DSGE model as a data generating process, cross-validates our methodology against the
use of external instruments and provides a more detailed analysis of the role of priors and model fit.

2 The Consumption Shock

We now describe in detail how we define the consumption shock, and how we can use cross-sectoral
variation to estimate it. We discuss how to apply knowledge of the marginal effects of shocks for
identification. Then we show how to explicitly build in uncertainty surrounding those marginal
effects, and that these identification restrictions can nonetheless be very powerful given the use of
rich panel data. Finally, we present details on how we implement our identification strategy, and
provide validation against a multi-sector DSGE model.

2.1 Theory

We start our discussion by defining the shock to household consumption. Armed with this definition,
we show how this shock can be backed out from data given knowledge of its impact on a cross
section of economic variables. Later we allow for uncertainty in this impact, and show how a
large cross section of sectoral variables can guide the estimation. The discussion clarifies that the
shock can be interpreted as a composite of various sources of fluctuations that emerge first in the
household sector and propagate from there to the rest of the economy primarily through consumption
expenditures. Those might include shocks to household credit, to the expectations of households,
or to household income risk, so long as those are not a reflection of broader economic shocks. To
keep the notation transparent, we start with a simple case where those shocks only affect aggregate
consumption. We later extend our discussion to a more general case where consumption shocks
can be interpreted as equivalent to a discount rate shock, affecting primarily current consumption
decisions, but also potentially other choices made by households.

Consider a log-linearized economic system, in which innovations to different variables can be
expressed as:5

5In Section 3 we show how a system of this form maps into the time series model that we use for inference.
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ct−Et−1ct = ∑
s∈C

∂c
∂εs

εs,t + ∑
s/∈C

∂c
∂εs

εs,t

xt−Et−1xt =
∂x
∂c

(ct−Et−1ct)+ ∑
s/∈C

∂x
∂εs

εs,t +wt

where ct is the log deviation of aggregate consumption at time t from its steady-state, x is a vector
including log deviations of other variables in the economy, including sectoral prices and quantities,
εs,t are macroeconomic shocks of interest, C is the set of consumption shocks, wt are shocks specific
to each element of xt . As usual, we assume that aggregate shocks are drawn independently over
time and from each other.

The key assumption is that innovations to consumption depend on a set of shocks, s ∈ C that
do not affect any other variables directly. In this context, the consumption shock is the linear
combination of those innovations, εC

t ≡∑s∈C
∂c

∂εs,t
εs,t . A straightforward substitution allows us to

express innovations to xt as a function of exogenous shocks only:

xt−Et−1xt =
∂x
∂c

ε
C
t + ∑

s/∈C
θ

x
s εs,t +wt (1)

where now θ x
s ≡ ∂x

∂εs,t
+ ∂x

∂c
∂c

∂εs,t
. It follows that the vector of loadings of the consumption shock on

the variables xt is given by ∂x
∂c , which is the key object in our analysis since it encodes the effects of

changes in consumption.
Equation 1 can be read as the observation equation of a state-space representation of the economy,

with the shocks εC
t , εs,t(s /∈C ) and wt representing the unobservable state variables, and innovations

to xt as the observable data – in our application those are estimated using the VAR dynamics of the
raw data. Because, by assumption, the unobservable components εt , wt are iid, the state equation is
simply given by the identity

st = [εt wt ]
′ (2)

where st is the state-vector and εt is a vector that collects εC
t and εs,t(s /∈ C ) so that εt ∼iid N(0,I).

Equation (1) can then straightforwardly be rewritten as a linear function of the state vector st so that
the system is cast in conventional state-space form.

Casting the model as state-space representation allows us to use the information on ∂x
∂c to infer

the time path of εC
t as well as its contribution to the variance of various economic variables using the

Kalman filter. In effect, in Proposition 1 below, we show that information on ∂x
∂c and the covariance

matrix of innovations to xt are sufficient to recover the least squares projection of εC
t on current and

past observables. If εC
t are Gaussian, those are also their maximum likelihood estimates. It is a key
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building block of the estimation algorithm described in detail in Section 3.

Proposition 1 Consider the state-space representation encoded in the observation equation (1)
and the state equation (2). The least squares projection of εC

t based on current and past observables

(obtained using the Kalman Filter) only depends on ∂x
∂c and the covariance matrix of xt−Et−1xt ,

irrespective of initial conditions for the state.

The proposition states that one can infer the shock based on two pieces of information: The
loadings of a set of observed variables on that shock and the covariance of those variables. Im-
portantly, the estimate does not depend on the loadings of innovations to xt on other shocks. The
proposition also holds irrespective of initial conditions for the state because the state is iid, so that
the Kalman estimates of the state at each point in time is independent of their previous values.6

Proposition 1 holds because, by design, the Kalman filter separates the overall movements of
an observable variable into movements driven by an unobserved state variable (in our case, the
consumption shock multiplied by its effect on each variable, ∂x/∂c× εC

t ) and a “noise” term. The
latter is typically identified with measurement error and defined to be orthogonal to the state variable.
In the current context, this noise term includes the effect of other macroeconomic shocks. Those
shocks can be treated as noise because, by a standard assumption in macroeconomics, they are
orthogonal to the consumption shock.7

To fix ideas further, suppose there were two macroeconomic shocks of interest, the consumption
shock, defined as above, and a shock to the financial system. A shock to the financial system would
affect the non-consumption variables in the economy directly by reducing the supply of credit to
non-financial firms. It could also have a substantial impact on consumption through a reduction in
the supply of consumer credit. Suppose we had an estimator that erroneously attributed the part
of the financial shock that propagates through consumption to the consumption shock, while the
part that affects production directly through the credit supplied to non-financial firms remained
attributed to a financial shock. Then, the two misidentified shocks would be correlated. It follows
that the Kalman filter estimate would not make this erroneous attribution and would identify the
shocks correctly. We give a detailed proof in appendix A as well as a Monte Carlo demonstration in
the appendix I.

A second result motivates the use of rich cross-sectoral data for shock identification. Specifically,
as one might expect, increasing the dimension of the xt vector included in the estimation will improve
the precision of our estimates.

6Moreover, this implies that filtered estimates are identical to smoothed estimates of the state.
7This is a significant difference with the approach in Fulford and Schwartzman (2015), that requires restrictions on

factor loadings associated with other shocks. The reason such restrictions are not necessary here is because the Kalman
filter also exploits the information in the covariance matrix of xt and the restriction that macroeconomic shocks are
independent of each other.
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Proposition 2 Suppose the state-space system described by equation (1) and (2) satisfies the

assumptions in Section 4 of Bai and Ng (2008). Suppose further that the sample size is large in the

time dimension (T →∞, where T is the number of xt observations). The estimation error disappears

as the dimensionality of xt goes to infinity.

The proof builds on the result, stated by Bai and Ng (2008), that under certain conditions it is
possible to consistently estimate the space spanned by the aggregate shocks εt . Given this space,
one then easily back out the values for εC

t by projecting the part of each observation explained by
the aggregate shocks on ∂x

∂c .8

The results above make clear that the identification of the consumption shock only requires the
effects of various economic variables and the covariance matrix between innovations to different
cross-sectional units. It is straightforward to see that the propositions apply more broadly to any
shock. In the language of Nakamura and Steinsson (2018), the marginal effects of a shock on a large
panel of economic variables, possibly including several sectors or regions, would be the “portable”
statistic useful to identify the time-path of the shock and its aggregate effects.

2.1.1 Discount rate shocks

One may legitimately ask whether meaningful economic systems of the form expressed above exist.
Aggregate consumption may also depend on other variables in complicated ways, so that isolating a
consumption shock may not be realistic. Fortunately, as shown in Werning (2015), in a large class
of economic systems, including many with heterogeneous consumers and incomplete markets, the
set of variables determined jointly with aggregate consumption is small. In fact, Werning shows that
for those models one can write a “generalized” Euler equation which, log-linearized in innovation
form, would be expressed as:

ct−Et−1ct =−φ (rt−Et−1rt)+Etct+1−Et−1ct+1 + ε
C
t + ∑

s/∈C

∂c
∂εs

εs,t

where rt is the interest rate faced by households. Now, the consumption shock effectively acts like a
shock to the household’s discount factor. This implies that not only innovations to consumption, but
also to the interest rate faced by households and revisions to future consumption will depend on the
consumption shock εC

t . In this more general setting, xt becomes:

8In our empirical implementation there will be additional uncertainty about εC
t because we allow for uncertainty

about ∂x
∂c .
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xt−Et−1xt =
∂x
∂c

(ct−Et−1ct)

+
∂x

∂Ec
(Etct+1−Et−1ct+1)

+
∂x
∂ r

(rt−Et−1rt)

+ ∑
s/∈C

∂x
∂εs

εs,t +wt

so that the loading of the consumption shock εC
t on xt becomes ∂x

∂c
∂ct
∂εC

t
+ ∂x

∂Ec
∂Ect+1

∂εC
t

+ ∂x
∂ r

∂ rt
∂εC

t
.

The exercise raises the possibility that consumption shocks may affect non-consumption vari-
ables through the effect of those shocks on interest rates and expected future consumption. Likewise,
richer models may also include effects on labor supply and other household choices. For those and
other reasons we allow for “errors” in the sensitivities, by encoding them through non-degenerate
prior distributions rather than dogmatic restrictions.

We discuss in detail how we use data on ratios between consumption to gross-output to identify
the consumption shocks in section 3.3, after presenting the details of the econometric framework in
the coming Section.

3 Estimation: The Hierarchical VAR model

We now describe in detail the full econometric framework used to obtain the results in the paper.
The framework allows us to jointly measure innovations to aggregate and sectoral variables, identify
aggregate shocks, and estimate impulse response functions, variance, and historical decompositions
of the impact of those shocks on different variables. Specifically, we combine a VAR-type time
series model (Sims, 1980) for a vector of aggregate variables Yt with autoregressive models for
vectors of sectoral data X j

t , where t indicates time and i indicates the sector. Aggregate and sectoral
data interact in two ways: (i) via structural shocks that affect both types of data and (ii) via direct
feedback from (lagged) aggregate data to sectoral data. We describe each of these blocks in turn. We
follow up with an in-depth discussion of how the model ought to be interpreted and describe in detail
how the model is estimated. We conclude the section with a comparison with other approaches.

3.1 Modeling Aggregate Variables

We model aggregate variables as following a linear vector autoregressive process. A key difference
from traditional VARs is that we break the link between forecast errors and structural shocks,
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thus allowing sectoral data to help identify structural shocks. The aggregate variable vector Yt (of
dimension N by 1) is a function of its past values, structural shocks εt , and other shocks wt :

Yt = µ +
L

∑
l=1

AlYt−l +Dεt +wt (3)

where εt is of dimension S× 1, and D is an N× S matrix encoding the impact of the Gaussian
structural shocks ε on the aggregate variables, and wt is a independently and identically distributed
N× 1 vector of mean 0, non-structural Gaussian shocks with covariance matrix Ω. We further
assume that εt ∼iid N(0, I).9 As will be clear later, we can allow for S < N, S = N, or S > N,
whereas standard VAR analyses require S≤ N.

For later discussion, it is useful to note that the one-step ahead forecast error for the aggregate
level is given by Dεt +wt , whereas a standard VAR model for the aggregate variables would
assume that any estimate of a structural shock is a linear combination of the vector of aggregate
one-step-ahead forecast errors.10

3.2 Modeling Sectoral Variables

There are observations for I disaggregated units (such as industries, regions, or, in our specific
application, sectors) with K variables (such as prices and quantities) each. The law of motion for
the data from unit i, summarized in the K-dimensional vector X j

t , is given by:

X j
t = µ

j +
LX

∑
l=1

B j
l X j

t−l +
LY

∑
l=1

C j
hYt−l +D j

εt +w j
t (4)

where D j is a K× S matrix encoding the impact of shocks ε on the idiosyncratic variables (i.e.
it collects the coefficients D j

k,s discussed in section 3.3) and the mean zero Gaussian vector w j
t

incorporates the impact of idiosyncratic (or non-structural) shocks on individual units. We denote
the covariance matrix of w j

t by Ω j. We assume that w j
t is independent across i and independent

from wt . Our assumptions on the correlation structure of wi
t allow for correlation in the innovations

to different variables within a sector, although not across sectors.

3.3 Identifiying the Consumption Shock

The theoretical discussion in Section 2 makes clear how one can recover the time-path of the
consumption shock given knowledge about the impact of that shock on a panel of economic

9The distributional assumptions are necessary because we ultimately want to carry out Bayesian inference, for
which we need to build a likelihood function.

10This is true even if fewer than N shocks are identified, as is common in the literature on sign restrictions in VARs.
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variables. In order to implement those procedures we need two objects: (i) A panel of innovations
to a large number of variables (xt −Et−1 [xt ]) and (ii) the “loading” of those innovations on the
aggregate shock, ∂x

∂c (or ∂x
∂c

∂ct
∂εC

t
+ ∂x

∂Ec
∂Ect+1

∂εC
t

+ ∂x
∂ r

∂ rt
∂εC

t
in the case of a shock to the Euler equation).

The problem of obtaining the innovations to different variables is an econometric problem that
we tackled in Section 3 above.11 Precise estimates of the required loadings are hard to obtain. For
example, it could require obtaining an instrument for the consumption shock, for which there is
currently no clear candidate. Otherwise, one could try to derive those loadings from a structural
model, but this would raise the question as to whether the model is correctly specified. To make
progress, we use the fact that, in a wide range of models, relative to overall sensitivity of a sector to

aggregate shocks, the marginal effect of a consumption shock on sectoral variables depends on the

share of sectoral output that is sold to households. This is our key identification assumption. As an
illustration, we show that this assumption holds for a prototypical multi-sector equilibrium model in
Appendix C.

At the same time, this dependence is admittedly imprecise. For that reason, we use Bayesian
methods to make this lack of precision explicit and allow it to affect our estimates and statements
about our uncertainty surrounding those estimates. In formal terms, we postulate prior distributions
for the marginal effects of shocks. The prior means depend on cross-sectional information that we
describe below, and the prior variances denote our degree of uncertainty around our assumptions.
This use of “soft” prior restrictions for identification was proposed by Baumeister and Hamilton
(2015), and contrasts with traditional approaches, which achieve identification by setting hard
constraints on the shock process. Relative to that previous work, we can estimate a large scale
model tractably by using a Gaussian prior directly for the marginal impact of the structural shocks.

3.3.1 Probing the identification approach

The Cross-Section of Consumption Intensity and Business Cycles We now probe into our key
identification assumption, linking the cross-section of consumption intensity of sectors and business
cycles.

Table 1 depicts the sectors with the largest and smallest fraction of their output sold to house-
holds.12 The top sector is men’s and boys’ clothing. It has a ratio of consumption to gross output
that is larger than one since a sizeable fraction is imported. Sectors at the top include education
(such as elementary and daycare schools), and at the bottom include equipment and machinery
(such as cookware and tableware light trucks), and business services (such as employment agency
services).

To obtain a rough sense of the relevance of those sectoral differences in predicting business

11In practice, the parameters of the model that allows us to filter out innovations are estimated jointly with the shocks.
12We use PCE sectors. Details can be found in Appendix B.2.
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Rank (out of 187 sectors) Sector name C/Y value

Top 1 Men’s and boys’ clothing 1.30
Top 10 Elementary and secondary schools 1.00
Top 20 Day care and nursery schools 0.98
Top 40 Other video equipment 0.81
Top 60 New domestic autos 0.66
Median (top 94) Cereals 0.55
Bottom 60 Photographic equipment 0.43
Bottom 40 Other fuels 0.28
Bottom 20 Nonelectric cookware and tableware 0.16
Bottom 10 Employment agency services 0.01
Bottom 1 Used light trucks 0.00

Table 1: Top and bottom sectors, by the ratio of consumption to gross output

cycles, we calculate the difference in 12 month output and consumption growth, and inflation in
the top 40 sectors by consumption orientation as compared to the bottom 40. Figure 1 shows the
correlation between those differences with year on year output growth at different lags and leads.
We also include the correlation between aggregate consumption growth and aggregate output growth
and of output with itself for further reference. The figure shows that consumption tends to lead
output by a little, but that the difference between sectors in different points in the cross-section leads
output by a greater amount. While only a rough test of predictive value, this picture suggests that
this particular way of looking at the cross-section of sectors has value as a lens through which to
understand output fluctuations.

Our Identification Assumption in an Equilibrium Model We can further verify that our prior
assumption is sensible in the context of a fully specified multi-sector extension of the medium-scale
New-Keynesian model of Justiniano et al. (2010) (described in detail in Appendix D and further
explored in Section 6.1).13 We examine the impacts of a discount factor shock (which affects
household consumption directly through the Euler equation), a monetary shock and a news shock.

Panel (a) of figure 2 shows the relationship between the consumption-gross output ratio implied
by the model calibration for each sector and the immediate impact of a shock to the Euler equation
on output in each sector. It confirms that in the context of this canonical business cycle framework,
the impact of the discount shock on output does increase with the consumption-gross output ratio,
albeit imperfectly.

The Euler equation can also be affected by news shocks (see, for example, Schmitt-Grohé and

13When quantifying the equilibrium model, we allow for 52 sectors calibrated to match US inter-sectoral linkages.
This is just for numerical efficiency. In our empirical application we use the full 187 sectors mentioned earlier.
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Figure 1: Correlation with lags of GDP

The horizontal axis refers to the quarterly lag of GDP, with negative numbers corresponding to
leads. HML IP is the difference between the FRB Industrial Production index for high and low
consumption share sectors. HML π and HML C refer to the same difference for inflation and
consumption growth among BEA personal consumption expenditure categories.

Uribe (2012)) and monetary shocks. However, those shocks affect current production, consumption
and prices, through other channels. For example, in the case of news shock, it also boosts investment
and production in upstream sectors. Monetary policy shocks will likewise have a more pervasive
impact in the economy. In the end, those other effects lead to a very different pattern of impact. In
particular, monetary and news shocks that have a positive impact on output will have the opposite
correlation pattern of an discount rate shock that also has such a positive impact, as shown in panels
(b) and (c) of figure 2.14 Our identification assumption thus does generally not mistake news shocks
or monetary shocks for consumption shocks.

3.3.2 Implementing the Identification of Consumption Shocks

We now describe how we implement the identification of the Consumption Shocks in practice. We
denote the marginal effect on impact of a shock s to a variable k in sector j by D j

k,s. To set the prior
mean for D j

k,s, we decompose the prior mean as follows:15

14We model a news shock in the evolution of Total Factor Productivity. Details can be found in Appendix D.
15We work with the squared prior mean here (i) to focus on pinning down the magnitudes of the prior mean in this

step (economic theory will then help us pin down the sign of the prior mean) and (ii) because we find it easier to work
at the level of contributions to the overall variance since equation (6) gives us information about those contributions.
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Figure 2: Sectoral Consumption/Gross output ratios plotted against the sectoral output effect on
impact of different shocks in calibrated multi-sector DSGE model (see Appendix C)
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where

1. α
j

k,s is a measure of the relative impact of shock s on variable k for sector i as compared to

other sectors. We encode in this component the notion that, the more a sector sells of its
output directly to households, the more sensitive it is to household consumption shocks.16

2. βk,s is a measure of the overall impact of shock s on variable k across all sectors. We use an
’ignorance prior,’ and set this variable to 1/S, where S is the number of structural shocks that
we will allow for in our implementation.

3. γ
j

k : a measure of the overall sectoral sensitivity of variable k in sector i to all shocks. For
example, this variable encodes the notion that consumption of durable goods is overall more
sensitive to all shocks than the consumption of nondurables.

Given α
j

k,s and βk,s, we can back out γ
j

k if we have values for ∑
S
s=1(E

[
D j

k,s

]
)2. Those correspond

to the portion of the variance of individual variables explained by the aggregate shocks. They do
not depend on the identification of specific shocks and can be estimated with conventional factor-
analytic tools. In particular, we estimate those by estimating the model described in Section 3 below
in a training sample with agnostic priors.17 This procedure above thus allows us to set a magnitude
for the prior mean E

[
D j

k,s

]
. We use a priori information on the sectoral impact of shocks to set the

sign.
As an example of what this procedure achieves, consider a scenario where we only have two

shocks (named shock 1 and 2), and one observable per sector. Also, to cut down on notation define
D̃i

k,s ≡ [E(Di
k,s)]

2 and α̃ i
k,s ≡ βk,sα

i
k,s. Let’s focus on one specific sector, sector a. There are three

equations in three unknowns for that sector. We also drop the subscript k since there is only one

16To keep units consistent, we normalize our indicator variable, the fraction of output a sector sells directly to
households, to be between 0 and 1. If there are missing values for the indicator variables for some sectors, we assume
that the indicators for those sectors take on the average value of the relevant indicator. We normalize indicator variables
for other shocks (which we discuss in Table 2) in the same way.

17The prior we use for the agnostic estimation is the same as for our actual estimation except that we use priors with
large variances on the impact of the structural shocks and the residual covariances. For the choice of the training sample,
our default is the full sample - our approach can, therefore, be interpreted as an empirical Bayes approach. When doing
this we also use a very loose prior on the covariance matrix of the non-structural shocks
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Adding the first two equations gives
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and thus
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which in turns allows us to solve for the squared shock loadings:

D̃a
1 =

D̃a

α̃a
1 + α̃a

2
α̃

a
1

Our procedure thus produces (squared) prior means that weight different shocks according to both
the relevant indicator α and the overall impact of a shock on a variable, β . We pin down the sign of
the prior mean by referring to predictions coming from economic theory.

By choosing normal priors, we do not necessarily force the sign restrictions to hold with certainty.
Because of the normality assumption, the posterior mean might have a different sign from the prior
mean. This probability depends on the prior variance. In our baseline estimates, we set it such that
the prior standard deviation is 1/2×abs

(
E
[
D j

k,s

])
, ensuring a wide band of uncertainty around

our prior assumptions while stating that we expect the sign to hold with high probability. Appendix
G provides descriptive statistics on the cross-sectoral distribution of prior on the impact of the
consumption shock.

Lastly, we also need to set the prior mean for the impact of shocks on aggregate variables. We
intentionally choose to not impose substantial prior information about the aggregate effects because
we want the sectoral variables to inform our results on the effects of aggregate shocks. For the
consumption shock, we use the minimal assumption that it tends to increase consumption while
remaining agnostic on its impact on other aggregate variables. To be precise, we set the prior mean
impact of the consumption shock on consumption innovations to be consistent with the overall
variance of those innovations driven by aggregate shocks (which we obtain from our identification-
agnostic estimation on a training sample). We further set the prior impact of the consumption
shock on other aggregate variables to have mean zero, and a standard deviation of 0.25 (we use
the same prior for the impact of the other structural shocks in our model on consumption). When
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implementing our empirical strategy, we will further constrain our approach by simultaneously
identifying various shocks. The identification approach for those other shocks follows a similar
structure as the identification of the consumption shock, as we discuss below.

3.4 Further implementation Details

We now explain how we set priors on other parameters and estimate the model.

3.4.1 Priors on D j and D

We described the prior distributions for the impact coefficients D and D j for the consumption shock
in detail above. We use a similar procedure to add priors to the other five shocks: technology,
credit supply, government consumption, monetary, and energy cost. Table 2 describes the aggregate
and sectoral indicators used to construct the prior means for the impact matrices. The impacts on
aggregate shocks are set similarly to the consumption shock, with the technology shock having a
priori a positive impact on TFP, credit shocks having a positive impact on spreads, government
shocks on government expenditures, monetary shocks on interest rates, energy shocks on the price
of energy.

We describe the direction of impact on sectoral variables and the ranking for which variables are
most affected in table 3. Those follow basic economic theory: the household consumption shock
has a larger positive output and price impact on sectors with higher consumption to gross-output
ratio and a smaller impact on consumption. The technology shock has a more positive quantity
impact and more negative price impact in sectors with high R&D expenditures. Credit shocks
reduce quantities and increase prices in sectors with high external dependence. Government shocks
increase prices and output (and reduce consumption) in sectors with high government consumption.
Monetary shocks increase prices by less and increase output and consumption by more in sectors
where prices are stickier.18 Energy shocks increase prices and reduce quantities by more in sectors
that are more intensive in energy inputs.

In Appendix B.2 describes the data used to set those priors in detail. In Appendix C, we develop

18One may wonder whether the same would not be true of all demand shocks. The point, however, is that other
demand shocks may have other stronger biases - for example, a shock to the discount factor would have a strong bias
towards consumption intensive sectors that a monetary shock would not necessarily have. We check that intuition in
the same structural model used in Sections 3.3.2 and 6.1. In particular, we examine the correlation pattern between
the probability of prices staying in place and the cross-sectoral impact of the monetary shock on consumption, prices
and output. As expected, the correlation between the sectoral effect of a contractionary monetary policy shock and
sectoral price stickiness (as measured by the probability of a price remaining in place between periods) is 0.74 (recall
that overall prices drop in response to the monetary shock), whereas for an contractionary consumption shock the
correlation the same correlation is much weaker, at 0.19. The correlations with the impact in consumption are the same,
but with flipped signs. There is also a notable, although less sharp, difference in the correlation between price stickiness
and sectoral output impact, at -0.27 for the monetary policy shock but -0.13 for the consumptino shock.
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a tractable two-period model that allows us to derive those relationships. We also introduce three
additional structural shocks (elements of ε) to allow for the possibility that we do not explicitly
model some important source of fluctuation. We use loose Gaussian priors centered at 0 for the
corresponding elements of D and Di. As we will see later, when we present a variance decomposition,
these three additional shocks are not important drivers of the aggregate variables in our model.

Positive aggregate impact Index for sector-specific α
j

k,s in E[D j
k,s]

Household Household consumption Household consumption / Gross output
Technology TFP (Fernald, 2014) R&D expenditures / Gross output
Credit Baa-Treasury credit spread External finance dependence
Government Government consumption Government consumption / Gross output
Monetary Fed funds rate Average price duration
Energy Energy price index Cost of energy inputs / Gross output

Table 2: Assumptions used for prior means for impact coefficients for different shocks. See
Appendix C for detailed motivation

PCE price PCE quantity Industrial
Production

Household + ↑ + ↓ + ↑
Technology – ↓ + ↑ + ↑
Credit + ↑ – ↓ – ↓
Government + ↑ – ↓ + ↑
Monetary + ↓ + ↑ + ↑
Energy + ↑ – ↓ – ↓

Table 3: Signs and ranking of impact α
j

k,s: ↑ implies that impact increases with sector-specific

index for α
j

k in table 2 and ↓ that it decreases.

3.4.2 Priors on other parameters

For the intercepts µ j at the sectoral and aggregate level, we use Gaussian priors with mean zero
and large variances. For the Al matrices (the VAR coefficients at the aggregate level), we use a
Minnesota-type prior (Koop and Korobilis (2010)).19 We do this because we have a relatively large
number of observables at the aggregate level, so some prior shrinkage is useful. At the sectoral
level, we have fewer variables (per sector), so we simply use priors for Bi

l and Ci
h centered at 0 with

a standard deviation of 0.5.
To use the Gibbs sampler, we use inverse-Wishart priors for the covariance matrices Ω and Ω j

of the reduced form shocks at the aggregate and sectoral levels. As is well known, this imposes
19We use their benchmark choice of hyperparameters.
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some restrictions on what prior beliefs we can impose on our model. One is that the variances are
bounded away from 0 (really not much of a problem in our case), while the main problem is that
there is no genuinely uninformative prior (as we increase the variance, we also have to at some
point increase the prior mean since variances are bounded below by 0 ). To set this prior, we will
use the results from an estimation of our model with a training sample and an agnostic prior, as also
outlined in Table 4.20

Prior on Ω To set the prior for Ω, we use results from our agnostic prior estimation. We set the
prior mean to the estimated posterior mean of Ω and use as degrees of freedom the size of our
overall sample. Table 4 below summarizes the priors on the different parameters.

Prior on Ω j For Ω j, we follow the same strategy as for its aggregate counterpart Ω, except that
we use a smaller number of degrees of freedom (there is less need for shrinkage as the number of
variables per sector is smaller than the number of aggregate variables).

3.4.3 Gibbs Sampler

As mentioned before, we exploit the Gibbs sampler throughout by imposing independent Normal-
inverse Wishart priors.

Drawing εt Given All Other Parameters We assume Gaussian innovations for tractability. If
we use a variant of equations (3) and (4), it is straightforward to see that, conditional on Al , Bl , Cl , Σ,
D, and D j, εt can be drawn via exploiting the Kalman filter (simply put all known quantities on the
left-hand-side: all that remains on the right-hand side are the ε terms, w j and w), based on Carter
and Kohn (1994). To make this step more numerically efficient, we follow Durbin and Koopman
(2012) and collapse the large vector of observables into a vector with the same dimension as the
structural shocks. As discussed by Durbin and Koopman (2012), this can be done without loss of
information.

Drawing Other Parameters Given ε Since we condition on ε at this stage, drawing all other
parameters amounts to drawing from Gaussian and inverse Wishart posteriors. One helpful insight
here is that, conditional on ε , all other blocks can be run in parallel. This means that our approach
can be scaled up easily. This is especially useful for extensions where a researcher might want to
depart from the Normal-inverse Wishart prior.

20As mentioned earlier, the prior we use for the agnostic estimation is the same as for our actual estimation except
that we use priors with large variances on the impact of the structural shocks and the residual covariances. For the
choice of the training sample, our default is the full sample - our approach can, therefore, be interpreted as an empirical
Bayes approach.

21



Table 4: Summary of prior distributions

Parameters Prior Density Prior Parameters

µ , Al Normal Minnesota prior as in Koop and Korobilis (2010)

Ω Inverse Wishart
Mean: training sample
Degrees of freedom: sample size

D, constrained elements Normal Mean and standard deviation: system of equations
D, unconstrained elements Normal Mean 0, standard deviation 0.25
µ i,Bi

l , Ci
h Normal Mean 0, standard deviation 0.5 (each element)

Ωi Inverse Wishart Mean: training sample, degrees of freedom = 15
Di Normal Mean and standard deviation: system of equations

3.5 Interpretation and Comparison With Other Approaches

We now present a more detailed discussion of how to interpret the model, and a formal discussion
of the relevant identification issues. This interpretation will also allow us to compare the model
with other existing approaches.

To interpret the econometric model, it is useful to rewrite our model as follows: First, define the
vector of all observables

Zt = [Yt
′ X1

t
′
X2

t
′
. . . X I

t
′
]′

We can then recast our model in the following way:

Zt = µ
Z +

max(LX ,LY ,L)

∑
l=1

BZ
l Zt−l +DZ

εt +wZ
t︸ ︷︷ ︸

uZ
t

(10)

where wZ
t is a vector that stacks the non-structural shocks according to the ordering of observables

in Zt .
Our assumptions imply that the residuals uZ

t are orthogonal to all variables in Zt−1. This model
can be mapped back into the system described in Section 2 - the conditional mean of the variables
(Et−1xt) is given by µZ +∑

max(LX ,LY ,L)
l=1 BZ

l Zt−l , so that ut = xt −Et−1xt , and the impact of the
consumption shock and other structural shocks is determined by DZεt , where each column of DZ is
equal to the effect of one shock on all variables. In particular, the column of DZ corresponding to a
consumption shock is equal to ∂x

∂c (or the corresponding expression from Section 2.1.1).

3.5.1 Identification of model parameters

We now characterize the identification of model parameters and aggregate shocks. Because of the
structure of the one-step-ahead forecast error, we can identify µZ as well as the coefficient matrices
BZ

l , as is usually the case in VAR analyses. Focusing on uZ
t , we can see that it follows a factor
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structure, where the common factors are the iid structural shocks εt , so that standard results on
identification in factor models apply (Bai and Ng (2008)). While we cannot identify the effects of
individual structural shocks without additional assumption, we can identify the overall effect of all

structural shocks.
To identify εt , we need identification restrictions akin to those used in the structural VAR

literature. To see this, define

ut = Dεt +wt , (11)

u j
t = D j

εt +w j
t ∀i. (12)

For any conformable orthogonal matrix Q, we can construct alternative models that feature the
same first and second moments and thus the same Gaussian likelihood:

ut = DQ−1︸ ︷︷ ︸
D̃

Qεt︸︷︷︸
ε̃t

+wt (13)

u j
t = D jQ−1︸ ︷︷ ︸

D̃ j

Qεt︸︷︷︸
ε̃t

+w j
t ∀i. (14)

It follows that, even though the overall impacts Dεt and Diεt ∀i are identified, the impact of
each shock (captured by the matrices D and Di) is not, so that additional restrictions are necessary
to pin those down. The priors on D and D j described in section 2 influence the posterior of Q but,
unless they are degenerate, do not pin it down entirely - even asymptotically, there will be some
posterior uncertainty about D and Di (and hence the implicit posterior of Q). However, as shown by
recent work, even such “set” identification can be very informative if applied to enough variables
(Amir-Ahmadi and Drautzburg, 2020) and having many (even weak) restrictions (Amir-Ahmadi
and Uhlig, 2015). This insight is especially relevant for our setting, where we have many sectors
and thus a substantial amount of prior information we can exploit.

It is also important to point out that this identification discussion does not mean that all prior
distributions of D and D j are equally consistent with the data. What is true is that for any given
value of D and D j, there is a set of other values that have the same likelihood, but some sets are
more likely than others. Different Gaussian prior distributions for D and D j of the type we use
will put different weights on D and D j matrices belonging to different sets. They can, therefore,
be assessed via their marginal likelihoods obtained by integrating across all their possible values.
The outcome is that, while the priors are essential for identification, the priors for D and D j will
generally not be equal to the posterior distributions of those matrices.
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3.5.2 Restrictions on BZ
l and comparisons with other approaches

Without further restrictions on BZ
l , equation 10 implies a very large number of parameters to be

estimated. Our approach differs from Dynamic Factor Models (DFM) and factor augmentmented
VARs (FAVAR) approaches through the restrictions that it imposes.

In particular, our model imposes restrictions on the matrices Bl by assuming that one sector’s
variables cannot directly respond to any other sector’s lagged variables. Nevertheless, we do allow
idiosyncratic units to respond to their own lags and to lagged values of aggregates. The restrictions
on BZ

l are, therefore, weaker restriction than the one adopted in DFM and FAVAR approaches, which
assume that idiosyncratic units are only a function of unobservable factors and idiosyncratic error
terms. A further way in which the Hierarchical-VAR relaxes assumptions typically made in DFMs
and FAVAR’s is by allowing explicitly for correlation across the variables within each idiosyncratic
block driven by the idiosyncratic shocks.21

As compared to standard dynamic factor models Stock and Watson (2005a) and FAVARs
(Bernanke et al. (2005)), the Hi-VAR features a factor structure with two types of factors: static,
unobserved, factors, identified by the structural shocks, as discussed above, and dynamic, observed,
factors, identified with observed lagged aggregate variables, which appear in equation 4 as well as
in the aggregate dynamics (equation 3).

Having the unobserved factors be iid shocks allows for a greater number of latent factors. In
contrast, DFMs and FAVARs often select a small number of factors, which follow persistent VAR
processes. Those descriptions of the data are mutually consistent, since multiple iid shocks could
drive each of the “VAR factors” (our counterpart of these VAR factors would be the observable
aggregate variables that influence sectoral dynamics).22 Furthermore, our approach allows for a more
parsimonious identification procedure in comparison with DFMs and FAVARs, where identification
of structural shocks requires imposing identifying assumptions for both the unobserved factors and
the structural shocks.

3.5.3 Separation of link between one-step-ahead forecast errors and structural shocks

Our econometric model breaks the close link between one-step-ahead forecast errors and structural
shocks implied by standard VARs. This distinction is useful for two reasons: (i) this allows sectoral
data and aggregate data to jointly identify structural shocks and (ii) it does not necessarily force

21As Stock and Watson (2016) discuss, likelihood-based approaches to factor model estimation typically assume
that idiosyncratic shocks are uncorrelated across series. The primary approach that allows for such correlation are
non-parametric approximate factor models estimated with frequentist methods.

22Typically, however, in standard dynamic factor models, the number of iid shocks driving the ‘VAR factors’ is
imposed to be the same as the number of ‘VAR factors.’ Notice that, for applications where no structural shocks
are identified, one can assume as many iid shocks as ’VAR factors’ without loss of generality under Gaussianity and
linearity.
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structural shocks to explain large fractions of the variances of our observables if the data do not
call for structural shocks to be important.23 To safeguard ourselves against overestimating the
contribution of wt to aggregate variation, we suggest adding shocks to the vector of structural
innovations εt with loose priors that do not use any identification information. The additional
‘structural’ shocks will soak up any explanatory power that the model would otherwise falsely
attribute to wt . In our application, we add three of those shocks. We should note that others have
imposed a factor structure on residuals of time series models. Altonji and Ham (1990), Clark
and Shin (1998), Stock and Watson (2005b), and Gorodnichenko (2005) follow the same route to
estimate common shocks in time series models with many observables.24 In particular, we share with
Stock and Watson (2005b) the assumption that non-structural shocks cannot contemporaneously
affect variables in other blocks of the model. Gorodnichenko (2005) interprets wt as shocks that
can arise in equilibrium models due to "expectations errors, measurement errors, heterogeneous
information sets (e.g., consumers and the central banker can have different information sets), myopia
and other forms of irrational behavior." Gorodnichenko (2005) also describes an equilibrium model
with imperfect information that has such a factor structure in residuals.
Another modeling approach that touches on issues similar to ours is Global VAR (Chudik and
Pesaran (2016)). Those do not break the link between aggregate shocks and one-step-ahead forecast
errors at the aggregate level and require a priori restrictions on how shocks propagate between
idiosyncratic variables.

3.5.4 Further links with VAR literature

What sets our approach apart from the previous literature on structural VARs is that (i) because of
our model structure, we can use substantially larger datasets than standard VAR applications can,
(ii) we can identify several shocks simultaneously, rather than one or two.25 Finally, as can be seen
from equation 10, our model is a restricted VAR using many variables. As such, there is a natural
connection to the literature that uses shrinkage priors for such VARs (Banbura et al. (2010)). Instead
of using shrinkage priors (such as the Minnesota prior) in a VAR for all of our variables, we instead
impose restrictions implied by the grouping of variables into sectoral and aggregate variables.26.

23Our model does not preclude structural shocks from being the main drivers of business cycles a priori: the estimated
variances of the non-structural shocks could be very small.

24Cesa-Bianchi and Ferrero (2020) use this assumption in the context of a panel VAR for sectors of the US economy.
Their work focuses on identifying shocks via restrictions on aggregate variables after exploiting this factor structure.

25By estimating the responses to structural shocks directly, we do not need to post-process reduced-form VAR
estimates to obtain the structural representation that allows us to compute the effects of structural shocks. Eliminating
this additional step is useful because the algorithms used to deliver the impulse responses after estimating a reduced-form
model can be numerically time-consuming because not all proposed candidate parameter vectors of the structural
VAR satisfy the identification restrictions as in Rubio-Ramirez et al. (2010) or because the imposed restrictions are
overidentifying as in Amir-Ahmadi and Drautzburg (2020).

26We do still use a Minnesota-type prior for the aggregate variables in our VAR.
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One key innovation relative to many prior studies is that, as discussed above we apply a Gaussian
prior directly to the effects of the structural shocks on aggregate and sectoral data.27 This procedure
allows us to use more prior information on the magnitudes of these effects compared to what would
be feasible in the standard sign restriction approach.28 By exploiting our specific model structure,
we can efficiently estimate very large scale models. Also, because we directly estimate a structural
VAR, our approach can handle set-identified, exactly identified, and over-identified environments.
The difference between those alternatives depends on the priors on the parameters governing the
contemporaneous impact of structural shocks.

Importantly, our approach is computationally very efficient because, as we will show below, it
relies solely on standard steps in Gibbs samplers (drawing from Normal and inverse-Wishart priors
as described in Koop and Korobilis (2010) as well as using Gibbs sampling for linear and Gaussian
state-space models as in Carter and Kohn (1994)). The hierarchical structure of our model implies
that those procedures are amenable to parallelization.29 This implies that our approach can be very
efficient even in applications that have a much larger scale than our application in this paper.

4 Estimation Results

We now describe the main results. To obtain those, we used eight aggregate US time series (in year-
over-year growth rates where applicable): (i) real GDP growth (denoted gd p later), (ii) CPI inflation
(denoted π), (iii) the effective Federal Funds rate (denoted i), (iv) growth rate in real government
spending (denoted g), (v) real PCE consumption growth (denoted c), (vi) Moody’s Seasoned Baa
Corporate Bond Yield Relative to the Yield on a 10-Year Treasury of Constant Maturity (denoted
spread), (vii) Fernald’s utility adjusted Total Factor Productivity (TFP) (Fernald (2014), denoted
t f p) , (viii) and energy inflation based on the relevant producer price index (denoted energy). We
use data from the first quarter of 1961 to the last quarter of 2017. The data are described in detail in
Appendix B.1.

For the sectoral data, we use three variables for each sector, where available: (i) the year on year
27We can do this because we directly estimate the impact of structural shocks rather than first estimate a reduced-form

model and then infer the structural model afterward, as is common in the VAR literature. By directly estimating a
structural representation, we follow in the footsteps of, for example, Baumeister and Hamilton (2015) and Sims and
Zha (1998), who estimate structural VARs. Baumeister and Hamilton (2018) and Baumeister and Hamilton (2019) are
closest to our approach because they also use the information on the contemporaneous impact of the structural shocks
to inform their priors.

28In the standard approach to impose sign restrictions, as outlined in Rubio-Ramirez et al. (2010), inequality
restrictions are imposed on impulse responses in conjunction with a uniform (Haar) prior on the rotation matrices that
map reduced form parameters to initial impulse responses. We could incorporate strict inequality restrictions in our
framework by incorporating a Metropolis step into our algorithm.

29This parallelization argument does not hold, for example, in large scale VARs. And while certain aspects of Gibbs
samplers for factor models might also be amenable to parallelization, these models do not directly emphasize the
dynamics of all variables in the sector transparently.
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growth rate of sectoral PCE (ii) the year on year sectoral inflation as measured by the associated
price index and (iii) the year on year growth in Industrial Production as made available by the
Federal Reserve Board. The latter is not available for all sectors, so we only use it where available.
The sectoral data are described in Appendix B.2.

In terms of specification, we use six lags of the left-hand-side variables as a conservative choice
throughout to insure that we capture the dynamics of our observables at both aggregate and sectoral
levels. For the lagged aggregate variables in the sectoral equations (where they enter as additional
variables) we use two lags for parsimony.30

4.1 Impulse Response Functions

We now show the impulse response functions obtained from the model estimation. Figure 3 shows
the median and various percentiles of the impulse responses to a one-standard-deviation shock for
the household consumption shock.31 The results conform to the expected response to a generic
aggregate demand shock. There is an increase in inflation, output, and nominal interest rates. Energy
costs also increase, which again is consistent with an increase in demand for energy. At the same
time, 90 percent posterior bands of the responses of TFP and credit spreads contain 0, implying that
the consumption shock is not, first and foremost, a response to technology changes or financing
conditions.

30Adding more lags for the 8 aggregate variables would significantly increase the number of parameters at the sectoral
level. For example, adding two more lags for sectoral inflation and consumption alone would add 5984 parameters (187
sectors × 2 sectoral variables× 8 aggregate variables × 2 lags). On top of that, we would need to add 32 parameters for
each sector with IP data. Introducing such a large number of parameters would require alternative (shrinkage) priors for
the parameters on aggregate variables in the sectoral equations, but there is limited guidance available in the literature
on how to set up such a shrinkage prior for exogenous variables.

31The impulse responses to other shocks are in Appendix L. These other responses are broadly in line with previous
responses obtained for these shocks in the literature.
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Figure 3: Responses to Household Demand Shock. Dashed lines are 16th and 84th Posterior
Percentile Bands, Dots are 5th and 95th Posterior Percentiles. The x-axis shows time in quarters.

We also examine how incorporating the sectoral data helps with identification. Specifically,
figure 4 shows that, relative to a specification where the shock is identified only from its impact on
aggregate consumption, the impulse response functions for the household demand shock becomes
much more tightly estimated once we incorporate priors on the sectoral responses. It is those tighter
posteriors that make clear the impact of those shocks on inflation and interest rates.32
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Figure 4: Responses to Household Demand Shocks: Comparison of Identification Schemes. Error
Bands are 16th and 84th Percentile Posterior Bands.

32To obtain the impulse responses based only on sectoral or aggregate information, we choose very loose priors for
D and Di, respectively, and re-estimate our model.
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4.2 The Sources of Business Cycles

In this section, we examine how the different identified structural shocks explain business cycles.
We do this in two ways: through a variance decomposition, describing the fraction of business cycle
variance explained by the various shocks, and through a historical decomposition, which shows the
contribution of each shock to various cyclical downturns.

The results for the variance decomposition are presented in table 5 below. To obtain the numbers
in the table, we decompose for each variable the fraction of the overall forecast error variance at
business cycle frequencies into different components.33 The numbers refer to average variances for
forecast errors 6 to 32 quarters ahead. For all variables the elements of εt account for more than
85% of overall variance, with the remaining explained by the residuals wt .34 The table shows that
household consumption shocks play a prominent role not only in explaining nominal interest rates
and inflation (as one would expect), but also GDP, consumption, and energy prices. The other shock
with a prominent role is to corporate credit, accounting for a large part of the variance of GDP and
consumption. If we count household consumption, government consumption, and monetary policy
shocks as “demand” shocks and energy and technology as “supply” shocks, we find that demand
shocks account for substantially more of GDP variation at business cycle frequencies than supply
shocks.

Our results suggest that consumption shock plays a prominent but not dominant role. In
particular, our results do not support the view that there is a single “main" business cycle shock
accounting alone for most of output fluctuations.35

Table A-5 in Appendix M.2 shows how the decomposition for the household shock would
appear if one only used the prior on aggregate variables to identify the model. The aggregate-only
identification implies that the household consumption shock explains a smaller portion (20%) of
GDP variation compared to the baseline estimate (34%). The 90% error band for the aggregate-only
identification is also twice as large then the one implied by the model estimated using sectoral
data (depicted in Table A-2 in the appendix). This means that the average variance share estimated
using sectoral identification falls within the error band when only aggregate restrictions are used.

33We focus here on the posterior mean. The 5th and 95th percentiles for the household consumption shock can be
found in Appendix M.

34It follows that our model performs similarly to the Dynamic Factor Model in Stock and Watson (2016). For
example, they find that the 8 factors explain 83% of the four quarter ahead variance of GDP and 67% of the variance in
inflation, whereas in our Table 5 we find that our model explains close to 91% of the business cycle variance of output
and 92% of inflation.

35In particular, if we regress the main business cycle shock from Angeletos et al. (2020) on the various shocks we
identify, we find that this main shock has poor correlation with the consumption shock and can be better understood
as a combination of various shocks. The results of this exercise are in Table M.8 in Appendix M.8. Our results are,
therefore, in line with the observation in Dieppe et al. (2021), that, in the presence of multiple shocks explaining a
substantial part of the variance of endogenous variables, a variance maximizing estimator may in fact generate a linear
combination of multiple shocks.
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However, the mean value (20%) found in the aggregate-only estimate is outside of the error band
when sectoral restrictions are included.

tech credit household gov energy monetary total

Inflation 4.0 7.0 13.9 33.6 21.9 4.4 92.2
GDP 6.5 16.0 33.9 12.8 10.6 3.7 90.7

Nominal Interest Rate 4.6 6.6 22.9 31.2 10.5 4.8 87.6
Consumption 5.0 9.6 42.6 16.3 9.9 3.5 93.3

Spread 13.8 33.0 9.8 14.6 10.1 3.2 92.1
Government Spending 3.9 6.9 26.1 24.3 9.0 6.2 84.9

TFP 18.4 5.4 10.9 22.8 11.0 5.0 93.4
Energy Prices 4.3 5.4 8.3 11.4 53.9 3.6 92.2

Table 5: Mean of variance decomposition across business cycle frequencies and posterior draws.
’Total’ referes to the fraction of variance explained by all elements of εt .

The variance decomposition provides a view of the average importance of different shocks in
driving different variables. Alternatively, one might ask how relevant the various shocks were in
particular recession episodes. This question allows for the possibility that recessions are qualitatively
different from expansions, and that they may have been caused by different shocks. To answer this
question, we use a historical decomposition.

Table 6 provides the results of such a decomposition for the recession episodes fully included in
the sample. The first column shows the peak-to-trough changes in the level of (log) real GDP for
the various recessions, and the second column shows the expected change in GDP in the absence of
any shocks after the recession peak. It is typically positive, reflecting, among other, things, that the
estimated growth rate of real GDP is positive. The subsequent columns show the difference between
this baseline behavior and the one that would result if the economy was only hit by each inferred
sequence of shocks (we provide point estimates based on posterior means). Thus, for example, in
the 1980 recession, output dropped by 2.2% when it was expected to grow by 0.7%. Out of that
2.9% short-fall, the shock to household consumption accounted for 0.9%, or about a third, with
the credit shock accounting for a slightly smaller part. Both shocks appear to have large impacts
in most subsequent recessions, with household consumption having an increasingly large role. By
the 2007-09 recession, household consumption accounts for more than two-thirds of the difference
between projected and realized output growth and the credit shock for half as much.

The monetary shock is not an important driver of recessions. Note that this does not mean
that the monetary shock is not important for economic fluctuations more generally: Table 5 shows
that the monetary shock has substantial impact on the variance of the aggregate observables at
business cycle frequencies (broadly similar to, for example, the variance decomposition in Smets
and Wouters (2007)). For the Volcker disinflation, a possible interpretation of our results is that the
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"Volcker shock" propagated into the economy primarily by depressing household consumption and
by changing credit conditions, with nominal frictions leading to infrequent price changes playing a
minor role.

data no shocks tech credit household gov energy monetary

80 -2.2 0.7 -0.1 -0.7 -0.9 -0.1 -0.1 -0.0
81-82 -2.5 3.5 0.6 -2.3 -3.2 -0.1 0.3 -0.1
90-91 -1.4 1.5 0.3 -0.8 -1.6 -0.1 -0.1 -0.0
2001 0.4 2.4 -0.5 -0.1 -1.3 -0.0 0.2 0.0

2007-2009 -4.1 4.5 -0.2 -3.8 -6.3 -0.2 0.3 -0.1

Table 6: Counterfactual Recessions. Contributions of various shocks to peak to trough change in
the level of GDP relative to No Shock Forecast.

5 Interpretation: Sentiments and Wealth

How should we interpret the consumption shock? As the derivation in section 2 makes clear, the
shock may be a combination of various shocks that affect households first, and sectoral output and
prices in response to household spending decisions.

We provide some insight into the interpretation of our estimated shock by examining the
behavior of the inferred consumption shock series in comparison to data not used in its estimation.
This exercise provides external validation for our findings since those series were not used in the
estimation at all.

One potential source of consumption shocks are fluctuations in housing wealth. This was strongly
highlighted in empirical, theoretical and quantitative work by Mian et al. (2013), Kaplan et al.
(2016) and Berger et al. (2018). Figure 5a compares the time-series for the household consumption
shock inferred using our methodology to the growth rate of average wealth of households in the
bottom 90% of the wealth distribution, obtained from Saez and Zucman (2016). We aggregate our
shock to an annual frequency since the wealth measure is only available at that frequency. The two
series correlate well, especially from the late 1990s onward, and very prominently so around the
2007-09 recession.
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Figure 5: Comparison of Household Consumption shock with Wealth and Sentiment Changes.

At the same time, the correlation is smaller earlier in the sample, indicating that the source of
household consumption fluctuations may have been different over that period. Figure 5b compares
the shock to a measure of changes in consumer sentiment derived from the Michigan Survey. The
two series track each other very closely for the entire sample, including the early part.36 Our
findings are thus not inconsistent with the statement that fluctuations in sentiments are important
determinants of economic fluctuations, as argued for example by Farmer (2013) or Chahrour and
Jurado (2018).37

36This tracking becomes apparent in the figure, which plots annual averages. Annual averages are used here to aid
comparison to the wealth measure in the left panel, which is ony available at an annual frequency. The correlation for
the original quarterly series is not much lower at 0.57.

37In Appendix L.1 we examine whether a sentiment shock identified using consumer sentiment as an instrument
has similar properties to the consumption shock that we identify. We find that this is true in some instances, but not
all. In particular, it does result in an increase in output, interest rates, and consumption. However, it does not have a
positive effect on inflation. We believe the reason for this discrepancy is that the sentiment shock identified in this way
also incorporates perceptions about supply-side fundamentals. This is supported by the fact that the shock identified
in this manner is associated with an increase in TFP, a decline in energy prices, and a decline in spreads, none of
which are present in the same way in our identified shock. The shock identified through this method exhibits similar
properties to the one we have estimated in some instances, but not all. In particular, it does result in an increase in
output, interest rates, and consumption. However, it does not have a positive effect on inflation. We believe the reason
for this discrepancy is that the sentiment shock identified in this way also incorporates perceptions about supply-side
fundamentals. This is supported by the fact that the shock identified in this manner is associated with an increase in
TFP, a decline in energy prices, and a decline in spreads, none of which are present in the same way in our identified
shock. This suggests that consumer sentiment is a useful, but not perfect, indicator of the demand-side forces at play in
the economy.
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6 Further Validation and Analysis

In this section, we conduct some further analysis to validate our approach in various ways. We
start with a validation of our approach by using a multi-sector New Keynesian model as a data-
generating process to benchmark our approach, followed by comparing estimated impulse-response
functions for the monetary policy shock, estimated using our method, to IRFs measured with the
use of external instruments established in the literature. Next, we evaluate the importance of prior
information on the impact of shocks, and the extent to which it is modified by data. Finally, we
perform an analysis of the model fit, by assessing the extent to which the structural restrictions in
the Hi-VAR constrain the interplay between sectoral and aggregate variables.

6.1 Validation of our Identification Assumption in an Equilibrium Model

We now show that our identification scheme is well suited to estimate the evolution of a discount
rate shock in a multi-sector New Keynesian dynamic equilibrium model calibrated to US data. The
model, which we describe in detail in Appendix D, is a generalization of Justiniano, Primiceri, and
Tambalotti (2010) to allow for multiple sectors and sectoral linkages. The calibration builds on
Justiniano et al. (2010) and Carvalho, Lee, and Park (2021). We furthermore use information from
sectoral linkages and consumer shares obtained from the input-output tables made available by the
BEA and on sector-specific price stickiness from Nakamura and Steinsson (2008). We calibrate
the volatility of the discount-rate shock in our benchmark so that it explain the same fraction of
one-quarter ahead variance as the household demand shock in our estimates. Tables A-1 and A-2 in
the Appendix D.7 lists the calibrated parameters together with their sources.

The model features 5 aggregate shocks -technology, consumption demand (a shock to the
discount factor), monetary policy, government spending and investment. We simulate one data set
of length 256 quarters and then estimate our Hi-VAR model on this dataset using various approaches
to identification (i.e. setting the prior on DZ).38 The variables we use in our estimation are aggregate
inflation, output, the nominal short-term interest rate, consumption, government spending, TFP, and
investment.39 The lag lengths and the setting of the aggregate response to aggregate shocks (D) are
set as in the empirical application. Where the various specifications differ is in the setting of Di, the
sectoral responses to aggregate shocks. Here, we examine two strategies to set the prior mean of Di

(the standard deviation is set as in the empirical application):

1. Center Di at the true impact responses obtained from the equilibrium model. The prior

38While the theoretical concept of identification in econometrics is a population concept, we focus on a more stringent
test of our approach using a standard sample size in macroeconomics. Increasing the sample size does not substantially
alter our quantitative findings, as we discuss in Appendix F.

39All variables are measured in deviations from the model-implied trend.
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standard deviations are the same as in our empirical setting (and as such in the specification
below).40

2. Set the prior means as in our empirical application. For the technology shock this is not
possible as we do not have R&D in our equilibrium model, so we set the weight α equal
across sectors.

To assess how well our approach fares, we focus on the estimated consumption shock. We
simulate one sample from the equilibrium model and then estimate the Hi-VAR using the two
priors described above. To assess fit, we concentrate on the posterior distribution of the correlation
coefficient between the actual consumption shock and the median estimated shock.41

Panel (a) in Figure 6 shows, in a scatterplot, the distribution of the actual discount rate shock
plotted against the posterior median estimate for the two experiements. When using the actual
sectoral impact of the discount rate shock (in red), the posterior median and the actual shock comove
tightly. The comovement between actual and posterior median (in blue) becomes less tight but
remains substantial when the prior means based on C/Y ratios are used. Also, there is no indication
of a systematic bias in either estimate, with both scatterplots clustering around the 45 degree line.

The two lower panels show the posterior distribution of the correlation coefficients. Panel
(b) shows that the correlation coefficient for the prior using the true IRFs is tightly concentrated
around 0.96, so that, given accurate knowledge of the sectoral impact of the discount rate shock,
cross-sectional data can help one estimate its time-path with high accuracy.

Panel (b) shows the corresponding distribution for the correlation coefficient for the case in
which the econometrist is unwilling to take a stance on the true underlying model uses sectoral
variation in C/Y to center sectoral prior impact. As one might expect, the correlation coefficient
is further away from 1, with mode somewhat above 0.7, and considerably more disperse. This
dispersion reflects the uncertainty and approximate nature inherent in our identification assumptions.

The role of confounding sources of variation Within our methodology, prior uncertainty induces
set-identification so that points within the identified set are given probabilities implied by the prior
distributions. We illustrate this point by manipulating other sources of estimation uncertainty.

40Note that in this specification there is still estimation uncertainty as the correct response is not dogmatically
imposed, but just used to set the prior. We view this specification as representing an upper bound of what can be
achieved with our approach.

41This is just the coefficient from the following OLS regression for each posterior draw i

ε̃
C
t,i = β

i
ε

C
t +ui

t (15)

where ε̃C
t,i is the i-th draw of the consumption shock at time t, whereas εC

t is the true consumption shock at time t.
Running this regression for each draw i, we are left with as many regression coefficients as we have posterior draws.
We standardize both the estimated shock (separately for each draw i) and the true shock to have unit standard deviation
so that β i can also be interpreted as a correlation coefficient.
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Figure 6: Posterior distribution of correlation between true discount rate shock and estimates based
on data generated from multi-sector New Keynesian model
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(a) Distribution of β i, smaller volatility of
sectoral shocks

(b) Distribution of β i, smaller volatility of
consumption shock, 50 % reduction.

Figure 7: Robustness checks, Monte Carlo

The first source of estimation uncertainty that we manipulate are the idiosyncratic shocks
affecting sectoral outcomes (thus approximating a “population” outcome). In particular, we reduce
the standard deviation of those shocks by a factor of 100. As we can see in Figure 7a, the results are
very similar to our benchmark, meaning that the differences between our benchmark specification
and whether the true shock or the specification where we center our prior at the truth will not
vanish as we increase the sample size. Instead, the binding constraint is the specification uncertainty
inherent in our identification restrictions.

The second source of estimation uncertainty are the confounding effects of other aggregate
shocks. We show that those become more relevant as the discount rate shock accounts for a smaller
fraction of overall output variation. In particular, if we reduce the volatility of the consumption
shock by 50 percent from the benchmark value the posterior mode for β i falls to 0.55, which is still
sizeable.

6.2 Comparison with IV-based Identification

Our approach uses sectoral data to provide additional information about the various shocks of
interest. Another source of information that has been used repeatedly in empirical macroeconomics
are instruments for aggregate shocks (see, for example, Mertens and Ravn (2013) and Stock and
Watson (2018)). We use the Romer & Romer monetary shock (Romer and Romer (2004)) as updated
by Wieland and Yang (2019). We drop sectoral information and instead incorporate information
coming from the instrument along the lines of Caldara and Herbst (2019). We denote the monetary
shock by εm

t , the observed Romer & Romer shock by mt , and add the following equation to our
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aggregate block (which we do not change otherwise):

mt = µ
m +β

m
ε

m
t +um

t (16)

where um
t is a mean zero Gaussian shock. We use loose priors on all parameters in this equation.

The priors on µm and β m are centered on 0 and 1, respectively. In Figure 8, we compare the median
estimated response of all aggregate variables obtained from using the instrument to the estimated
response using the sector-based identification approach.
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Figure 8: Benchmark Responses (Median, 5th and 95th Percentiles) to a One-Standard Deviation
Monetary Shock and Median Response based on Romer & Romer Shock (green).

The impact response of the nominal interest rate is very similar under the two identification
approaches. The responses were the approaches differ the most (inflation and GDP) are those were
our approach arguably yields more credible responses (a decline in inflation and no significant
increase in GDP growth on impact). It is by now well known that analyses based on Romer &
Romer-type shocks can lead to such incredible responses (see Bu et al. (2020)). For the other
variables, the instrument-based responses are mostly within our 90 percent posterior bands.

6.3 The Importance of Prior Information

While standard asymptotic results imply that most parameters in our analysis, such as VAR coeffi-
cients and the variance of innovations, are well identified by the data, this is not the case for the
impact matrix DZ . In particular, the posterior distribution of DZ is influenced by the priors even
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asymptotically. This influence confirms that the priors are necessary for the identification of the
structural shocks.

There is no amount of data that can be completely informative about the impact of each individual
shock, DZ . However, standard results from factor analysis imply that one can identify the part of
the covariance of innovations that is accounted for by aggregate shocks.42 That part is equal to
DZDZ ′, since the covariance of macroeconomic shocks εt is itself equal to the identity matrix.43,
and in general converges in large samples to a known matrix, φ . In Appendix H we show that, given
limT→∞ DZDZ ′ = φ the asymptotic posterior distribution of DZ satisfies

P(DZ|DZDZ ′ = φ) ∝ 1
(
DZDZ ′ = φ

)
p(DZ) (17)

where 1 is the indicator function. That is, asymptotically, only the parts of the prior distribution
that are consistent with φ are retained. Since there are multiple values of DZ for which DZDZ ′ = φ ,
the posterior distribution for DZ remains non-degenerate in large samples. At the same time, it
is constrained by the data. This is reminiscent of results for standard VARs in Baumeister and
Hamilton (2015) (see their Proposition 2).
Note that expression 17 describes the joint distribution of DZ , which is itself a matrix. The
dependence of the distribution on DZDZ ′ induces dependence between the elements of this matrix:
We may take the a priori stance that a certain level of impact for the consumption shock on a certain
variable is probable, but it will only remain so if it is compatible with the level of impact for other
shocks that are themselves also probable.

To assess the importance of the data relative to our prior distributions, we plot the prior median
of the impact of a given shock on the variables in a sector against the posterior median (i.e., the
prior and posterior medians of the relevant entries of DZ). We do this to (i) check that our prior
information is not completely overruled by the data (in which case we should go back to the drawing
board) and (ii) that our analysis indeed adds information relative to the prior so that the data is
indeed helpful to identify the effects of shocks. We focus here on the consumption shock - the
figures for the other shocks look similar. Figure 9 shows a scatter plot of the prior vs. the posterior
medians across sectors for our three sectoral variables as well as the identity function (all dots
would be on this line if the data were not informative at all).44 The data is informative in that it
shifts the median impact of the shock across sectors.

42We check this result numerically in the Monte Carlo exercise described in Appendix I.
43Specifically, the vector of aggregate shocks at any time t is given by εt and the part of innovations accounted for

those shocks is given by DZεt , so that E
[
DZεtε

′
t D

Z ′]= DZE [εtε
′
t ]D

Z ′ = DZDZ ′
44Note that IP data is not available for all sectors.
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Figure 9: Prior vs Posterior Impact of Household Shock Across Sectors.

Given the uncertainty about the marginal effect of the consumption shock on different prices
and quantities, our estimate is more credible if the marginal effect of other shocks does not look
too similar to that of the consumption shock. The two prime candidates for shocks that could
have similar estimated effects as the household shock are the credit shock and the monetary shock.
Therefore we produce a scatter plot of the posterior medians for the (impact) consumption shock
response across sectors against the posterior median of the (impact) monetary and credit shock
responses across sectors. Figures 10a and 10b shows these scatter plots. As can be seen from those
scatter plots, the impacts of shocks across sectors are not strongly correlated, highlighting that we
are identifying a shock that is very different from monetary and credit disturbances.

39



-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

-1

0

1

2

-2 -1.5 -1 -0.5 0 0.5 1

0

2

4

-2 -1.5 -1 -0.5 0 0.5

-5

0

5

10

(a) Household vs. Monetary Shock

-1 -0.5 0 0.5 1 1.5 2 2.5

-1

0

1

2

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

0

2

4

-8 -6 -4 -2 0 2 4

-5

0

5

10
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Figure 10: Comparison of Impact Responses Across Sectors.

6.4 Model Fit and the Interplay Between Sectoral and Aggregate Data

Our model is restrictive because correlations between sectors or between sectors and aggregate
variables have to come through either the structural shocks εt or lagged aggregate variables. These
restrictions could lead to misspecification, casting doubt on our identification strategy. To address
this possible concern, we first compute the correlations between aggregate consumption growth
and consumption growth at the sectoral level that appear in our dataset as well as the corresponding
correlations for aggregate and sectoral inflation. We then draw 1000 parameter values from the
posterior, simulate data of the same length as our dataset for each set of parameters (after discarding
1000 burn-in observations), and compute the same correlations for our simulated data. This exercise
gives us the posterior distribution of the correlations we are interested in. We are thus carrying out
a posterior predictive check as advocated for by Rubin (1984) and further discussed by Gelman
et al. (2013) and Geweke (2005), for example. The top two panels in Figure 11 plot the correlations
from the data (black) as well as the median (red), and the 5th and 95th percentiles (blue) of the
posterior distribution. We sort the correlations from the actual data by size (starting with the largest
correlation) to make the figure easier to interpret. We order the sectors in the same order for the
simulated data. As can be seen from figure 11, our model can replicate the correlation patterns
between aggregate and sectoral data.

An inquisitive reader might ask for a more stringent test, namely a check of the correlation of
variables across sectors rather than between any sector and the corresponding aggregate variable.
We show the results for this posterior predictive check in the bottom two panels of Figure 11. The
figure looks noisier just because there are many more data points (pairwise correlations between
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Figure 11: Posterior Predictive Check, Model-Implied Correlations vs Data. Top Two Panels:
Correlation with Aggregate Inflation and Consumption Growth, sector on x-axis. Bottom Two
Panels: Correlation Across Sectors, sector pairs on x-axis. Red line: Posterior Median, Blue Lines:
5th and 95th Posterior Percentiles. Data in Black.

the 187 sectors in our sample), but the main pattern remains, our model can replicate the broad
correlation patterns. Our model misses at the very tail ends of the spectrum of correlations (more so
for inflation than for consumption growth), but given that our model is tightly parameterized and
parsimonious, we think of these results as very encouraging.

6.5 Further Analysis

In the Appendix, we give further results for our model. In particular, we show analytically in
Appendix J why a researcher would generally want to use the most disaggregated data possible
(like we do), and we characterize in detail the asymptotic behavior of the impact of economic
shocks on aggregate and sectoral variables in Appendix H. More details and results for the Monte
Carlo exercise can be found in I. Finally, in Appendix M we show that the role of the household
consumption shock is robust to various changes in the specification, from having a larger prior
variance on the aggregate impact of this shock to dropping the Great Recession from the sample as
well as using fewer lags in our model. Appendix M also contains results for a specification where
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we separately identify an investment shock.

7 Conclusion

We propose an approach to use rich cross-sectional data in order to measure business cycle shocks
and their aggregate impacts. The approach relies on using a priori information on the differential
impact of the shock on different sectors, casting that information as a Bayesian prior to properly
account for any uncertainty surrounding it, and relying on a rich set of cross-sectional data to
“average out” identification errors at the level of individual sectors.

We use this method to measure shocks to aggregate consumption, defined as shocks that affect
sectoral output and prices through their impact on aggregate consumption but not otherwise. We find
that such shocks account for approximately 34% of output fluctuations at business cycle frequencies,
and a large part of output losses during recessions.

The results highlight the value of detailed work in understanding the sources of aggregate
consumption dynamics, and suggests that policies that stabilize consumption can have a significant
business cycle stabilization effect.
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For Online Publication
Appendix For "The Consumption Origins of Business
Cycles: Lessons from Sectoral Dynamics"

A Proof of Propositions

A.1 Proof of Proposition 1

Here we give a proof of Proposition 1. For notational convenience, we cast this proof in terms of the
time series model developed in Section 3 for our application, but translating it into the notation used
in section 2 is straightforward. In particular, we let ut = xt−Et−1xt , and let εt be a vector collecting
all structural shocks, and wt is the idiosyncratic noise. D collects the effects of all structural shocks.
In particular, its first column corresponds to ∂x

∂c . Consider a version of our model without dynamics
(to focus our attention on the identification of shocks)1:

ut = Dεt +wt (A-1)

εt = εt (A-2)

ut are the stacked forecast errors at the aggregate level and sectoral level stacked into one vector.
The second equation/identity is added to turn our model into a state space model. Because all shocks
are Gaussian, we can apply the Kalman filter to calculate filtered estimates of our structural shocks
εt . Note that because our state εt does not feature any dynamics, the application of the Kalman
filter does not require specifying initial condition. Likewise, filtered estimates will generally equal
smoothed estimates, so there is no need to have a separate treatment for smoothed estimates below.2

We assume the equations above are the true data-generating process. Without loss of generality, we
assume that the shock whose responses are not misspecified is the first element of εt . The Kalman

1All VAR-type parameters are identified in our setting, so this is without loss of generality.
2Because our state is iid, the initial distribution of the state does also not matter for smoothed/filtered estimates of

the state. To see this, consider a generic linear Gaussian state space system with observables yt and state xt :

yt = Axt +ut (A-3)
xt =Cxt−1 +wt (A-4)

where ut ∼i.i.d. N(0,B) and wt ∼iid N(0,D). The one-step ahead conditional expectation and conditional variance of
the state are then given by

Et−1xt =CEt−1xt−1 (A-5)

Vart−1xt =CVart−1xt−1C′+D (A-6)

In our application, C = 0 (the state is iid), and hence the one step ahead expectation and variance do not feature any
temporal dependence. This then also means that Etxt and Vartxt do not depend on Et−1xt−1 and Vart−1xt−1.

1



filter returns a least squares estimate of Etεt = εt|t :

εt|t = βut

The matrix of coefficients β is given by the standard formula linking the covariance matrix of the
right hand side variable ut with the covariance of the right-hand-side variable with the left-hand
side variable, the vector of structural shocks εt :

β = E(εtu′t)[E(utu′t)]
−1

The second term on the right hand side, E(utu′t), can be identified from the data as the second
moment matrix of the observables. As such, it does not depend on whether or not D is correctly
specified as long as our choice of D is consistent with the overall variability of the data. Where
identification matters is in the first term on the right-hand side:

E(εtu′t) = D′

Let’s now assume that we have a misspecified version of the model where, instead of using the true
impact matrix D, we use a matrix D̃ such that the first column of D and D̃ coincide. Therefore, the
response to the first element of ε is correctly identified, whereas the others are not. This means that
the first row of D′ and D̃′ coincide. This in turn, means that the first row of D′[E(utu′t)]

−1 equals the
first row of D̃′[E(utu′t)]

−1 and thus that the first element of the estimated shock series is independent
of whether D or D̃ is used to form the estimate.

In terms of the notation in the proposition statement, it follows that information on the covariance
matrix of xt−Et−1xt (equal to [E(utu′t)]

−1) and the vector of effects ∂x
∂c (equal to the first column

of D̃ and of D) are sufficient for the identification of εC
t (the first element of εt)

A.2 Proof of Proposition 2

As in the proof of Proposition 1, we use the notation in Section 3. In particular, Let εt be the vector
of all macroeconomic shocks εs,t . Let D be a matrix where each row corresponds to an element of
xt and each column to one of the shocks εs,t so that each element has the effect of εs,t on xt . Without
loss of generality, we assume that ε1,t = εC

t , in which case the first column of D is equal to ∂xt/∂εC
t .

Also, let ut ≡ xt −Et−1xt . Finally, let N denote the dimensionality of xt or, equivalently, ut . To
prove the proposition, it is sufficient to construct an estimator for εC

t and show that it converges
asymptotically to its true value as N→ ∞.

Step 1 - Obtain estimates of the space spanned by the macroeconomic shocks εt : Result

2



A.2(a) in Bai and Ng (2008) states that, given the assumptions in Section 4, as N→ ∞, one can
estimate a ε̂t such that

√
N(ε̂t−Hεt)→ N(0,Ξt) where Ξt is a matrix defined in their paper and H

is a rotation matrix. The estimation error therefore concentrates around zero as N→ ∞. In other
words, using factor-analytic methods one can consistently estimate the space spanned by εt .

Step 2 - Obtain D̂≡ DH ′

Recall that ut = Dεt +wt = DH ′ε̂t +wt , where we use the fact that, for rotation matrices,
H ′ = H−1. As N→ ∞, ε̂t is measured without error. Since wt is orthogonal to ε̂t , we can recover
D̂≡ DH ′ by regressing ut on ε̂t

Step 3 - Estimate εC
t : Given that D has a column matching ∂xt/∂εC

t , one can find a rotation
matrix H̃ such that (i) D̃ = D̂H̃ ′ and (ii) D̃ has its first column equal to ∂xt/∂εC

t . Such a matrix
exists, since H̃ = H ′ would satisfy the condition. In general, however, there may be multiple such
matrices. We take H̃ to be any matrix of that set.

Let ūt = Dεt = D̂ε̂t = D̃H̃ ε̂t denote the part of ut explained by εt . Note that with N→ ∞, one
can construct ūt given Steps 1 and 2 above. Consider now a projection of ūt on D̃. The projection
coefficients satisfy

ε̃t = (D̃′D̃)−1D̃′ūt

Note that D̃′D̃ = D̃′H̃ ′H̃D̃ = D̂′D̂ = D̂′HH ′D̂′ = D′D, so that (D̃′D̃)−1 = (D′D)−1 irrespective
of H or H̃. Moreover, given that we chose H̃ to ensure that the first column of D̃ is equal to ∂xt/∂εC

t ,
the first row of D̃′ūt will also be the same for all H and for all H̃ satisfying that restriction. In
particular, that will be true for H̃ = H ′, so that D̃ = D. It follows that ε̃1,t = ε1,t = εC

t .

B Data

B.1 Aggregate Data

See figure 3 for a depiction of the aggregate time-series. The sources and definitions are given
below. Growth refers to year over year changes of quarterly data.

• Real GDP growth: Real Gross Domestic Product, Billions of Chained 2012 Dollars Series
(FRED Series GDPC1) Quarterly, Seasonally Adjusted Annual Rate.

• CPI inflation: FRED Series CPIAUCSL, Consumer Price Index for All Urban Consumers:
All Items. Quarterly, seasonally adjusted.

3



• The effective Federal Funds rate: FRED Series FEDFUNDS, Quarterly, not seasonally
adjusted, Percent

• Growth rate in real government spending: FRED Series GCEC1, Quarterly, seasonally
adjusted, Billions of chained 2009 Dollars.

• Real PCE consumption growth:FRED Series PCECC96, Quarterly, sea- sonally adjusted,
Billions of chained 2009 Dollars.

• Moody’s Seasoned BAA Corporate Bond Yield Relative to Yield on 10-Year Treasury Con-
stant Maturity: FRED Series BAA10YM, Quarterly, not seasonally adjusted.

• Fernald’s utility adjusted TFP (Fernald (2014)): Percent Change (natural log difference);

• Inflation based on the relevant producer price index: Producer Prices Index: Economic
Activities: Total Energy for the United States, FRED Series PIEAEN01USQ661N.
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Figure A-1: Aggregate Data
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B.2 Sectoral Level Data

We use PCE sectors throughout. For Industrial Production, the data originally was classified by
4-digit 2007 NAICS and was converted to PCE using the 2007 PCE Bridge Table published by the
BEA.

• PCE Price Index (PCEPI): BEA Table 2.4.4U. Price Indexes for Personal Consumption Ex-
penditures by Type of Product. See figure A-2 upper panel for a depiction of the data series.

• PCE Quantity Index (PCEQI): BEA Table 2.4.3U. Real Personal Consumption Expenditures
by Type of Product, Quantity Indexes. See figure A-2 middle panel for a depiction of the data
series.

• Industrial production index: This is the Fed Board of Governor’s IP data. One can access
the IP data release here: https://www.federalreserve.gov/releases/G17/. See figure A-2 lower
panel for a depiction of the data series.

• R&D intensity: The ratio of RD expenditure to total revenue (sales). Provided by the NSF.
The most recent data from the NSF, 2014, is used when available for that industry.

• External financing: Using capital expenditure and cash flow by firm and year from Compustat
for 1979 to 2015, we can construct the external financing ratio as in Rajan and Zingales
(1998), as one minus the ratio between cash flow to capital expenditure. Then matching
each firm to its industry, we take the median capital expenditure value across firms for each
industry and year. Then, we take the median again across years to obtain a single value for
each industry.

• Household Consumption Share: We calculate the Household share as the proportion of output
that goes to Personal Consumption Expenditures from the BEA IO Use Table.

• Government Consumption Share: We calculate the government share as the total output sold
to all federal, state, and local government categories listed in the Use Table, divided by total
industry output.

• Energy exposure: We take the ratio of intermediate inputs from energy sectors to total
intermediate inputs using the BEA Use Table. Energy sectors are defined as electrical
power generation, oil and gas extraction, natu- ral gas distribution, and petroleum and coal
manufacturing.

• Price stickiness: The median price adjustment duration from Nakumura Steinsson (2008)
across PCE categories. To capture the frequency of price changes within in industry, we take
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the price adjustment durations estimated by Nakamura and Steinsson (2008). The estimates
are provided at the Entry Line Item (ELI) level. By using the ELI/PCE crosswalk provided by
the BLS, we can transfer these ELI level duration values to the PCE classification. For each
PCE category, we assign the average of the duration values for the set of ELIs with which the
PCE category is matched.
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Figure A-2: Sectoral Data

C A Tractable Multi-Sector Model with Nominal Rigidites

We now lay out a tractable, multi-sector model with nominal rigidities to motivate the shock
identification scheme. Nominal rigidities allow for a non-trivial “aggregate demand” channel. Since
our main focus is in the cross-sectional differences between industries, rather than their individual
dynamics, we lay out a static multi-sector economy. This is appropriate for our empirical analysis
since we use identifying restrictions (via our priors) on the impact of shocks rather than on the
dynamic responses to those. The model shares many elements with the framework developed in
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Pasten et al. (2018), while also allowing for nominal wage stickiness and for several aggregate
shocks.

C.1 Households

There are J sectors, indexed i ∈ {1, ...,J}. There is a representative household with Cobb-Douglas
preferences over the various goods, with share-parameter α j for a good of industry i.

U = ∏
j

Cα j
j ,

where ∑ j α j = 1. The household chooses its the amount it consumes of good i, C j, to maximize its
utility subject to the budget constraint

∑
j

PjC j +T =WL+Π+∑
j

r jK̄ j,

where T is a lump-sum tax levied by the government to finance its consumption, W is the wage
rate, Π are profits rebated from firms, K̄ j is the stock of capital specific to sector i owned by the
household, with r j the corresponding rental rate, and L < 1 is employment to be determined in
equilibrium.

Finally, households supply one unit of labor inelastically, but nominal wages are rigid so that
labor is rationed.

Given those constraints, optimal household consumption choice satisfies:

PjC j = α
C
j PC

for PC ≡∏ j

(
Pj
α j

)α j
and C ≡∏ j

(
C j
)α j .

C.2 Fiscal Authority

The fiscal authority minimizes the cost of consuming an exogenously given aggregate government
consumption G,

min∑
j

PjG j

s.t. : ∏
j

(
G j
)αG

j = G,
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where G is exogenously determined and αG
j are expenditure shares. The optimality condition for

the government is:

G j = α
G
j

PG

Pj
G

where

PG = ∏
j

(
G j

αG
j

)αG
j

.

C.3 Firms

Within each sector there is a continuum of varieties of intermediate products indexed v ∈ [0,1].
Those varieties are purchased by final goods producers that bundle them into the I goods according
to a CES aggregator:

Yj =

[∫ 1

0
Yj(v)

θ−1
θ dv

] θ

θ−1

The demand for final good producer in sector i for intermediate input of variety v is

Y j(v) =
(

Pj(v)
Pj

)−θ

Yj

where

Pj =

[∫
Pj(v)1−θ dv

] 1
1−θ

For each variety, production takes place with a Cobb-Douglas production function:

Yj(v) = eε j ∏
j

(
X j′ j(v)

)γ j′ j ×
(
L j(v)

)λ j
(
K j (v)

)χ
,

where X j′ j(v) is the quantity of final goods materials produced in sector j used as materials in
sector i for variety v, L j(v) is labor, K j(v) is sector-specific capital, and ε j is a sector-specific
exogenous productivity shock. The share parameter for good j used in sector i is γ j′ j. We assume
that ∑ j γ j′ j +λ j +χ = 1, so that firms in the industry face constant returns to scale.

Producers of varieties are monopolists. Firms differ on the information set available to them
regarding prices and the demand for their intermediate input. Letting s denote the state of the
economy, they take the wage rate, final goods prices, and household demand as given and choose
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their inputs to maximize expected profits.

max
M j′ j

E

[
Pj(v)Yj(v,s)−∑

j
Pj(s)X j′ j(v,s)−w(s)L j(v,s)− r j(s)K j(v,s)|I j(v)

]

s.t. :Yj(v,s) =
(

Pj(v)
Pj(s)

)−θ

Yj(s)

Yj(v,s) = eε j ∏
j

(
X j′ j(v,s)

)γ j′ j
(
L j(v,s)

)λ j
(
K j(v,s)

)χ

where I j(v) is the information set for variety v in sector i. For a fraction φ j of variety producers
in sector i (v ∈ [0,φ j]) the information set does not includes the realized vector of shocks s. For
the remainder, the information set does includes it. Yet, firms commit to producing as much as
necessary to satisfy demand at the prices that they choose.

Given cost-minimization, marginal cost is

mc j(s) = e−ε j ∏
j

(
Pj(s)
γ j′ j

)γ j′ j
(

w(s)
λ j

)λ j
(

r(s)
χ

)χ

Firms with full information set prices to

Pj(v,s) =
θ

θ −1
mc j(s)

Firms without full information set prices to

Pj(v) =
θ

θ −1
E

[
Pj(s)θYj(s)

E
[
Pj(s)θYj(s)

]mc j(s)

]

We thus have that the price index for sector i is

Pj(s) =

φ j

(
θ

θ −1
E

[
Pj(s)θY j(s)

E
[
Pj(s)θYj(s)

]mc j(s)

])1−θ

+(1−φ j)

(
θ

θ −1
mc j(s)

)1−θ

 1
1−θ

Given that all firms in a sector have the same marginal cost, we can write the average markup as
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µ j =
Pj(s)

mc j(s)
=

φ j
θ

θ −1
E

[
Pj(s)θYj(s)

E
[
Pj(s)θYj(s)

]mc j(s)

]1−θ (
1

mc j(s)

)1−θ

+(1−φ j)

(
θ

θ −1

)1−θ

 1
1−θ

C.4 Market Clearing

Market clearing for each sector i, requires that all output is used either as materials, for household
consumption or for government consumption:

Yj = ∑
j

X j j′+C j +G j

Also, there is a fixed stock of capital K̄ j for each sector. Market clearing in capital markets thus
requires that the demand for capital in sector i equals supply:

K j = K̄ j

The resource constraint in the labor market is

∑
j

L j ≤ 1

With sticky wages the inequality need not hold. We assume that wages are stuck at a level high
enough that it doesn’t bind. Labor rationing thus implies that

L = ∑
j

L j

C.5 Shocks

As in Woodford (2003), we assume exogenous processes for nominal aggregates. In particular, we
assume that nominal private consumption and nominal government consumption are set exogenously.
Specifically, we assume that

PCC = MCMY

PGG = MGMY

so that nominal private and government consumptions can be affected either by an exogenous
component which is specific to each type of final expenditure MC or MG, or by a common component
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MY .
Finally, we also allow for industry level productivity shocks ε j. We assume that ε j =∑

R
r=1 λirεr+

ε̂ j , where εr are aggregate shocks, Fj captures the sensitivity of various sectors to that shock, and ε̂ j

is a sector-specific shock. In our application, we will allow εr to incorporate shocks to technology
and financial shocks.

C.6 Log-linearized system

Up to a first-order approximation the economy is described by the following system of equations
(small letters indicate log deviations from steady-state):

pC + c = mC +mY

pG +g = mG +mY (A-7)

w = 0 (A-8)

g j−g = pG− p j ∀i (A-9)

c j− c = pC− p j ∀i (A-10)

y j = ε j +∑
j

γ j′ jx j′ j +λ jl j +χk j ∀i (A-11)

w+ l j = p j + y j−µ j ∀i (A-12)

p j + x j′ j = p j + y j−µ j ∀i, j (A-13)

r j + k j = p j + y j−µ j ∀i (A-14)

k j = k̄ j (A-15)

µ j =−φ j

(
∑

j
γ j′ j p j +λ jw+χr j− ε j

)
(A-16)

y j = ∑
j

X j j′

Yj
x j j′+

C j

Y j
c j +

G j

Y j
g j (A-17)

The system can be reduced to:
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p j− (1−χ)µ j =−ε j +∑
j

γ j′ j p j +χ
(

p j + y j− k̄ j
)

p j + y j = ∑
j

γ j j′
Yj

Yj
(y j + p j−µ j)+

C j

Yj
(mC +mY )+

G j

Yj
(mG +mY )

µ j =−
φ j

1−φ jχ

(
−ε j +∑

j
γ j′ j p j +χ

(
p j + y j− k̄ j

))

Or, eliminating µ j,

p j =
1−φ j

1−χ

(
−ε j +∑

j
γ j′ j p j +χ

(
y j− k̄ j

))

p j + y j = ∑
j

γ j j′
Yj

Yj
(y j +

1
1−φ j

p j)+
C j

Yj
(mC +mY )+

G j

Yj
(mG +mY )

The system can be rewritten as

p j =
1−φ j

1−χ
χ

[(
1−χΦ j

)[
∑

j
f j j′(y j +

1
1−φ j

p j)+
C j

Y j
(mC +mY )+

G j

Yj
(mG +mY )

]
+Φ j

(
ε j +χ k̄ j

)]
−Φ j

(
ε j +χ k̄ j

)
+Φ j ∑

j
b j′ j p j

y j =
(
1−χΦ j

)[
∑

j
f j j′(y j +

1
1−φ j

p j)+
C j

Yj
(mC +mY )+

G j

Yj
(mG +mY )

]
+Φ j

(
ε j +χ k̄ j

)
−Φ j ∑

j
b j′ j p j

with f j j′ = γ j j′
Y j
Y j

capturing forward links and b j′ j = γ j′ j capturing backward links
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After log-linearizing and rearranging, the model can be reduced to:

p j =
1−φ j

1−χ

(
−ε j +∑

j
γ j′ j p j +χ

(
y j− k̄ j

))

p j + y j = ∑
j

γ j j′
Yj

Yj

(
y j +

1
1−φ j

p j

)
+

C j

Yj
(mC +mY )+

G j

Yj
(mG +mY )

where small caps letters denote log deviations from a reference level. The first set of equations are
“sectoral supply” equations, relating marginal production cost to prices. The second set of equations
are “sectoral demand” equations, relating nominal expenditures to sectoral prices. The last set of
equations link nominal consumption expenditures and exogenous demand shocks.

The system has the form

Z = AZ +b = ANZ +
N−1

∑
n=0

Anb

with Z including prices and quantities in all sectors, b including the direct impact of all exogenous
shocks, and A including the indirect impact of shocks through linkages.

Lemma 1 characterizes the direct and indirect impacts of the shocks on prices, output and
consumption:

Lemma 1 The direct impact of shocks is given by b =
[
pDirect ,yDirect ,cDirect]T , where

pDirect
j = Φ jχ

[
C j

Yj
mC +

G j

Yj
mG +mY

]
−Φ j

(
ε j +χ k̄ j

)
(A-18)

yDirect
j =

(
1−Φ jχ

)[C j

Yj
mC +

G j

Yj
mG +mY

]
+Φ j

(
ε j +χ k̄ j

)
(A-19)

cDirect
j =

(
1−Φ jχ

C j

Yj

)
mC +(1−Φ jχ)mY −Φ jχ

G j

Yj
mG +Φ j

(
ε j +χ k̄ j

)
(A-20)

and

Φ j ≡
1−φ j

χ(1−φ j)+1−χ

is inversely related to φ j. Indirect effects are AZ =
[
pIndirect ,yIndirect ,cIndirect]T , where
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pIndirect
j = Φ j ∑

j

(
χ

f j j′

1−φ j
+b j′ j

)
p j +χΦ j ∑

j
f j j′y j (A-21)

yIndirect
j =

(
1−χΦ j

)
∑

j
f j j′y j +∑

j

[
1−χΦ j

1−φ j
f j j′−Φ jb j′ j

]
p j (A-22)

cIndirect
j =−pIndirect

j (A-23)

where f j j′ = γ j j′
Y j
Y j

capture forward linkages and b j′ j = γ j′ j captures backward linkages.

Lemma 1 implies that the direct impact of a consumption shock mC on prices increases in Φ jχ
C j
Y j

D Dynamic Model

In what follows we present a dynamic model with multiple sectors, sticky nominal prices and sticky
nominal wages. The exposition largely follows Justiniano et al. (2010), with some simplifications
(we omit markup shocks) and extensions where needed.

D.1 Final good producers

There are J sectors (indexed j ∈ [1, ...,J]). In each of these sectors there are perfectly competitive
firms producing final goods Y j

t combining a continuum of intermediate goods {Yt(i)}r, i ∈ [0,1],
according to the technology

Y j
t =

[∫ 1

0
Y j

t (i)
ε p−1

ε p di
] ε p

ε p−1

From profit maximization and zero profit conditions we have that

Yt(i) =
(

Pt(i)
Pt

)−ε p

Y j
t

where Pt is the price of final good j and satisfies

Pt =

[∫ 1

0
Pt(i)

1
1−ε p di

]1−ε p

D.2 Intermediate good producers

A monopolist produces the intermediate good i in sector j according to the production function
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Y j
t (i)=max


(

K j
t (i)

(1− γ j)ω j

)(1−γ j)ω j(
A j

t L j
t (i)

(1− γ j)(1−ω j)

)(1−γ j)(1−ω j)

∏
j′

(
M j′ j

t (i)
γ j′ j

)γ j′ j

−F j,0


where K j

t (i), L j
t (i) denote the amounts of capital and labor emploiyed by firm i in sector j, M j′ j

t (i)

is the amount of materials produced in sector j′ used by firm i in sector j and F j is a fixed cost of
production, chosen so that profits are zero in stead state. A j

t respresents exogenous technological
progress in sector j. We assume that it consists of a combination of aggregate and sector specific
components:

A j
t = At Â

j
t

where
lnAt = ρ

A lnAt−1 + ε
A
t

where εA
t is iid with standard deviation σA

Furthermore,

ln Â j
t = (1−ρ

A j
) ln Â j +ρ

A j
ln Â j

t−1 + ε
A, j
t

where ε
A, j
t has, likewise, standard deviation σA j

Every period in each sector j, a fraction ξ p j of
intermediate firms cannot choose its price optimally, and as in Smets and Wouters (2003), they reset
it according to the indexation rule

Pt(i) = Pt−1(i)
(

Π
j
t−1

)ι p

Π
1−ι p

,

where π
j

t = P j
t

P j
t−1

is gross sector j inflation and π is its steady state. The remaining fraction of firms

chooses its price Pt(i) optimally, by maximizing the present discounted value of future profits

Et

{
∞

∑
s=0

(
ξ

p j)s β sΛt+s

Λt

[
Pt(i)

(
Π

j
t,t+s

)
Yt+s(i)−W j

t+sLt+s(i)−Rk, j
t+sKt+s(i)−∑

j′
P j′

t+s(i)M
j′

t+s(i)

]}

where
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Π
j
t,s ≡

s

∏
k=1

(
Π

j
t+k−1

)ι p

Π
(1−ι p)k for s≥ 1

Π
j
t,t = 1

and

Yt+s(i) =
(

Pt+s(i)
Pt+s

)−ε p

Y j
t+s

subject to the demand function and to cost minimization. In this objective, Λt is the marginal utility
of nominal income for the representative household that owns the firm, while Wt and rk, j

t are the
nominal wage and the rental rate of capital specific to sector j.

Cost minimization by firms implies that

K j
t (i)

L j
t (i)

=
W j

t

Rk, j
t

ω j

1−ω j

and

M j′ j
t (i)

L j
t (i)

=
W j

t

P j′
t

γ j′ j

(1− γ j)(1−ω j)
,

so that nominal marginal cost in sector j is common to all firms and given by

MC j
t =

(
Rk, j

t

)(1−γ j)ω j
(

W j
t

A j
t

)(1−γ j)(1−ω j)

∏
j′

(
P j′

t

)γ j′ j

.

Substituting back input choices, and ignoring the fixed costs, yields employment in each variety
as a function of sectoral output and the price of the variety,

L j
t (i) = (1− γ

j)(1−ω
j)

MC j
t

W j
t

(
Pt(i)

Pt

)−ε p

Y j
t .

Integrating both sides yields sectoral employment:

L j
t = (1− γ

j)(1−ω
j)

MC j
t

W j
t

Pε p

t Y j
t

∫
Pt(i)−ε p

di.

From the intermediate input demand function,
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Yt(i) =
(

Pt(i)
Pt

)−ε p

Y j
t .

Given that, with our production function, average variable costs and marginal costs coincide,
the objective function for firms setting prices optimally can be rewritten as

max
Pt(i)

Et

[
∞

∑
s=0

(
ξ

p j)s β sΛt+s

Λt

[(
P j

t (i)Π
j
t,t+s−MCt

)
Yt+s(i)

]]

s.t. :Y j
t+s(i) =

(
Pt(i)Π

j
t,t+s

Pt+s

)−ε p

Y j
t+s

The first order condition can then be written as

P̃ j
t =

ε p

ε p−1

∞

∑
s=0

Et

{(
βξ p j)s

Λt+sỸ
j

t+sMC j
t+s

}
∑

∞
s=0 Et

{
(βξ p j)s

Λt+sỸ
j

t+sΠ
j
t,t+s

}
where P̃ j

t is the optimally chosen price for all firms i choosing their prices in period t (so that
P j

t (i) = P̃ j
t ), and Ỹt+s is the demand they face in t + s.

Alternatively,

P̃ j
t

Pt
=

ε p

ε p−1

∞

∑
s=0

Et

{(
βξ p j)s

Λt+sPt+s

(
Ỹ j

t+s

)
MC j

t+s

P j
t

}
∑

∞
s=0 Et

{
(βξ p j)s

Λt+sPt+s

(
Ỹ j

t+s

)(
Π

j
t,t+s/Πt,t+s

)}
where

Πt,s ≡
s

∏
k=1

Πt+k for s≥ 1

Πt,t = 1

D.3 Employment Agencies

Workers have monopoly power over their labor supply. There is a competitive employment agency
which combines specialized household labor into a homogeneous labor input sold to firms in sector
j according to

17



L j
t =

[∫
L j

t (h)
εw−1

εw dh
] εw

εw−1

.

Profit maximization implies that

L j
t (h) =

(
W j

t (h)

W j
t

)−εw

L j
t ,

and the wage paid by firms for homogeneous labor input is

W j
t =

[∫ 1

0
W j

t (h)
1−εw

dh
] 1

1−εw

D.4 Households

Each household (h) has labor which is specific to some sector j and utility function given by

Ut = ∑
s

Etβ
sbt+s

[
ln [Xt+s(h)]−∑

j

ϕ j

1+ν
L j

t (h)
1+ν

]
,

where

Xt+s(h) = ∏
j

(
C j

t+s(h)−ηC j
t+s−1

)α
j

t
,

and where C j
t+s(i), Lt(i) and Xt+s(i) are household choices and Xt+s and C j

t+s are equilibrium
objects that the household takes as given. The formulation corresponds to allowing for habits to
consumption of particular goods.

To allow for sector-specific demand shocks, we allow consumption shares, α
j

t to be time-varying.
Specifically3

lnα
j

t = (1−ρ
α)α j +ρ

α lnα
j

t−1 + ε
α, j
t

where εα
t is a random normal variable with standard deviation σα j

. The time-varying parameter bt

is a shock to the discount factor, affecting both the marginal utility of consumption and the marginal
disutility of labor. This intertemporal preference shock follows the stochastic process

∆ logbt = ρ
b
∆ logbt−1 + εb,t

where ∆ is the time-difference operator and εb,t is an iid random normal variable with mean zero

3While this formulation constrains share parameters to be positive, it does not constrain them to add up to 1.
Allowing for this degree of freedom is necessary to give the ability to match the full set of sector-specific variables.

18



and standard deviation σb. There are state contingent securities ensuring that in equilibrium
consumption and asset holdings are the same for all households. As a result, the household’s flow
budget constraint is

∑
j

P j
t C j

t +∑
j, j′

P j′
t I j′ j

t +Tt +Bt ≤ Rt−1Bt−1 +Qt( j)+Πt +W j
t ( j)Lt( j)+∑

j
Rk, j

t K j
t−1,

where I j′ j
t is investment in good j′ to form capital in sector j, Tt is lump-sum taxes, Bt is holdings of

government bonds, Rt is the gross nominal interest rate, Qt( j) is the net cas flow from household’s j

portfolio of state contingent securities, and Πt is the per-capital profit accruing to households from
ownership of the firms.

Consumption Given interest rates on riskless debt Rt , the problem induces the Euler equation:

Λt = βRtEtΛt+1,

where Pt = ∏ j

(
P j

t

α
j

t

)α
j

t

is the consumption price index and Λt ≡ bt
PtXt

is the “nominal” marginal

utility of consumption. Given that we get the intra-temporal allocation across industries:

C j
t (h) = α

j
t

Pt

P j
t

Xt(h)+ηC j
t−1.

The model features a representative household, so that in equilibrium, C j
t =Ct(h).

Capital accumulation Households own capital specific to each sector j and rent them to firms at
the rate Rk, j

t . The physical capital accumulation equation is

K j
t = (1−δ )K j

t−1 +

(
1−S

(
I j
t

I j
t−1

))
I j
t ,

where δ is the depreciation rate and is the investment in sector j. The function S captures the
presence of adjustment costs in investment, as in Christiano, Eichenbaum, and Evans (2005). In
steady state, S = S′ = 0 and S′′ > 0.

Production of investment goods in sector j require using goods produced by other sectors
according to the production function
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I j
t = B j

t ∏
j′

(
I j′ j
t

γ
j′ j

I

)γ
j′ j

I

where I j′ j
t is the quantity of goods produced in sector j′ used for investment in sector j. The produc-

tion function for investment in each sector is scaled by an investment-specific productivity shock
B j

t . Like the labor-augmenting productivity shock A j
t , B j

t has both aggregate and an idiosyncratic
components:

B j
t = Bt B̂

j
t

where

lnBt = ρ
B lnBt−1 + ε

B
t

and
ln B̂ j

t = ρ
B ln B̂ j

t−1 + ε
B j

t

where εB
t and εB j

t are iid normal variables with zero mean and variance σB and σB j
, respectively.

We assume that they have a common persistence parameter ρB.
The optimal choice of physical capital stock for sector j satisfies the optimality conditions:

χ
j

t = βEt

[
Rk, j

t+1Λt+1 +(1−δ )χ
j

t+1

]
,

P j′
t Λt = γ

j′ j
I

I j
t

I j′ j
t

χ
j

t

[
1−S

(
I j
t

I j
t−1

)
−S′

(
I j
t

I j
t−1

)
I j
t

I j
t−1

]
+βS′

(
I j
t+1

I j
t

)(
I j
t+1

I j
t

)2

χt+1

 ,
where χt is the multiplier on the capital accumulation equation. Defining Tobin’s q for sector j as

Q j
t =

χ
j

t

PI, j
t Λt

= Pt χ
j

t

PI, j
t bt [Xt(h)]

−σ
, where PI, j

t = ∏

(
P j′

t

)γ j′ j

, the relative marginal value of installed capital
with respect to consumption, we can also write

Q j
t = βEt

[
Rk, j

t+1Λt+1

PI, j
t Λt

+
PI, j

t+1Λt+1

PI, j
t Λt

(1−δ )Q j
t+1

]
,

1 =

Q j
t

[
1−S

(
I j
t

I j
t−1

)
−S′

(
I j
t

I j
t−1

)
I j
t

I j
t−1

]
+β

Λt+1PI, j
t+1

ΛtP
I, j
t

S′
(

I j
t+1

I j
t

)(
I j
t+1

I j
t

)2

Q j
t+1

 .
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Wage setting Every period a fraction ξ w of households cannot freely set its wage, but follows the
indexation rule

W j
t ( j) =W j

t−1( j)(πt−1ezt−1)ιw
(π)1−ιw

.

The remaining fraction of households chooses instead an optimal wage Wt( j) by maximizing

Et

{
∞

∑
s=0

ξ
ws

β
s

[
−bt+sϕ

j L j
t+s(h)

1+ν

1+ν
+Λt+sΠ

w
t,t+sW

j
t (h)L

j
t+s(h)

]}
,

where

Π
w
t,t+s =

s

∏
v=1

(Πt+v−1ezt+v−1)ιw
(Π)v(1−ιw) if s≥ 1

Π
w
t,t = 1

subject to the labor demand function of the employment agencies.
The F.O.C. for a wage chosen by household h to work in industry j is to maximize

Et

{
∞

∑
s=0

ξ
ws

β
s

[
−bt+sϕ

L j
t+s(h)

ν

1+ν
+Λt+sΠ

w
t,t+sW

j
t (h)L

j
t+s(h)

]}
,

subject to the demand of the employment agency,

L j
t (h) =

(
W j

t (h)

W j
t

)−εw

L j
t ,

The F.O.C. is

Et


∞

∑
s=0

ξ
ws

β
s

bt+sϕ

(Πw
t,t+sW

j
t (h)

W j
t+s

)−εw

L j
t+s

1+ν

1

W j
t (h)




= Et

 ∞

∑
s=0

ξ
ws

β
s

Λt+sΠ
w
t,t+s

(Πw
t,t+sW

j
t (h)

W j
t+s

)−εw

L j
t+s

 ,

which can be rewritten as
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(
W̃ j

t

)1+νεw

=
εw

εw−1

Et

∑
∞
s=0 ξ wsβ s

bt+sϕ
j

[(
Πw

t,t+s

W j
t+s

)−εw

L j
t+s

]1+ν


Et

{
∑

∞
s=0 ξ wsβ sΛt+sΠ

w
t,t+s

(
Πw

t,t+s

W j
t+s

)−εw

L j
t+s

}

D.5 The government

A monetary policy authority sets the nominal interest rate following a feedback rule of the form

Rt

R
=

(
Rt−1

R

)ρR [(
Πt

Π

)φπ
(

Yt

Yt−1

)φX
]1−ρR

ηmp,t ,

where R is the steady-state of the gross nominal interest rate. As in Smets and Wouters (2003),
interest rates responds to deviations of inflation from its steady state, as well as to the level and
growth rate of the GDP (Yt = ∑γ j P j

t
Pt

Y j
t ). The monetary policy rule is also perturbed by a monetary

policy shock ηmp,t , is iid N(0,σ2
mp).

Fiscal policy is fully Ricardian. The government finances its budget deficit by issuing short term
bonds. Public spending is determined exogenously as a time varying fraction of output:

Gt =

(
1− 1

ζt

)
Yt

where the government spending shock ζt follows the stochastic process

logζt = (1−ρ
G)ζ +ρ

G logζt−1 + ε
G
t .

where εG
t is iid normal random variable with standard deviation σG.

Public spending is a Cobb-Douglas aggregate of spending in different sectors. The government
chooses sector-specific spending to minimize the cost of Gt :

{
G j

t

}
j
= argmin∑

j
P j

t G j
t

s.t. :∏
(

G j
t

)α
j

G
= Gt

so that

G j
t = α

j
G

PG
t

P j
t

Gt
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where PG
t = ∏

(
P j

t
αG

j

)αG
j

D.6 Market clearing

The aggregate resource constraint for each sector j is

C j
t +∑

j′
I j j′
t +∑

j′
M j j′

t +G j
t = Y j

t

D.7 Model Solution and Calibration

To solve the model we first write it in terms of stationary variables (detrended the permanent part of
TFP for real output variables and by the price level for nominal variables), log-linearize it and find
the rational expectations equilibrium using Dynare.

The calibration builds onJustiniano et al. (2010) and Carvalho et al. (2021). We furthermore use
information from sectoral linkages and consumer shares obtained from the input-output tables made
available by the BEA and on sector-specific price stickiness from Nakamura and Steinsson (2008).
Tables A-1 and A-2 list the calibrated parameters together with their sources.
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Parameter Description Value Source
N Number of Sectors 52
ζ 1/steady-state government share of output 2.70 G/Y = 37%
δ Capital depreciation 0.05 Justiniano et al. (2010)
β Discount Factor 1.00 Justiniano et al. (2010)
ν Inverse Frisch elasticity of labor supply 3.79 Justiniano et al. (2010)
η Consumption habit parameter 0.78 Justiniano et al. (2010)
εw Elasticity of substition for employment 1.87 Justiniano et al. (2010)
ε p Elasticity of substition for goods 1.81 Justiniano et al. (2010)
ξ w Calvo parameter (wages) 0.70 Justiniano et al. (2010)
ι p Indexation coefficient for prices 0.24 Justiniano et al. (2010)
ιw Indexation coefficient for wages 0.11 Justiniano et al. (2010)
I′′ Investment adjustment cost parameter 2.85 Justiniano et al. (2010)
φx Taylor rule, coefficient on output 0.24 Justiniano et al. (2010)
φπ Taylor rule, coefficient on inflation 2.09 Justiniano et al. (2010)
Π steady-state inflation rate 0.03 Justiniano et al. (2010)
ρR Taylor rule, smoothing parameter 0.82 Justiniano et al. (2010)
ρA Persistence aggregate TFP 0.99 Carvalho et al. (2019)
ρA j

Persistence sectoral TFP shock 0.93 Carvalho et al. (2019), average persistence for
sectoral demand shock

ρG Persistence government spending shock 0.99 Justiniano et al. (2010)
ρb Persistence intertemporal preference shock 0.94 Carvalho et al. (2019), average persistence for

sectoral demand shock
ρB Persistence investment-specific TFP 0.72 Justiniano et al. (2010)
ρα Persistence sectoral Demand shock 0.94 Carvalho et al. (2019), average persistence for

sectoral demand shock
ση Volatility to monetary shock 0.001 Carvalho et al. (2019), adjusted for iid monetary

shocks
σA Volatility, aggregate TFP 0.003 Carvalho et al. (2019)
σA j

Volatility, sectoral TFP 0.003 Carvalho et al. (2003), average across sectors
σG Volatility, government shock 0.00 Justiniano et al. (2010)
σB Volatility, investment-specific TFP 0.06 Justiniano et al. (2010)
σB j

Volatility, sectoral investment productivity 0.06 Same proportion to aggregate as A shock
σb Volatility, preference shock 0.15 see text
σα j

Volatility, consumption share 0.019 Carvalho et al. (2003), average across sectors

Table A-1: Calibration of Aggregate Parameters
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Parameter Description Source

α j steady-state consumption share BEA use tables
α

j
G government consumption share BEA use tables

ϕ j Disutility of labor of type j parameter calibrated so steady-state wage is the
same for all sectors

ω j Capital Share (by sector) BEA use tables
γ j Materials Share (by sector) BEA use tables
γ

j′ j
I Share of sector j’ in sector j investment Capital flow table

ξ
p
j Calvo parameter (prices) Nakamura and Steinsson (2008)

Table A-2: Sectoral Parameters

E Selected Impulse Responses for the Simulation-based exper-
iment

Our model has variables for 182 sectors as well as 8 aggregate variables. This leads us to focus on
the estimated shock series as a low dimensional check in the main text. Nonetheless, we want to
give readers a sense of the estimated impulse responses. Below we plot the responses of GDP and
consumption. The true impulse responses of those variables in the DSGE model are very similar.
As expected, the estimated impulse responses in our model are then very similar across these two
aggregate variables. As Figure A-3 shows, we are able to replicate the patterns of the true impulse
responses.
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Figure A-3: Responses to Household Demand Shock for consumption and GDP in Monte Carlo
exercise. Dashed lines are 16th and 84th Posterior Percentile Bands, Dots are 5th and 95th Posterior
Percentiles. The x-axis shows time in quarters. DSGE-model based IRF in green (normalized to
coincide with the median estimated IRF on impact).

F Results with T = 1,000

We simulate 1,000 observations from our benchmark DSGE model. As can be seen from Figure
A-4, the results are similar to the results in the main text. This confirms that with a macro standard
sample size we already achieve what is possible with our specific identification assumptions (as we
discuss in the main text, if a researcher had more detailed information on the sectoral responses,
that researcher could improve on our benchmark approach using sectoral differences in C/Y ratios,
but that is practically infeasible).
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Figure A-4: Posterior of β i, DGP with 1,000 observations.

G The Prior for the Household Shock

Table A-3 shows the percentiles (across sectors) of the prior mean of the relevant entries of Di for
the household shock. We focus on sectoral inflation and consumption since those variables are
available for all sectors. The prior means completely characterize the Gaussian priors since we set
the prior standard deviation equal to a fixed fraction of the absolute value of the prior mean.

Variable 5th Percentile Median 95th Percentile

Inflation 0.07 0.60 1.48
Consumption 0.13 1.03 2.07

Table A-3: Prior on the Impact of the Household Shock.

H Asymptotic Posterior Distribution of DZ

We can make some progress towards characterizing the asymptotic behavior of the marginal
posterior of D. Our prior p(DZ,θ) is absolutely continuous with respect to the likelihood function
L (DZ,θ |Z) where Z is the array of all observations on Zt and θ is the vector of all parameters
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except DZ .4 VAR and factor model identification arguments imply that under standard regularity
conditions (including linearity and Gaussian innovations) all parameters except DZ are identified
- even with infinite data we can only identify DZDZ ′. All other parameters converge to a unique
limiting value θ ∗ such that the asymptotic posterior p∗(DZ,θ |Z) (with conditional distribution
p∗(DZ|Z,θ) and marginal distribution p∗(DZ|Z)) is given by

p∗(DZ,θ ∗|Z) = p∗(DZ|Z,θ = θ
∗) = p∗(DZ|Z)

This equivalence between joint, conditional, and marginal asymptotic posterior is due to the fact
that asymptotically the marginal posterior for θ will be degenerate and only have mass at θ ∗.
Let’s define the limit of DZDZ ′ as the sample size T grows large:

lim
T→∞

DZDZ ′ = φ

where this limit should be understood to mean that asymptotically the joint posterior p(DZ,θ |Z)
will be equal to 0 except when θ = θ ∗ and DZDZ ′ = φ . Then the asymptotic marginal posterior of
DZ (denoted by p∗(DZ|Z)) is the prior restricted to those values of DZ consistent with φ :

p∗(DZ|Z) = p(DZ|DZDZ ′ = φ)

Applying Bayes’ rule to the conditional prior yields:

p(DZ|DZDZ ′ = φ) =
p(DZDZ ′ = φ |DZ)p(DZ)

p(DZDZ ′ = φ)

The first term in the numerator p(DZDZ ′= φ |DZ) can be interpreted as an indicator function because
it will only be non-zero when a value for DZ is consistent with DZDZ ′ = φ . The second term in the
numerator is just the prior p(DZ). The term in the denominator is a normalizing constant that will
be independent of DZ for all values of DZ such that DZDZ ′ = φ .

I Validating our approach: A Monte Carlo experiment with a
Hi-VAR DGP

This section describes the results of an experiment that is meant to highlight the amount of additional
information that sectoral information brings to bear on identifying structural shocks of interest.

4Since our priors on blocks of parameters are either Gaussian or inverse Wishart this assumption is satisfied in our
model.
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We simulate one dataset5 of 170 observations (roughly the size of our actual sample) and discuss
results for two sets of priors. We assume there are 4 aggregate variables, 180 sectors (in line with
the number of sectors in our actual sample), and 2 observables per sector. All lag lengths (in both
the data-generating process and the estimated model) are set to 1 for simplicity. The aggregate VAR
coefficients in the data-generating process are set so that all variables are stationary, but persistent.
The VAR coefficient matrices for each sector are drawn at random subject to the constraint that
dynamics are stationary. We set the values of Ω, Ωi, and the loadings on the two structural shocks
for all variables in such a way that the structural shocks explain a small fraction of the variance at
the sectoral level, as depicted in Figure A-5. These fractions are substantially smaller than what
we find with our posterior estimates, both at the aggregate and sectoral level, so we are tying our
hands with this conservative choice - we are consciously making this exercise hard for our approach.
Furthermore, to mimic our empirical setting, we allow the loading on the structural shocks to be
correlated within sectors across variables and across sectors.6 The priors for the shock loadings are
centered at the true value. The variance is set in the same fashion as in the empirical analysis of the
main text.

We now ask two related questions: (i) How well does the posterior median of the structural
shock series line up with the true value? and (ii) Is the estimation uncertainty small enough to draw
meaningful conclusions from such an estimation?

We first set the prior means of the effects equal to their true value, and their standard deviations
as in the empirical analysis, to be half the absolute values of the prior means.

Figure A-6 plots the true shock series, the posterior medians as well as 98 percent posterior
bands centered at the median. We see that the posterior median capture the true evolution of
the shock very well (the correlations are 0.93 for both shocks) and the posterior uncertainty
surrounding the estimates are small. Why is the posterior uncertainty small? While each piece of
identification information we use is not very informative, with a large number of sectors, the set of
identification restrictions implicit in our priors is actually informative. This is reminiscent of results
in standard dynamic factor models, where the model can become exactly identified even when using
standard sign restrictions when the number of sign restrictions grows to infinity (Amir-Ahmadi and
Uhlig (2015)). On top of that we get additional identification strength from using information on
magnitudes, as highlighted by Amir-Ahmadi and Drautzburg (2020).
As depicted in Figure A-6, we can identify the structural shocks with great accuracy. In the main text
we discuss that knowledge of loadings of other shocks is not necessary to identify the loadings of
one specific shock. To highlight this feature, we now re-estimate our model with the same simulated

5We show that even with one datatset the evidence in favor of using sectoral information is so strong that we don’t
need to simulate a larger number of samples.

6We draw all these sectoral coefficients jointly from a multivariate Gaussian distribution with correlation coefficient
0.5.
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Figure A-5: Fraction of variance explained by structural shocks in our simulation exercise.

data, but setting the prior on all shock loadings of the second shock to a Gaussian distribution with
mean 0 and standard deviation 0.25. Figure A-7 shows the results. Two results stand out: first, the
first shock is still estimated precisely (the correlation of the posterior median with the true shock
series is now 0.77), whereas the estimated second shock series does not match the truth at first sight.
However, a further look reveals that the correlation between the posterior median and the true series
is actually high in absolute value (-0.89). What happens? Our model correctly estimates the space
spanned by the two shocks (i.e. the overall effect of the two shocks). But without any identification
information on the second shock (in particular on the sign of the effects of this shock), the algorithm
cannot pin down the shock exactly, but only the space spanned by this second shock. In this run of
the posterior sampler, it concentrated on the part of the posterior distribution where the sign of the
effects and the actual shocks is flipped relative to the true values. 7

7We run the posterior sampler for only 20,000 draws, half of which are discarded, in this simulation exercise. Even
with this small amount of draws we can already see that our algorithm performs well. Such a small number of draws is
generally not enough to fully capture severe multi-modality of the posterior distribution. In our empirical analyses we
use 150,000 draws.
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Figure A-6: Estimated and true shocks, Monte Carlo Exercise.Prior centered at true values for both
shocks.
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Figure A-7: Estimated and true shocks. Uninformative prior on effects of second shock.
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J Why don’t we use more aggregated sectoral data?

Sectoral data are available at various levels of aggregation. We choose to use data that is as
disaggregated as possible. To justify this choice, we will study a very simple example. Consider
an economy consisting of two equally sized sectors (we could easily generalize this argument to
more sectors, but this extension would not add anything to our argument). We disregard aggregate
variables here because they are not important for the argument. We also consider one observable
per sector. So the state space system we study is

u1
t = εt +w1

t (A-24)

u2
t = εt +w2

t (A-25)

εt = εt (A-26)

where w1
t ∼ (N(0,Σ1) and w2

t ∼ (N(0,Σ2) are two independent Gaussian processes, and, as before,
εt ∼ (N(0,1). For simplicity, we have normalized D to 1 in this example in both sectors. Alterna-
tively, we could study a system where we aggregate the two sectors (we use equal weights here
because we have assumed for simplicity that the sectors have equal size):

ut = εt +wt (A-27)

εt = εt (A-28)

Here we have wt =
1
2(w

1
t +w2

t ) and thus wt ∼ N(0, 1
4(Σ

1 +Σ2)) . First note that we abstract in this
example from two aspects that would make a researcher want to use more disaggregated data:

1. We don’t model any dynamics in the sector. It is well known in the time series literature that
aggregating VAR processes generally leads to VARMA processes for the aggregated variables.
To at the very least be able to approximate these VARMA dynamics in our framework we
would need to incorporate more lags of observables into the sectoral equations when using
more aggregated data.

2. We focus here on the case of one aggregate shock. If there is more than one shock and
different sectors have heterogeneous exposures to the different shocks then averaging over
this heterogeneous exposure can lead to a substantial loss of information.

Coming back to our example, we can ask which of the two systems leads to a more precise estimate
of the shock εt . We focus here on the variance of the estimation error for εt

8. While it is easy to
derive the formulas for the variance in closed form in our simple examples, we can already illustrate

8To be precise, we study var(εt |It) where It is the information set including time t observations
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Figure A-8: Variance of estimation error.

the main point with a numerical example. We fix the variance of w1
t at 1 and vary the variance of

w2
t from 0.1 to 2. We then compute the estimated variance for both environments (one with two

observables, one with the average observable). Figure A-8 shows our main result: it is always
preferable to use more disaggregated data. The only point of indifference occurs when the variances
of the w shocks are exactly equal. Turning to the analytical solutions, var(εt |It) in the case when
we observe both sectors separately is given by

vartwo sectors(εt |Itwo sectors
t ) = 1− (1 1)

((
1 1
1 1

)
+

(
Σ1 0
0 Σ2

))−1(
1
1

)
(A-29)

The corresponding formula for the case where the average is observed is

varaverage(εt |I
average
t ) = 1− 1

1+ 1
4(Σ

1 +Σ2)
(A-30)

Both these equations are standard Kalman filtering formulas. One can then show that the following
always holds:

vartwo sectors(εt |Itwo sectors
t )≤ varaverage(εt |I

average
t ) (A-31)

Furtmore, the equality is strict unless Σ1 = Σ2. The proof amounts to tedious but straightforward
algebra. The result should not be surprising: you can never be worse off by using more information.
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Note that one could in our simple example take a weighted average of the sectors to achieve the
same variance as in the case with two observables, but in practice this is not feasible because the
weights would depend on the variances of the noise terms (the w terms), which are not known
before estimation.

K Sectoral Impulse Responses

Sectoral impulse responses, sorted by C/Y and the prior impact to household consumption shock
(which is not the same as C/Y, as it also varies with differences in overall volatility of sectoral
innovations).
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Figure A-9: Sectoral IRFs, high C/Y vs. low C/Y
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Figure A-10: Sectoral IRFs, high prior mean vs. low prior mean

L Impulse Responses to Other Economic Shocks

Note that the responses to the household consumption shock and the monetary shock are in the
main text (Figures 3 and 8).
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Figure A-12: Responses to Credit Shock. Dashed lines are 16th and 84th Posterior Percentile Bands,
Dots are 5th and 95th Posterior Percentiles. The x-axis Shows Time in Quarters.
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Figure A-11: Responses to Technology Shock. Dashed lines are 16th and 84th Posterior Percentile
Bands, Dots are 5th and 95th Posterior Percentiles. The x-axis Shows Time in Quarters.
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Figure A-13: Responses to Government Spending Shock. Dashed lines are 16th and 84th Posterior
Percentile Bands, Dots are 5th and 95th Posterior Percentiles. The x-axis Shows Time in Quarters.
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Figure A-14: Responses to Energy Price Shock. Dashed lines are 16th and 84th Posterior Percentile
Bands, Dots are 5th and 95th Posterior Percentiles. The x-axis Shows Time in Quarters.
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L.1 Sentiment Shock

We can examine whether the sentiment series is a good IV for the consumption shock, by estimating
impulse responses to a consumer “sentiment” shock using the series for consumer sentiment as
an IV (figure A-15). In particular, to estimate the IRFs, sentiment is ordered first in the VAR(4)
and identification of the sentiment shock is achieved via Cholesky decomposition. We use the
Canova and Ferroni (2021) toolbox to implement Minnesota priors with estimated hyperparameters
(Giannone et al., 2015) and otherwise use standard prior settings as implemented by Canova and
Ferroni (2021)

We find that they look similar to the IRFs for the consumption shock in some but not all instances.
In particular, it is also associated with increased TFP and stable inflation, indicating that consumer
sentiment also captures the response of household expectations to productivity news.
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Figure A-15: Impulse response to a one-standard deviation sentiment shock. Black line is the
posterior median, error bands represent 68% (darker area) and 90% posterior probability.

.

M Further Robustness checks

To economize on space, we focus in our robustness checks on the importance/variance decomposi-
tion (for business cycle frequencies) of the consumption shock for aggregate variables. Relative to
the main text we also show the 5th and 95th percentiles of this variance decomposition. Therefore,
we start by showing the results for our benchmark case. Throughout all these specifications the
household consumption shock remains a key driver of economic activity.
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M.1 Benchmark

5th Percentile Mean 95th Percentile

Inflation 8.4 13.9 18.7
GDP 24.8 33.9 39.7

Nominal Interest Rate 21.2 22.9 26.0
Consumption 37.6 42.6 48.7

Spread 6.2 9.8 12.6
Government Spending 6.1 26.1 35.5

TFP 4.6 10.9 14.6
Energy Prices 5.8 8.3 13.3

Table A-4: Variance decomposition across business cycle frequencies, consumption shock. Bench-
mark specification.

M.2 Aggregates only identification

To show the marginal gain from using sectoral data for identification of shocks, we show the
variance decomposition when only informative priors on the effect of aggregate shocks are used.

5th Percentile Mean 95th Percentile

Inflation 4.7 14.9 21.7
GDP 13.4 19.7 44.2

Nominal Interest Rate 11.5 18.5 26.1
Consumption 42.2 45.5 48.4

Spread 13.3 17.1 25.1
Government Spending 12.4 29.8 47.0

TFP 2.9 9.2 15.5
Energy Prices 8.1 12.9 15.9

Table A-5: Variance decomposition across business cycle frequencies, consumption shock, only
aggregate identification restrictions.
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M.3 Larger Prior Variance on Impact of Consumption Shock

Next, we increase the prior standard deviation for the impact of the consumption shock on aggregate
consumption equal to 1/2×abs(E [Dc]), where Dc is the prior mean of the impact of the household
shock on aggregate consumption.9

5th Percentile Mean 95th Percentile

Inflation 18.2 22.5 29.1
GDP 27.1 34.7 40.9

Nominal Interest Rate 25.0 33.0 40.2
Consumption 38.9 45.3 49.7

Spread 14.7 17.7 22.8
Government Spending 8.6 25.2 32.1

TFP 6.0 11.0 20.2
Energy Prices 3.1 4.4 9.0

Table A-6: Variance decomposition across business cycle frequencies, consumption shock. Larger
prior variance.

M.4 Shorter Sample

To assess whether or not our results are driven by the Great Recession, we re-estimate the model
ending our sample in 2004:Q3.

5th Percentile Mean 95th Percentile

Inflation 22.3 24.5 27.9
GDP 16.5 21.6 25.4

Nominal Interest Rate 23.2 28.2 39.2
Consumption 28.7 30.9 32.7

Spread 6.6 13.3 17.2
Government Spending 10.4 19.4 24.0

TFP 16.4 18.5 22.8
Energy Prices 13.5 17.7 20.4

Table A-7: Variance decomposition across business cycle frequencies, consumption shock. Shorter
sample.

9For our benchmark, we use 0.1×abs(E [Dc]). The prior standard deviation for the aggregate impact of the other
aggregate shocks is set in the same fashion.
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M.5 Fewer Lags

We now reduce the number of lags L and LX to 4 from our benchmark specification of 6.

5th Percentile Mean 95th Percentile

Inflation 8.8 17.8 39.4
GDP 27.3 34.9 38.1

Nominal Interest Rate 11.4 16.8 26.2
Consumption 34.5 37.4 38.4

Spread 11.5 12.1 12.8
Government Spending 5.0 8.6 12.3

TFP 6.1 9.4 21.0
Energy Prices 3.2 8.0 15.6

Table A-8: Variance decomposition across business cycle frequencies, consumption shock. Fewer
lags.

M.6 Investment specific technology shock

In this robustness check we modify our benchmark specification in two ways:

1. We add year-over-year growth in investment to our set of aggregate observables. As a measure
of investment we use Real Gross Private Domestic Investment (FRED mnemonic GPDIC1).

2. We also identify an investment shock. This shock moves aggregate investment positively on
impact (the prior is set in the same fashion as for our consumption shock, for example). At
the sectoral level, it decreases inflation while increasing quantities. These effects are stronger
the higher the investment intensity for a sector is, which we measure as the ratio between the
value of goods produced in the sector that go towards gross capital formation and its total
gross output.

As displayed in Table A-9, our consumption shock still remains the main driver of business cycle
fluctutations.
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5th Percentile Mean 95th Percentile

Inflation 17.8 27.3 45.0
GDP 16.5 24.4 29.7

Nominal Interest Rate 22.3 34.0 50.0
Consumption 34.4 40.4 45.9

Spread 13.3 19.4 30.7
Government Spending 7.6 20.1 27.7

TFP 6.3 11.3 16.8
Energy Prices 7.6 11.1 20.4

Investment 9.0 15.1 23.4

Table A-9: Variance decomposition across business cycle frequencies, consumption shock. Specifi-
cation with investment-specific technology shocks .

M.7 Sample starting in 1985

To assess whether or not our results are driven by the Great Inflation, we re-estimate the model
starting our sample in 1985:Q1.

5th Percentile Mean 95th Percentile

Inflation 7.5 11.4 20.0
GDP 22.6 24.8 30.7

Nominal Interest Rate 10.1 13.7 16.3
Consumption 27.3 30.4 37.4

Spread 7.2 10.0 11.3
Government Spending 10.3 12.6 16.6

TFP 6.8 11.2 14.0
Energy Prices 6.9 9.7 11.0

Table A-10: Variance decomposition across business cycle frequencies, consumption shock. Sample
starting in 1985.
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M.8 Comparison of Main Business Cycle Shock in Angeletos et al. (2020)

Our results suggest that consumption shocks are one of several important shocks, rather than a
single main business cycle shock. We tested this by regressing the main business cycle shock from
Angeletos et al. (2020) on the various shocks we identify. We found that this main shock has a small
correlation with the consumption shock and can be better understood as a combination of various
shocks, with the coefficients shown in Table M.8. This supports the view that multiple shocks play
significant roles in business cycles, and the consumption shock plays a prominent but not dominant
role.

tech credit demand gov energy monetary investment

βi 0.2 -0.1 0.0 -0.0 -0.1 -0.2 0.3
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