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A Some Background on Wavelets

A.1 Continuous Wavelet Transform

A wavelet ψ (t) is a function of finite length which oscillates around the time axis. The name

wavelet (small wave) derives from the admissibility condition, which requires the mother

wavelet to be of finite support (i.e., small) and of oscillatory (wavy) behavior. The most

commonly used mother wavelet in economic applications - and the one we use in this paper

- is the Morlet wavelet defined by ψ (t) = π
1
4 e6ite−

t2

2 . The continuous wavelet transform of

a time series x(t) with respect to a given mother wavelet is:

Wx(τ, s) =
1√
s

∫ +∞

−∞
x(t)ψ

(
t− τ
s

)
dt, (1)

where ψ denotes the complex conjugate of ψ, and τ and s are the two control parameters of

the continuous wavelet transform (CWT). The location parameter τ determines the position

of the wavelet along the time axis, while the scale parameter s defines how the mother

wavelet is stretched. The scale is inversely related to frequency f , with f ≈ 1/s. A lower

(higher) scale means a more (less) compressed wavelet which allows to detect higher (lower)

frequencies of the time series x(t).

The ability and flexibility to endogenously change the length of the wavelets is one

of the main advantages of the wavelet transform when compared with the most common

alternative, the short-time Fourier transform. The wavelet power spectrum (WPS) of x(t)

is defined as (WPS)x (τ, s) = |Wx(τ, s)|2. It measures the local variance distribution of

the time series x(t) around each time and scale/frequency. The WPS can be averaged

over time so that it can be compared to classical spectral methods. In particular, the

global wavelet power spectrum (GWPS) can be obtained by integrating the WPS over time:

(GWPS)x (s) =
∫ +∞
−∞ Wx(τ, s)dτ .

A.2 Maximal Overlap Discrete Wavelet Transform and Wavelet Multi-
Resolution Analysis

Wavelet multiresolution analysis (MRA) allows decomposition of any variable into a trend,

a cycle, and a noise component, irrespective of its time series properties. In particular it

does not require pre-filtering of the time series to impose stationarity, for instance. This

is similar to the traditional time series trend-cycle decomposition approach (Beveridge and

Nelson, 1981, and Watson, 1986) or other filtering methods like the Hodrick and Prescott
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(1997) or the Baxter and King (1999) band-pass filter. We employ a particular version of

the wavelet transform called the Maximal Overlap Discrete Wavelet Transform (MODWT).

To perform the MODWT of a given time series we need to apply an appropriate cascade

of wavelet filters which is similar to filtering by a set of band-pass filters. This procedure

allows to capture fluctuations from different frequency bands.

What distinguishes the wavelet decomposition is that the choice of the scale allows the

researcher to hone in on and isolate specific frequency bands that are the objects of interest.

While other filtering methods, such as Fourier analysis, also allow a researcher to focus on

specific frequencies, a wavelet approach has some key advantages. Traditional decomposition

techniques, such as spectral analysis of a time series, tend to impose strong assumptions

about the data-generating process. Specifically, they often require data to be stationary

or pre-filtered. However, many economic and financial time series are hardly stationary as

they exhibit trends and patterns such as structural breaks, volatility clustering, and long

memory, which the wavelet approach can handle with ease.

Unlike Fourier analysis, wavelets are defined over a finite window in the time domain,

which is automatically and optimally resized according to the frequency of interest and the

choice of the scale. Wavelets and standard Fourier analysis are essentially approximations

with basis functions, but Fourier basis functions are non-zero almost everywhere, making

it harder for them to capture local phenomena. Using a short time window isolates the

high-frequency features of a time series, while treating the same signal with a large time

window reveals its low-frequency features. By varying the size of the time window, we

can therefore capture time-varying and frequency-varying features of the time series at the

same time. Wavelets are, thus, very useful when dealing with non-stationary time series,

irrespective of whether the non-stationarity comes from the level of the time series (that is,

from a long-term trend or jumps) or from higher-order moments (that is, from changes in

volatility).

In the paper, we use the MODWT to compute the decomposition. This version is

not restricted to a particular sample size: if the data are discrete, the standard wavelet

decomposition requires a sample of length 2J for the decomposition to be exact; that is,

it imposes a tight restriction on which and how many frequency bands can be considered

and might require dropping observations. The MODWT avoids this problem and is also

translation-invariant, that is, it is not sensitive to the choice of a starting point for the

examined time series. Finally, implementation of the wavelet decomposition requires choice

of a specific functional form for the filter that maps the original series into its components.
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We follow the literature and choose as a benchmark the Haar filter.

As an example, using the Haar wavelet filter, any variable Xt, regardless of its time series

properties, can be decomposed as:

Xt =

J∑
j=1

Dj,t + SJ,t, (2)

where the Dj,t are the wavelet coefficients at scale j, and SJ,t is the scaling coefficient. These

coefficients are given by:

Dj,t =
1

2j

2j−1−1∑
i=0

Xt−i −
2j−1∑

i=2j−1

Xt−i

 , (3)

SJ,t =
1

2J

2J−1∑
i=0

Xt−i. (4)

Equations (3) and (4) illustrate how the original series Xt, exclusively defined in the time

domain, can be decomposed into different time series components, each defined in the time

domain and representing the fluctuation of the original time series in a specific frequency

band.

As in the Beveridge and Nelson (1981) time-series decomposition into stochastic trends

and transitory components, the wavelet coefficients Dj,t can be viewed as components with

different levels of calendar-time persistence operating at different frequencies; whereas the

scaling coefficient SJ,t can be interpreted as the low-frequency trend of the time series under

analysis. In particular, when j is small, the j wavelet coefficients represent the higher

frequency characteristics of the time series (i.e. its short-term dynamics). As j increases,

the j wavelet coefficients represent lower frequencies movements of the series.

A.3 The Wavelet Transform: A Simple Example

The wavelet coefficients resulting from the MODWTwith a Haar filter are fairly straightforward

to interpret as they are simply differences of moving averages. Consider the case of J = 1.

A time series Xt is then decomposed into a transitory component D1 and a persistent scale

component S1 as:

Xt =
Xt −Xt−1

2︸ ︷︷ ︸
D1,t

+
Xt +Xt−1

2︸ ︷︷ ︸
S1,t

. (5)
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When J = 2 the decomposition results in two detail components D1 and D2 and a scale

component D1:

Xt =
Xt −Xt−1

2︸ ︷︷ ︸
D1,t

+
Xt +Xt−1 − (Xt−2 +Xt−3)

4︸ ︷︷ ︸
D2,t

+
Xt +Xt−1 +Xt−2 +Xt−3

4︸ ︷︷ ︸
S2,t

. (6)

While the first component D1 remains unchanged at the now higher scale J = 2, the prior

persistent component S1 is divided into an additional transitory component D2 and a new

persistent one S2. The length Kj of the filter, that is, the number of observations needed to

compute the coefficients increases with j: Kj = 2j . Hence, the coarser the scale, the longer

the filters.

Intuitively, the lower the frequencies a researcher wants to capture, the wider the time

window to be considered. Alternatively, the lower the frequencies targeted, the longer the

data sample required. The equations also show that this is a one-sided filter as future values

of Xt are not needed to compute the coefficients of the wavelet transform of Xt at time

t. This implies that the Dj,t and SJ,t lag Xt. In other words, they reflect the changes in

Xt with some delay. Moreover, since the length of the filters increases with j, so does the

delay. Hence, the coarser the scale, the more the wavelet components are lagging behind

Xt. Finally, the scale of the decomposition is related to the frequency at which activity in

the time series occurs. For example, with annual or quarterly time series, Table A.1 shows

the interpretation of the different scales.
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Table A.1: Scales and Cycle Length

Period Length
Scale j Annual Data Quarterly Data

1 2y-4y 2q-4q

2 4y-8y 4q-8q=1y-2y

3 8y-16y 8q-16q=2y-4y

4 16y-32y 16q-32q=4y-8y

5 32y-64y 32q-64q=8y-16y

6 64y-128y 64q-128q=16y-32y

... >128y >128q=32y
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B Data

We extract aggregate time series from the Haver database, except for per capita real GDP,

which we take from the FRED database. Table B1 reports further details on the data and

Figure 1 shows the raw data series. GDP growth is computed as the quarter-over-quarter

rate. Similarly, our measure of inflation is the quarter-over-quarter growth rate of the PCE

price index. We also construct a time series for the spread between the long and the short

bond rate, computed as the simple difference.

Table B1: Data

Variable Mnemonic Comment

Real GDP per capita A939RX0Q048SBEA Seasonally Adjusted

Unemployment LR@USECON Seasonally Adjusted, 16 and over

PCE Price Index JC@USECON Seasonally Adjusted

Federal Funds Rate FFED@USECON Monthly Average of Daily Data

C Wavelet Decompositions

We report the individual wavelet decompositions in Figures 2 - 5 for our variables used in

the VAR. The data series enter the VAR as explanatory variables individually or combined

in terms of broader frequency bands.1

1All wavelet series are demeaned in these figures.
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Figure B.1: Data Used in VAR estimation.
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Figure C.1: Log of Real Per Capita GDP and its Wavelet Decomposition.
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Figure C.2: Growth Rate of Real Per Capita GDP and its Wavelet Decomposition.
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Figure C.3: Federal Funds Rate and its Wavelet Decomposition.
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Figure C.4: Inflation and its Wavelet Decomposition.

D DGSE Analysis: Alternative Specifications

Tables D1 - D4 report the variance decompositions for 14 variants of the del Negro et al.

(2015) DSGE model. As discussed in the main text, the full model specification captures

the individual frequency components quite well. In order to isolate the key model elements

we shut down one aspect of the model at a time. The tables show that the specification

of the monetary policy rule in terms of the degree of interest-rate smoothing and the

aggressiveness in response to inflation movements play a central role. In addition, a time-

varying inflation target is central for capturing the medium-term and long-term behavior of

inflation. Individual model elements on the real side, such as various adjustment costs to

do not play a dominant role.
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Table D.1: Real GDP Growth Rate across Models

real GDP growth rate

Short run Business cycle Medium run Long run

baseline model 47 31 18 4
data 55 32 10 3
no price indexation 46 31 19 4
no wage indexation 46 31 18 4
no habit in consumption 61 24 13 2
no investment adj. costs 63 25 11 2
no capital utilization costs 47 31 18 4
flexible prices 53 34 12 2
flexible wages 43 30 22 5
constant inflation target 48 31 18 3
MP only reacts to inflation 55 34 9 1
MP only reacts to inflation (coefficient of 3) 54 36 9 1
no financial frictions 38 28 27 7
higher interest rate smoothing (0.9) 54 31 12 3
no stochastic trend 47 31 18 4

Table D.2: Inflation Rate across Models

Inflation

Short run Business cycle Medium run Long run

baseline model 17 18 23 43
data 16 18 26 39
no price indexation 16 13 23 48
no wage indexation 17 18 23 42
no habit in consumption 16 17 23 44
no investment adj. costs 17 18 23 42
no capital utilization costs 17 18 23 42
flexible prices 41 25 16 17
flexible wages 11 18 32 39
constant inflation target 32 28 22 18
MP only reacts to inflation 21 20 21 38
MP only reacts to inflation (coefficient of 3) 37 30 18 14
no financial frictions 18 19 26 38
higher interest rate smoothing (0.9) 11 14 28 47
no stochastic trend 17 19 26 39

11



Table D.3: Interest Rate across Models

Federal Funds Rate

Short run Business cycle Medium run Long run

baseline model 8 24 35 32
data 5 18 25 53
no price indexation 8 25 36 31
no wage indexation 8 25 36 31
no habit in consumption 6 18 36 40
no investment adj. costs 8 23 38 31
no capital utilization costs 8 23 35 33
flexible prices 9 24 35 32
flexible wages 5 22 43 29
constant inflation target 11 31 41 17
MP only reacts to inflation 14 28 26 32
MP only reacts to inflation (coefficient of 3) 15 39 32 13
no financial frictions 6 22 45 27
higher interest rate smoothing (0.9) 4 15 35 46
no stochastic trend 8 24 38 30

Table D.4: Log per capita GDP across Models

log (real GDP per capita)

Short run Business cycle Medium run Long run

baseline model 0 2 12 87
data 0 1 8 91
no price indexation 0 2 12 86
no wage indexation 0 2 12 86
no habit in consumption 0 2 11 88
no investment adj. costs 0 2 12 85
no capital utilization costs 0 2 12 86
flexible prices 0 2 10 89
flexible wages 0 2 14 83
constant inflation target 0 2 11 87
MP only reacts to inflation 0 1 9 89
MP only reacts to inflation (coefficient of 3) 0 2 9 89
no financial frictions 0 2 16 81
higher interest rate smoothing (0.9) 0 1 11 88
no stochastic trend 0 2 11 87
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