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1 Introduction

Economists have often found it useful to separate long-run trends from business cycle fluc-

tuations, which generally are considered those that occur with a cycle length of between two

and eight years. On the statistical side, this approach is probably best characterized by the

idea of a trend-cycle decomposition as in Beveridge and Nelson (1981), where the trend is

associated with permanent movements in a time series as opposed to a business cycle being

driven by transitory shocks. Conceptually, this idea is also inherent in filtering methods

such as the Hodrick-Prescott (HP) filter, which has been the dominant approach in business

cycle modeling to extract a trend from aggregate times and render them stationary. Such

decompositions are convenient since they align with the idea of economic fluctuations as

being driven by either permanent or temporary shocks that do not necessarily interact. In

addition, monetary policy is often framed in terms of stabilizing the fluctuations of key

variables around a trend that is unaffected by policy.

However, there is a growing awareness in the macroeconomics literature that this com-

mon view of economic fluctuations is no longer adequate to characterize the behavior of

economic activity over time. For instance, Comin and Gertler (2006) argue that a substan-

tial part of economic fluctuations is located in what they label a ‘medium-term cycle’, that

is, fluctuations beyond a length of eight years, but falling short of a trend. Moreover, these

medium-term fluctuations cannot be thought of in isolation of other frequency bands. Using

a theoretical model, Comin and Gertler (2006) show that business cycles and medium-term

cycles are intimately connected since they are driven by the same underlying temporary

shock. Specifically, a temporary innovation to, say, productivity or the policy rate can

reverberate throughout several frequency bands as they get propagated over time.1

Against this background, we aim to provide a somewhat more encompassing view of

cyclical behavior across all frequencies. In particular, we study three issues. First, we

compute a decomposition of key macroeconomic time series using wavelet-based filtering.

That is, we decompose a time series into several time series components, each of them

fluctuating within a specific frequency band. We find the use of wavelets advantageous for

our purposes since this filtering approach is more flexible than standard Fourier analysis and

more traditional bandpass filtering. In particular, it allows different frequency movements

to be more pronounced in some parts of the sample than others and thereby reveals time

1Cogley (2001) makes a similar point for trend specifications where he shows the effects of trend spec-
ification errors are not confined to low frequencies, but are spread across the entire frequency domain.
Researchers therefore have to have a clear understanding of the inter-relatedness of frequency bands for
which a wavelet approach offers a covenient tool.
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variation in the importance of different frequency components. The second question looks

at the effects of identified monetary policy shocks across different frequency bands to assess

the plausibility of medium-term cycles as being generated by temporary shocks. The third

question asks whether standard dynamic stochastic general equilibrium (DSGE) models

that are used in monetary policy analysis can replicate the volatility of different cycles of

each macroeconomic variable under consideration and are thereby useful in addressing the

policy questions raised.

We establish three main findings. First, the wavelet decomposition of key macroeco-

nomic variables shows that the bulk of fluctuations in GDP growth, unemployment, and

inflation occurs across different frequency bands. More than half of real GDP growth is

explained by short-term, high-frequency components with only a third of fluctuations at-

tributable to business cycle frequencies between two and eight years. Unemployment is

dominated by medium-term fluctuations between eight and 32 years, and to a lesser extent

by low-frequency movements while close to three-quarter of inflation and short-term interest

rate fluctuations fall into the slow-moving trend component. The corollary to these results

is that business cycles play only a secondary role in explaining overall aggregate fluctua-

tions as real GDP growth is very much a high-frequency phenomenon, while the behavior

of inflation is all trend.

Since these variables are central to thinking about monetary policy, both in terms of

target variables as well as their information content for the state of the economy, we next

assess the effects of monetary policy shocks on the individual frequency components. Using

identified structural VARs with sign restrictions we find that across all frequency bands

the results from an aggregate VAR carry over to individual components and short-term,

business-cycle, medium-term and long-term components. In a baseline specification that

includes only the overall data series, a contractionary policy shock, that is, an increase in

the federal funds rate, lowers inflation, raises the unemployment rate, and decreases real

GDP growth. We find similar patterns across most frequency bands, but as we increase the

cycle length, the peak response moves further out, while precision of the impulse response

estimates worsens and the quantitative importance declines. We take this as somewhat

tentative evidence that monetary policy has an impact across all frequency bands and that

a mechanism in line with interaction of endogenous growth and cycles as in Comin and

Gertler (2006) is at play. In addition, we find that in the long run the relationship between

the nominal interest rate and the inflation rate is positive, whereas in the short run an

interest-rate increase lowers inflation. This relationship weakens or is non-existent over the
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medium term, which arguably reflects a contrast between a demand effect in the short run

and the Fisher effect in the long term.

Our third finding shows that standard DSGE models are in principle capable of repli-

cating the behavior of macroeconomic variables in different frequency bands. We simulate

artificial time series from three canonical DSGE models (Smets and Wouters, 2007; del

Negro et al., 2015; and Christiano et al., 2016) and apply our wavelet decomposition to

the same set of variables as before. Generally, all three models perform reasonably well

for business cycle frequencies and for long-term fluctuations. In a sense, this is perhaps

not surprising in that the models are built as business-cycle models around the idea that

such fluctuations are the outcome of stochastic shocks and endogenous propagation. These

DSGE models also include elements such as habit formation, investment adjustment costs,

and wage and price indexation to impart persistence on the variables which helps match

behavior at business-cycle frequencies.2 Long-run behavior is captured by stochastic trends

and time-varying inflation targets, which have been introduced successively over the course

of model development to capture trends. We show, however, that these models largely fail

in capturing behavior at medium-term frequencies, which is particularly prevalent in the

case of unemployment and a monetary DSGE model with search and matching frictions

in the labor market. We interpret these findings as a challenge for modelers to develop

frameworks capable of capturing medium-term cycles.

This paper touches upon various literatures in macroeconomics and time series analysis.

There has been a long-standing debate as to whether a frequency-based view of economic

fluctuations is useful for analyzing and understanding policy. Perhaps emblematic of a

critical viewpoint is Watson (1993) who argues that policy analysis at different frequen-

cies is not relevant for policymakers and that the close relationship between a time series

representation of a variable and its counterpart in the frequency domain, such as the spec-

trogram, invalidates the need for a separate analysis of frequency-specific considerations.

This viewpoint is implicitly questioned by Onatski and Williams (2003) who study the ef-

fects of uncertainty, broadly understood, on monetary policy decisions. They show that

when uncertainty enters a policymaker’s decision problem at different frequencies it may

have substantially different effects on outcomes. This criticism of the Watson-critique is

taken up by Brock et al. (2007) who analyze the differential effects of various policy rules

on outcomes across frequencies. In a follow-up paper Brock et al. (2013) demonstrate how

2Tkachenko and Qu (2012) and Sala (2015) estimate medium-size DSGE models in the frequency domain
with a focus on business-cycle frequencies. They report similar findings as to the ability of such models to
replicate observed behavior over the cycle.
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reductions of variance at some frequencies lead to increases in variance at others, which

then creates a policy trade-off. Our paper informs this debate in showing empirically the

contributions of different frequency bands to the overall volatility of key macroeconomic

variables and how they are impacted by monetary policy shocks.

Our paper also continues and contributes to the debate about the use of detrending

methods in macroeconomics. Many empirical methods require the underlying data series

to be stationary and thereby necessitate the use of a filter to remove trending components.

However, as Canova (1998) has demonstrated different detrending methods extract differ-

ent information from the underlying data series. This implies that the thus derived stylized

facts can differ substantially qualitatively and quantitatively across different filtering meth-

ods.3 This insight is extended by Gorodnichenko and Ng (2010) and to the estimation of

DSGE models. When researchers apply standard data transformations this induces biases

in structural estimates and distortions in the policy conclusions. In order to address this

issue Canova (2014) proposes joint modelling of the cycle and the trend within the model

and the raw data.

We add to this literature by establishing a set of stylized facts based on the time-

frequency decomposition inherent in wavelet analysis that has certain advantages over more

traditional methods. Thereby, we also highlight the importance of joint theoretical mod-

elling of economic behavior across all frequency bands and especially the medium term as

an important component of economic fluctuations. While the importance of the medium

run has been on economists’minds for a long time (e.g., Blanchard, 1997), there has been

a flurry of recent research recent in the wake of Comin and Gertler’s (2006) contribution

that study the origin and effects of medium-term cycles (e.g., Beaudry et al., 2017; Cao and

Huillier, 2018).

In this paper, we exploit the benefits of wavelet analysis as a complementary approach to

classical time series and spectral analysis. We first use the univariate wavelet transform for

exploratory data analysis of US macroeconomic variables. In addition, we use the wavelet

power spectrum to analyze the evolution over time of the variance of the variable at different

frequencies. We then use this approach to isolate specific frequency components from each

variable and use those frequency components in a standard VAR regression setup. Our

paper thus contributes to a growing literature on the use of alternative filtering methods in

economics and finance, such as Aguiar-Conraria et al. (2012) and Bandi et al. (2019).

The remainder of the paper is structured as follows. In the next section we present

3This observation is also in line with the recent criticism in Hamilton (2018) on the use and application
of the HP-filter in macroeconomic modelling.
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our first set of results, namely new stylized facts based on a wavelet decomposition of

aggregate data. In Section 3, we use the decomposition to assess the effects and importance

of monetary policy shocks across different frequency bands in a structural VAR framework.

Section 4 considers the question whether existing DSGE models are able to capture these

regularities. Section 5 concludes.

2 A Frequency-Band Decomposition of Aggregate Time Se-
ries

We use the wavelet methodology to decompose standard US macroeconomic time series

into different components that can be associated with the scale of the underlying cycles.

We regard this time-frequency decomposition, that is, a decomposition of a variable into

components in the time domain with precise counterparts in the frequency domain, as a

useful and informative alternative to typical trend-cycle decompositions that provides a

more encompassing view of the nature of economic fluctuations. In what follows, we briefly

discuss the methodology and detail the data used in our empirical exercise. We then present

our baseline results, followed by an extensive robustness analysis with respect to alternative

filtering methods and choices.

2.1 Methodology and Data

The analysis in this paper is based on a time-frequency decomposition of key economic time

series. Our basic objective is to decompose a time series into individual components that can

be cleanly and clearly associated with fluctuations at different frequencies or different lengths

of a cycle, but are represented in the time domain. For this purpose, we employ wavelet

multiresolution analysis (MRA) which performs such decomposition in a way similar to

the traditional time series trend-cycle decomposition approach (e.g., Beveridge and Nelson,

1981; Watson, 1986), or other filtering methods like the Hodrick and Prescott (1997) or

the Baxter and King (1999) band-pass filter. However, a wavelet approach aims at a more

fine-grained understanding of the different components of a time series that make up what

is considered a ‘cycle’as opposed to a ‘trend’.4 Specifically, we employ a particular version

of a wavelet transformation of a time series called the Maximal Overlap Discrete Wavelet

4Conceptually, our line of reasoning is informed by the notion of medium-term cycles as advocated by
Comin and Gertler (2006). There is a growing understanding that the neat trend-cycle view of economic
fluctuations is inadequate to capture the nature of economic activity.
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Transform (MODWT).5

As an example, by using the specific form of a Haar wavelet filter any time series Xt

can be decomposed into a scale component SJ,t and J detail components Dj,t:

Xt =
J∑
j=1

Dj,t + SJ,t, (1)

where these coeffi cients are given by:

Dj,t =
1

2j

2j−1−1∑
i=0

Xt−i −
2j−1∑
i=2j−1

Xt−i

 , (2)

SJ,t =
1

2J

2J−1∑
i=0

Xt−i. (3)

Intuitively, the wavelet filter separates the original series Xt, which is defined in the time

domain, into different time series components. These represent the fluctuations of Xt in

a specific frequency band, that is, a range of frequencies, or length of cycles, that are

grouped together.6 In this example, the smooth scale component SJ,t at time t is computed

as the weighted average of lagged values of Xt at scale J , while the detail components

Dj,t are overlapping weighted moving averages up to scale J . The bands are associated

with different details j such that for small j, the wavelet component Dj,t captures the

higher-frequency characteristics of the time series, that is, its short-term fluctuations. As

j increases, the components represent lower frequency movements of the series. Finally,

the smooth component SJ,t captures the lowest frequency dynamics, that is, the long-term

behavior.7

The key parameter for the economic interpretation of the wavelet decomposition is the

scale J which determines how fine-grained or detailed the decomposition is. For J large

enough, the scale component SJ,t approximates the true underlying trend of the series. If

J is small, then the scale component includes fluctuations of shorter duration, which one

may not normally associate with a trend.8 An alternative interpretation is that SJ,t is the

5The MODWT version of the wavelet filter has become the standard in the empirical finance and fore-
casting literature, e.g. Berger (2016) or Faria and Verona (2018).

6The individual components, or wave-lets, thus make up the overall wave in a prescribed manner.
7As in the Beveridge and Nelson (1981) time-series decomposition into stochastic trends and transitory

components, the wavelet coeffi cients Dj,t can be viewed as components with different levels of calendar-
time persistence operating at different frequencies, whereas the scaling component SJ,t can be seen as the
low-frequency trend of the time series under analysis.

8The Appendix contains a simple example how the scale parameter J is related to the idea of taking
various differences of time series.
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underlying scale of the time series upon which fluctuations of higher frequencies and shorter

cycle durations are built. In that sense, our analysis falls in line with a more standard trend-

cycle decomposition. On a final note, the filter discussed above is one-sided since future

values are not needed to compute the wavelet coeffi cients of the transform of Xt at time

t. This implies that that the Dj,t and SJ,t lag Xt. Moreover, since the length of the filters

increases with j, so does the delay. Hence, the coarser the scale, the more the Dj,t and SJ,t

are lagging Xt. We use this fact in our VAR analysis below.

What distinguishes the wavelet decomposition is that the choice of the scale allows

the researcher to hone in on and isolate specific frequency bands that are the objects of

interest. While other filtering methods, such as Fourier analysis, also allow a researcher

to focus on specific frequencies, a wavelet approach has some key advantages. Traditional

decomposition techniques, such as spectral analysis of a time series, tend to impose strong

assumptions about the data-generating process. Specifically, they often require data to

be stationary or pre-filtered. However, many economic and financial time series are hardly

stationary as they exhibit trends and patterns such as structural breaks, volatility clustering

and long memory which the wavelet approach can handle with ease.

Unlike Fourier analysis, wavelets are defined over a finite window in the time domain,

which is automatically and optimally resized according to the frequency of interest and the

choice of the scale J . Wavelets and standard Fourier analysis are essentially approximations

with basis functions, but Fourier basis functions are non-zero almost everywhere, making

it harder for them to capture local phenomena. Using a short time window isolates the

high-frequency features of a time series, while treating the same signal with a large time

window reveals its low-frequency features. By varying the size of the time window, we

can therefore capture time-varying and frequency-varying features of the time series at the

same time. Wavelets are, thus, very useful when dealing with non-stationary time series,

irrespective of whether the non-stationarity comes from the level of the time series (that is,

from a long-term trend or jumps) or from higher-order moments (that is, from changes in

volatility).

Wavelet filtering methods are similar to filtering by a set of band-pass filters so as to

capture the fluctuations of a time series in different frequency bands, e.g. Christiano and

Fitzgerald (2003). The band-pass filter is a combination of a Fourier decomposition in the

frequency domain with a moving average in the time domain. It applies optimal Fourier

filtering to a sliding window in the time domain with constant length regardless of the

frequency being isolated. Wavelet filtering, in contrast, provides better resolution in the
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time domain as the wavelet basis functions are both time-localized and frequency-localized.

In this paper, we use the maximal overlap discrete wavelet transform (MODWT) to

compute the decomposition. This version is not restricted to a particular sample size: if

the data are discrete the standard wavelet decomposition requires a sample of length 2J

for the decomposition to be exact; that is, it imposes a tight restriction on which and how

many frequency bands can be considered and might require dropping observations. The

MODWT avoids this problem and is also translation-invariant, that is, it is not sensitive to

the choice of a starting point for the examined time series. Finally, implementation of the

wavelet decomposition requires choice of a specific functional form for the filter that maps

the original series into its components. We follow the literature and choose as a benchmark

the Haar filter, but also consider the Daubechies filter as an alternative. Specifically, we

employ the filter to decompose our time series of interest into seven individual series, labeled

D1, ..., D6 for the detail components and S6 for the scale component, that is, we choose

J = 6. The individual components are such that they add up to the underlying series.

Given the scale of the decomposition as powers of two we can associate the components

with individual frequency bands. Specifically, D1 captures fluctuations up to four quarters,

D2 between four and eight quarters, up to D6 which covers the band between 64 and 128

quarters. The scale component S6 is associated with movements above 128 quarters.

We collect quarterly data on US macroeconomic aggregates, interest rates, and prices.

Specifically, we report results for real GDP, the unemployment rate, the inflation rate for

the overall personal consumption price index (PCE), the federal funds rate (FFR) and a

3-month and 10-year interest rate.9 The data are described in more detail in the Appendix.

The full range of our sample covers 1954Q3 to 2017Q3. We utilize data in levels and in

growth rates, where growth rates are computed as quarter-over-quarter values. Although

not required for the wavelet filtering, we report results for GDP growth as it is the focus

of policymakers’decisions. For our baseline decomposition we use a one-sided Haar filter,

which are then employed in the VAR analysis. In a sense, the different scale components are

generated regressors where we do not want to impart information onto the econometrician

running the VAR than he could not possibly possess; that is, knowledge of the data at the

end of sample should not be used to produce a decomposition for periods in the middle.

For informative purposes and as a robustness check we also provide results for two-sided

9The 3-month Treasury rate at constant maturity is only available from 1981Q4 on. We use the 3-month
Treasury rate from secondary market instead since it is available from 1947Q1. Preliminary analysis for the
two series shows that they co-move extremely closely and that there is at most a level difference of up to 50
basis points.
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(smoothed) wavelet filters, for alternative kernels, and for alternative filters, such as the

Hodrick-Prescott and the Christiano-Fitzgerald bandpass filters.

2.2 Baseline Results

We report two sets of results. For purposes of exposition, we group the seven series into

four categories which we label ‘Short Term’(D1, D2), ‘Business Cycle’(D3, D4), ‘Medium

Term’(D5, D6), and ‘Long Term’(S6). The short-term category captures high-frequency

fluctuations under two years, which in macroeconomic applications are often discarded as

noise, but may contain useful information about the incidence of shocks. The business-cycle

category covers fluctuations at frequencies between 8 and 32 quarters (2-8 years), which most

macroeconomic research on the sources of aggregate movements focuses on. This frequency

band is, for instance, designed to be isolated by the application of the Hodrick-Prescott

filter with a smoothing parameter of λ = 1, 600.

We maintain this terminology for clarity, although one aspect of our paper is to argue

for less rigid classifications in the standard trend-cycle methodology. Components D5 and

D6 are grouped under ‘Medium Term’fluctuations and cover frequencies up to 128 quarters

(32 years). We note that this scale is shorter than the medium-term cycle adopted in Comin

and Gertler (2006), defined as movements between 8 and 50 years. Finally, we associate

S6 with the ‘Long Term’or, loosely speaking, the trend. We report the grouped wavelet

decompositions for real GDP growth, the unemployment rate, the inflation rate, the federal

funds rate, the 3-month and 10-year rate, and the difference between the latter two series,

namely the term spread, in Figures 1-6. The decompositions into the individual wavelets

are collected in the Appendix. Table 1 reports the variance decompositions by frequency.

We find that more than 50% of overall fluctuations in real GDP growth are explained by

the short-term components D1 and D2, roughly one third by the business cycle components

D3 and D4, with the rest by medium to long-term components.10 This raises the question

whether and to what extent macroeconomic stabilization policy can affect this short-term

component, especially since it is likely to contain measurement error. At the same time,

the low-frequency component S6 declines from above 4% to below 2% over the course of

the sample (see Figure 1). This is in line with the secular decline in trend growth that has

been found in numerous studies. However, this is not the full picture behind the recent

lower growth rates, as the two medium-term components D5 and D6 essentially offset each

other since 2000 and thereby do not contribute to the underlying growth trend. This comes
10The medium-frequency components as defined by Comin and Gertler (2006) thus make up only 12.5%

of the overall fluctuations, with half falling on the band between 32-64 quarters.
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largely from the business cycle components during the recovery from the Great Recession.

The Great Moderation is most visible in the short-term components and to a lesser extent

in the business-cyle band.11 The wavelet decomposition shows that it is more of a higher

frequency phenomenon. This observation lends support to the argument that the Great

Moderation came about because of an improvement in the way monetary stabilization policy

was conducted rather than a change in, for instance, inventory management.

The unemployment rate decomposition in Figure 2 and Table 1 reveals a slightly dif-

ferent pattern. Roughly one third of unemployment fluctuations are due to short-term

and business-cycle movements, while medium- and longer-term frequencies (D5-S6) each

explain around 20%. Fluctuations in the unemployment rate can therefore be described as

a medium-term cycle. What dominates the level of the unemployment rate is its long-term

component S6, which could be interpreted loosely as a natural rate of unemployment. A

focus of the next section is the extent to which the trend components are affected by mone-

tary policy. What is striking is that the different components do not seem to comove closely.

For instance, the unemployment rate is at 5.4% in 1990, while the long-term component

S6 is at 7.2%, the difference being made up by components D4-D6. In other words, the

business cycle peak produces a negative unemployment gap relative to a very high natural

rate on account of strong medium-term components which might be tied to labor force

participation peaking in the late 1990s. Finally, the Great Moderation is considerably less

visible in the unemployment rate, if at all.

We now turn to the nominal side of the economy. Figure 3 contains the results from

the decomposition of the PCE inflation rate. 40% of inflation movements can be traced

back to the long-term component S6. The business cycle component explains around one

fifth of the overall variability, while medium-term components cover 25%. About 15% of

inflation variability can be traced back to very short-term or noise components. As in the

case of the unemployment rate, the scale of the decomposition is dominated by the trend

S6. The monetary policy literature often interprets this component as the inflation target

or the perception thereof. It can also be seen as a measure of the extent to which inflation

expectations are anchored. In our decomposition, it shows a gradual rise from almost zero

in the late 1960s to a peak of 6.2% in the early 1980s followed by a gradual decline until

reaching the 2% target in the 2000s.

A similar pattern in terms of the Volcker disinflation can be found in the medium-term

11Figure C.1 in the Appendix shows that this largely due to the D3 component, indicating that the Great
Moderation is essentially a high-frequency event. To this point, see also Aguiar-Conraria et al. (2012) and
Pancrazi (2015).
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components D5 and D6. What is striking is the run-up in trend inflation over the course of

the 1970s and the drawn-out, three-decade long struggle to return it to 2%. Since the Federal

Reserve arguably did not change its implicit inflation target over that time, this component

may therefore be better described as the public’s perceived target. Our results then depict

a striking loss of central bank credibility.12 In light of this aspect, it is perhaps surprising

that there is not much of a Great Moderation visible when interpreted as a binary event,

that is, a break in policy or a structural change before or after the early 1980s. Instead, in

the graphs in Figure 3 it is possible to discern the high volatility of the 1970s, preceded and

followed by the more stable 1960s and 1980s, respectively. Interestingly, inflation volatility

seems to have gone up again in the 2000s, especially around the Great Recession.

We report decompositions for the FFR and the 10-year rate in Figures 4 and 5.13 They

show similar patterns as the inflation decompositions, whereby volatility in the 10-year rate

can be attributed to almost 70% to the long-term component S6, ten percentage points

more than for the short rates. Presumably, this reflects that longer rates are less subject

to the vagaries of higher-frequency fluctuations. Since the interest rates share common

components, especially in the medium and longer run, it is therefore often instructive to

consider the term spread, in our case the difference between the 10-year and the 3-month

rate. The term spread decomposition in Figure 6 puts most weight, almost 45%, on the

business-cycle components. This supports the idea that at frequencies commonly associated

with the business cycle the spread is a useful indicator of economic and financial conditions.

Interestingly, the long-term component has gone up considerably since the early 1980s to a

level of above 2%, implying that the difference between the short and long rates has become

more persistent.

As a final exercise, we produce the power spectra from the wavelet decomposition for real

GDP growth, unemployment and the federal funds rate in Figures 7-9.14 The wavelet-based

spectra are akin to classical spectra in that they decompose a time series into frequencies

and measure the contribution of each frequency to the overall behavior of a time series.15

Ordered by frequency, this spectral density is depicted in the right column of each figure. In

addition, we show the time-frequency decomposition in the left column. Using the wavelet

12This interpretation is consistent both with the learning and inherent inflation persistence story in Prim-
iceri (2006) or Sargent, Williams, and Zha (2006), the inflation misperception argument in Lubik and Matthes
(2016), as well as a number of recent papers on evolving private sector beliefs, for instance, in Bianchi (2013).
13The results for the 3-month rate are almost identical to those for the FFR. The respective decompositions

are shown in the Appendix.
14We briefly describe and discuss the concept behind the wavelet power spectra in the Appendix.
15As discussed before, the wavelet power spectrum does not require stationarity.
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filter, the graph reports the wavelet power spectrum (WPS), a decomposition by time (on

the horizontal axis) and frequency (on the vertical axis). The graph is coded as a heat map

such that areas of higher activity are depicted as redder on the color spectrum. The solid

black lines delineate 95% confidence regions. Note that the wavelet-based spectral density

can be obtained by integrating the WPS over time.

The spectral peak of GDP growth in Figure 7 is just above two years which confirms our

prior finding that output fluctuations are highly concentrated among the highest frequencies.

The WPS, however, shows that this observation is largely driven by the late 1950s and

1970s which show considerably higher concentration of activity in the short term than what

occurred during later periods. In the same vein, the Great Moderation is quite visible from

the graph.16 The unemployment rate in Figure 8 shows two local spectral peaks associated

with cycles of around 8 and 32 years. This is in line with our previous findings, but sharpens

the observation of unemployment being subject to medium-term cycles towards the edges of

that frequency band. Notably, the Great Moderation is not apparent from the WPS, while

deep recessions in the mid-1970s and the Great Recession impart some higher frequency

components on the decomposition. Finally, Figure 9 reveals that the FFR has a spectral

peak at a very low frequency which we associate with the presence of an explicit or implicit

inflation target. However, the WPS shows a local peak at a frequency of 8 years which is

largely driven by the period from 1968 until the early 2000s.

Overall, what emerges from these decompositions is a multifaceted picture of macroeco-

nomic fluctuations. Across all variables, the business-cycle components D3 - D4, that is,

cycles between two and eight years, explain about one third of overall fluctuations. There

is considerable heterogeneity across variables as far as the other components are concerned:

50% of real GDP growth is captured by high frequency components (cycles of less than 2

years). Essentially, much of quarterly GDP movements occurs at very high frequencies.17 In

turn, short-run fluctuations do not seem to play much of a role for the other variables. The

behavior of unemployment is dominated by medium-term movements with a cycle length of

between 8 and 32 years and to a lesser extent by longer-term movements of lower frequency

than that. Inflation and interest rates have sizeable long-term components, too. These

components can be interpreted as “trends”and natural or potential rates. Their behavior

16This is in line with related research by Pancrazi (2015) who argues that the reduction of volatility of
GDP after the mid-1980s is mainly a high-frequency phenomenon of cycles up to 4 years and that it is much
milder, or absent, for other frequencies.
17We use final data in our empirical study, that is, the last data vintage available. In contrast, policymakers

operate in a real-time environment where initial data releases are subject to sometimes large measurement
error. Lubik and Matthes (2016) show that this can lead to what looks like policy mistakes ex post.
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arguably conforms to conventional wisdom, that is, inflation seems to be all trend, driven

by the Federal Reserve’s implicit and then later explicit inflation target.

This naturally raises the question whether stabilization policy aimed at the business

cycle is misdirected or misses important aspects that policymakers should focus on.18 An

immediate follow-up question is whether models that are being used to describe and analyze

monetary policy are consistent with the heterogeneity in fluctuations. We address these

two questions in turn in the following two sections. First, we investigate whether identified

monetary policy shocks have differential effects on key variables for different frequencies;

and second, we study whether some standard DSGE models are capable of replicating the

wavelet-based variance decompositions in this section.

2.3 A Comparison of Alternative Filters

We assess the robustness of our baseline findings for the one-sided Haar filter along several

dimensions. First, we consider a two-sided version of the Haar filter. The second exercise

considers an alternative kernel for the wavelet decomposition, namely the Daubechies filter.

The third robustness check uses filters that are more common in the macroeconomics liter-

ature, specifically the Christiano-Fitzgerald bandpass filter and the Hodrick-Prescott filter.

As before we focus on four broad frequency bands for exposition. The decompositions are

reported in Figures 10-12.

Figures 10 and 11 contain the decompositions of, respectively, real GDP growth and

unemployment for the one- and two-sided Haar filter and the Daubechies filter. By de-

finition the two-sided filter is smoother than a one-sided filter since it uses all available

information over the whole span of the sample and not just up to the data point at which

the filter is applied. This is evident by comparing the one-sided Haar filter with its two-side

counterpart in the figures. Generally, there are no large differences in terms of the overall

direction and volatility for both unemployment and real GDP growth, but the one-sided

filter imparts more volatility to the short-term and business-cycle components than the

other filters. Moreover, the one-sided Haar filter lags the other filters in picking up general

directional movements. This is especially visible in the medium- and long-term components

of unemployment in Figure 11.19 The fact that the one-sided Haar is slow in picking up the

rise and subsequent fall in trend unemployment in the 1970s and 1980s is simply a feature

of how it is constructed. As discussed before, we prefer a one-sided filter since we use the

18This argument has been made most succinctly by Brock et al. (2008, 2013).
19We find similar patterns in the decompositions for inflation and the interest rates. These results are

included in the Appendix.
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individual components as variables in a VAR which rests on the idea that the innovations

are one-step ahead forecast errors and thereby do not reflect the full information in the

sample.

The figures also report results for the Debauchies filter as an alternative to the two-

sided Haar filter. The Haar filter produces less volatile components than the Daubechies,

but the difference seems minor. There are a few episodes where the two filters do not

overlap each other. For instance, the medium-term components of inflation in the mid-

1970s differ noticeably, but these occurrences are the exception. We prefer the Haar over

the Debauchies implementation of the wavelet decomposition since the former has a more

intuitive interpretation (see the discussion in the Appendix). The differences between the

various implementations of the decomposition are small enough, however, not to affect the

conclusions drawn in the next two sections.20

In contrast, the decompositions based on two widely used filters in macroeconomic analy-

ses are materially different. Figure 12 compares our baseline filter with the corresponding

bandpass filter of Christiano and Fitzgerald (2003) (CF) and the canonical Hodrick-Prescott

(HP) filter. In a sense, the CF filter and our Haar filter are conceptually similar in that they

explicitly isolate specific frequency bands and represent them in the time domain. This is

evident from comparing the two filters in the figure for unemployment rate decompositions

as an illustrative example. At business-cycle frequencies the CF filter extracts more volatile

components, but is arguably not that different from the wavelet-based filter. The excep-

tion are the longer-term components, especially D6 and S6, where the two filters pick out

different peaks and are generally not that well aligned.21

In contrast, the HP filter produces quite different series. For a smoothing parameter

of λ = 1, 600 it extracts the business-cycle frequencies corresponding to our components

D3and D4. It is considerably more volatile than the wavelet decomposition. More striking

is the pattern for lower frequencies. The figure reports the HP trend which is computed as

the difference between the original series and the business cycle component obtained with

λ = 1, 600. It is akin to the S6 component with wavelets, which is the “residual”part of the

series. This slow-moving component is quite different from the other series and thus raises

concerns as to whether the HP filter introduces spurious dynamics (see Hamilton, 2017).

20We performed the empirical excercises in Sections 3 and 4 using alternative wavelet decompositions.
The results are available on request.
21However, recall that the CF filter is optimized to extract business-cycle frequencies and not low frequen-

cies. At the same time, this is another argument in favor of wavelet filters since it treats all frequencies the
same way.
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3 The Frequency-Specific Effects of Monetary Policy Shocks

We now study whether and to what extent monetary policy shocks affect key aggregate

variables across different frequencies. The previous section demonstrated that the behavior

of GDP growth, unemployment, and the inflation rate differs in terms of the contribution of

various frequency bands to overall volatility. Whereas the majority of fluctuations in GDP

growth are located among the highest frequencies, that is, the short-term components, the

unemployment rate is more evenly split between a large medium-term and lower-frequency

components. In turn, most of the movements in the inflation rate are driven by the long

term which we might associate with the inflation target. As we think of monetary policy as

trying to stabilize movements in GDP growth and unemployment against a background of

stable prices or constant inflation, the question is whether policy is successful in affecting

these variable at frequencies that are the main drivers of their overall volatility.

Our approach is as follows. We assess the effects of monetary policy shocks on individual

frequency bands by using the filtered series as explanatory variables in a VAR. Given a

plausible identification of policy shocks, we then compute impulse response functions to

these shocks for the various decompositions. We begin by assessing the plausibility of our

preferred identification scheme in a standard model. To this end, we estimate a three-

variable VAR in an activity variable, that is, either the unemployment rate or real GDP

growth, inflation, and the federal funds rate. We then identify a structural monetary policy

shock using a sign restriction approach where we assume that all restrictions are imposed

only on impact. Specifically, we assume that a contractionary monetary policy shock - one

that raises the federal funds rate on impact - lowers output, increases unemployment and

lowers inflation.

Figure 13 reports impulse responses to an identified policy shock from the two VARs.

The left column shows the responses in the model with unemployment, the right those of

the model with GDP growth. In this baseline specification, a rise in the interest rate by 25

basis points increases unemployment by 10bp with a hump-shaped peak after 3-4 quarters

of 20bp. It lowers inflation by 60bp on impact before gradually returning to its long-run

level. Similarly, a contractionary monetary policy shock lowers GDP growth by almost 1.5

percentage points and inflation shows a similar decline as in the other specification.22

In the next step, we add the frequency components to the baseline specification, either in

22Both the unemployment rate and GDP overshoot their long run level in their adjustment path after
the shock in line with the interest rate responses. That is, monetary policy responds endogenously to the
worsening economic conditions due to the unanticipated contraction by loosening policy.
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terms of unemployment or real GDP growth, as an activity variable. For each specification

we identify the policy shock separately, which allows for the possibility that there could

be differences across models. We consider two alternative specifications. First, we add

the seven frequency bands, D1-S6, of each variable included in the VAR one by one to

the baseline specification. This results in a six-variable VAR, estimated separately for each

band. We report selected impulse responses for GDP growth in Figures 14-16, where the left

column shows the responses of the aggregate variables and the left column the corresponding

responses for a frequency band. The respective responses with unemployment as the activity

variable can be found in the Appendix.

We find that the responses of the high-frequency components D2 are significant, and

are in line with the baseline results and what theory would suggest; however, the responses

are not large quantitatively and economically small. Nevertheless, this indicates that the

monetary transmission mechanism works as theoretical reasoning and practical experience

would indicate. The response of the business-cycle component D4 is not significant on im-

pact but becomes more sharply estimated a few quarters out. As before, the direction of the

responses is consistent with the identification scheme on the overall series. Contractionary

shocks are thus likely to have their strongest impact in a few quarters which is in line with

the idea that monetary policy stabilizes business cycles with a lag.

Finally, the response for the long-term component S6 is drawn out and not significant

over the business cycle horizon, but exhibits comovement between the federal funds rate

response and inflation. In other words, at longer horizons and cycles, the Fisher effect,

namely that interest rates and inflation rates are positively correlated, comes through;

whereas at higher frequencies this correlation moves in the opposite direction as the demand-

constricting effect of higher rates reduces inflation. It is clear from these findings that in the

transition between high frequency and low frequency movements the comovement patterns

for these two variables switch.

The second VAR specification adds the filtered series in groups that represent broader

frequency bands. Since the wavelet decomposition is fully additive we cannot include all

individual series. We therefore focus on a specification that looks at the business-cycle com-

ponents (D3+D4), the medium-term cycles (D5+D6), and the long term (S6). This results

in a twelve-variable VAR, where we identify the policy shock by imposing sign restrictions

on impact on the aggregate variables only. Figure 17 contains the respective responses for

the model with GDP growth, while the corresponding responses for unemployment are re-

ported in Figure 18. In each graph, the top row contains the aggregate responses, followed
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by the short-term, medium-term, and long-term components in separate rows.

A contractionary monetary policy shock has a negative impact on real activity in each

frequency band whereby the largest response is for the business cycle component. If we just

look at the short-term frequencies (not reported), the impact effect is larger. This possibly

reflects the dominant role of high-frequency movements in GDP growth (see Table 1). The

responses of the business-cycle and medium-term components return to zero after 20 and

30 quarters, respectively. The response of the long-term component on the other hand

remains negative over the full projection horizon of 10 years. This indicates that monetary

policy shocks can have long-lasting effects even on GDP growth. We find a similar pattern for

the unemployment rate, with oscillating behavior of the higher-frequency components and a

more drawn out response of the trend. In terms of the size of the policy-induced movements,

the business-cycle and medium-term components are roughly similar, in contrast to the

variance decompositions in Table 1. This suggests that there are other shocks that drive

movements in the unemployment rate in these frequency bands.

The response of the FFR and inflation components for both VAR specifications is very

similar. At higher frequencies, the FFR rises and inflation falls, where especially the

business-cycle components move together closely. The response of the respective trend

components is different, however. Inflation and the FFR do not react much on impact and

in the near term, but move together positively over the longer horizon. A contractionary

policy shock thus has a long-lasting negative effect on the long-term component of the FFR

and inflation. These results confirm the existence of a Fisher effect in the long-term com-

ponent, whereas in the short term the demand-constricting effect of an interest rate hike

dominates as in standard monetary policy models. Moreover, the results also show that

contractionary policy lowers the long-term component persistently presumably through an

expectations effect: tightening policy gains credibility, anchors inflation expectations, and

lowers inflation overall.

4 Assessing DSGE Models

We now investigate whether several medium-scale DSGE models can replicate the stylized

facts identified above. Such models have been developed explicitly with an eye on replicating

the performance for business cycle movements and the long run. This raises the question

whether they can, in fact, capture behavior along all frequency bands identified by our

wavelet decomposition. In a preview of the results, we find that the models generally

do well for business-cycle frequencies and in the long term as these are frequency bands
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which the models are designed to replicate. However, the models generally fail at capturing

medium-term frequencies.

4.1 DSGE Models and Simulation

In the DSGE literature it is well known that various modeling devices are useful in matching

persistence in the data, at least over the business cycle (see the programmatic papers by

Christiano et al., 2005, and Christiano et al., 2010, and also the seminal DSGE models

by Smets and Wouters, 2003, 2007). Examples are modifications to utility, such as habits

in consumption, production, such as investment adjustment costs, and highly persistent

shock processes. At the same time, stochastic trends have proved to be a flexible modeling

component to capture drifting behavior over time. This section studies whether these

modeling elements are useful across all frequencies.

We select models based on their widespread use in monetary policy analysis and their

consistency with the specific data that we have considered so far. Moreover, we want

to give the chosen models a fair chance at capturing the patterns found in the wavelet

decomposition. We therefore require that one of the underlying drivers of business cycles is

a stochastic trend in productivity which can smoothly vary over time. This specification is

well known to match the movements in the GDP trend. We thus focus on three canonical

models in the literature: Smets and Wouters (2007), del Negro et al. (2015), and Christiano

et al. (2016).23

Smets and Wouters (2007) (SW) is a further development of the canonical Smets and

Wouters (2003) New Keynesian DSGE model. It is the prototype of a medium-sized,

optimization-based model designed to jointly capture the evolution of output and infla-

tion and the monetary policy process. To this end, the model contains a variety of shocks

and frictions that have come to be accepted as central to understanding aggregate fluctua-

tions. The basic setup involves a representative household that makes consumption choices

and supplies labor to a competitive labor market. On the production side there are mo-

nopolistically competitive firms that employ labor and capital to generate output, make

investment decisions and set prices. The third type of agent in this model is a policymaker

who sets interest rates based on given feedback rules.

The model features nominal price stickiness and sticky wages with backward inflation

indexation to capture slow-moving aspects of these variables. On the real side, there is

habit formation in consumption and investment adjustment costs designed to create hump-
23We use computer codes for these models available at Volker Wieland’s Macroeconomic Model Data Base

(MMB): https://www.macromodelbase.com/ and from the journal websites of the published articles.
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shaped responses of these aggregate demand components. The model is driven by seven

structural shocks including a monetary policy disturbance. One key distinguishing feature of

Smets and Wouters (2007) as opposed to Smets and Wouters (2003) is that the former does

not have a time-varying inflation target. The model is estimated using Bayesian methods

over the period 1966-2004 for seven key aggregate variables, but the set of observables

does not include the unemployment rate. We can therefore not compare their model with

our decomposition along this margin.24 We take their parameters estimates as given and

simulate the model under this specification.

The second model that we consider, del Negro et al. (2015) (dNGS), is an extension of

the SW model. It introduces a time-varying target inflation rate and incorporates financial

frictions in the vein of Christiano et al. (2014). The model is estimated for a slightly larger

dataset than the SW model and over the period 1964-2008. The key finding of the paper is

that the model is compatible with Great Recession outcomes in that it successfully predicts

a sharp contraction in economic activity along with a drawn-out but modest decline in

inflation. The third model is Christiano et al. (2016) (CET). While it is built around the

same nominal structure as SW, CET introduce a much richer labor market setting governed

by search and matching frictions and various wage determination mechanism. We report

results both for a benchmark specification with Nash bargaining and an alternative, namely

alternative offer bargaining. What is important for our purposes is that the framework

models the unemployment rate in contrast to the previous two DSGE models. Christiano

et al. (2016) estimate the model over the sample period 1951-2008, with the same end date

as del Negro et al. (2015).

Our simulation procedure is as follows. We take the estimated models as given and fix

the parameter values at the reported posterior medians. The models are then simulated by

drawing from the innovation distributions over 10,000 periods. This is repeated 1,000 times,

whereby we record the last observations to coincide with the length of our sample. From

this sampling distribution we then compute the variance decomposition from the wavelet

filter as in section 2 and report 90%-confidence regions for the mean estimate of the variance

decomposition. We group the individual wavelet decompositions into the categories ‘Short

Term’(D1-D2), ‘Business Cycle’(D3-D4), ‘Medium Term’(D5-D6), and ‘Long Term’(S6).

24They also use the GDP deflator to measure inflation whereas we report results for PCE inflation. The
differences between these two inflation measures are minor.
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4.2 DSGE Models and Frequency-Band Decompositions

We report the results of the simulation exercise in Table 2. Our focus is on the results

for four key variables, namely real GDP growth, inflation, the federal funds rate, and the

unemployment rate. We compare the simulation results to two different sets of underlying

data: first, our original sample which covers 1954Q3 to 2017Q3; and second, the actual

sample period over which the respective model was originally estimated. For all three

models this excludes the Great Recession period and its aftermath. The latter results are

reported separately in Table 3.

The SW model is remarkably successful in replicating the overall volatility of real GDP

components across all frequency groups, essentially matching the data exactly: around 60%

is attributed to the short-term component, 30% to the business cycle component and a

much smaller percentage to the medium and long term. The same pattern is found for the

dNGS model and with some minor differences for the Nash-bargaining specification of the

CET model. A key driver for this finding is the specification of the exogenous productivity

process as a stochastic trend which is now standard modeling device in DSGE models. The

wavelet decomposition thus confirms the importance of this assumption.

Turning to the nominal variables, inflation and interest rates, the performance of the

SW model notably deteriorates. While the model is consistent with the short-term and

medium-term components in inflation, the contribution of the business cycle and long-term

fluctuations is essentially flipped. The SW model attributes only 15% to the long term and

more than one third to the business cycle. In contrast, the dNGS model comes much closer

to the patterns in the data, although it underpredicts the contribution of the long-term

component by almost 10 percentage points. The key difference between the two models is

that del Negro et al. (2015) incorporate a time-varying inflation target which is stationary

but highly persistent. Over the sample period it effectively pins down the trend movements

in the inflation rate. As discussed before, trend inflation in the data might simply reflect

the changing implicit or explicit inflation target, which in the DSGE modelling sense can

be captured by such an exogenous process.

Interestingly enough, the Nash-bargaining specification of Christiano et al. (2016) has

diffi culty with this pattern as it attributes considerable variability to the short-term and

business-cycle components and not enough to the long-term component. Notably, their

model does not feature a time-varying inflation target which reinforces the point raised

above. However, the alternative specification of the CET model with wage determination

based on an alternative offer bargaining mechanism is on point in capturing the behavior
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of inflation across all frequency bands. It is well known, e.g., Krause et al. (2008), that

a Nash-bargaining nominal wage mechanism does not impart enough inflation persistence

in a New Keynesian search and matching framework which these results confirm. On the

other hand, the alternative offer bargaining mechanism implies endogenous wage inertia

which then translates into inertial prices (see the discussion in Christiano et al., 2016).

The frequency-specific patterns of the FFR in the data do not differ much from that of

the inflation rate, although the wavelet decomposition attributes 80% of its movements to

medium-term and long-term components, as opposed to two thirds in the case of inflation.

A similar pattern is discernible for the three DSGE models in that they cannot replicate the

importance of the long-term component and the relative lack thereof in the business-cycle

frequencies. Most strikingly, the trend in the interest rate is associated with almost 60%

of movements in the data, only half of which the dNGS model can capture. As before, the

alternative specification of the CET model does remarkably well for the behavior of the

FFR.

We finally consider the decompositions of the unemployment rate which of our three

DSGE models only Christiano et al. (2016) can address. In the data, half of the fluctuations

in unemployment are captured by the medium-term component with the remainder roughly

equally attributed to the business cycle and the long term. Under the Nash-bargaining

specification the CET model attributes half of unemployment fluctuations to the long-term

component, one third to the medium term component and the remainder to the business

cycle. The model gets the broad pattern of fluctuations at different frequencies right: what

matters for explaining the unemployment rate are the medium to long-term components,

but not those that are arguably more directly shaped by monetary policy.

At the same time, the alternative bargaining specification of CET results in a con-

siderably worse performance for the unemployment rate. It also has problems with the

decompositions of GDP growth where it attributes too much volatility to the long-term

and medium-term components. Yet, its performance for the two nominal variables, the

inflation rate and the interest rate is spot on, where the baseline specification with Nash

bargaining put too much weight on the business cycle components. Comparing the two

approaches to modeling wage determination these findings indicate that alternative offer

bargaining generates more persistence in the model than Nash bargaining does.25 The flip

25This is, of course, related to the Shimer (2005) puzzle who argues that the standard search and matching
model cannot replicate the observed volatility and also persistence of the unemployment rate and vacancies,
that is, open positions. Alternative offer bargaining therefore presents an attractive solution to the Shimer
puzzle which does not have to rely on exogenous wage stickiness.
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side of this finding is that the former imparts too much persistence which hurts the model’s

performance with respect to the medium and long-term components of GDP growth and

unemployment.

Our final exercise considers the importance of the sampling period for the assessment

of the models. We subject each of the four model specifications to the same test, namely

whether they could replicate the behavior of the wavelet decompositions for the full length

of our empirical sample from 1954Q3 to 2017Q3. However, in their published versions the

estimation periods of the three model frameworks differ. Specifically, the estimation period

for the SW model is 1966-2004, for the dNGS model it is 1964Q1-2008Q3, and for the

CET framework the sample period is 1954Q1-2008Q4. The former two periods are similar,

they both miss 10 years at the beginning of our sample and then the Great Recession and

its aftermath; whereas the CET sample differs from ours in that it ends at the onset of

the Great Recession. Although the underlying idea of structural DSGE modeling is that

structural parameters are generally invariant over these sample periods it is also well known

that sample size and sample period can affect structural parameter estimates (e.g., Canova

and Ferroni, 2012).

In Table 3 we therefore contrast select decompositions for the actual estimation sample

with the simulated sample for the same number of observations. The decompositions for

the SW and dNGS sample periods are very similar to each other for real GDP growth and

inflation. The biggest difference is the long-term inflation component in the dGNS sample

which includes and additional four years before the onset of the Great Recession. In our full

sample, this component explains 41% of inflation movements, in the shorter sample only

34%. For both models, the biggest discrepancy can be found in the behavior of the FFR.

The shorter sample attributes much more volatility to the business-cycle and medium-term

components for the policy rate, that is, 60% compared to 40% in the full sample. The

long-term component explains about one third of the volatility in the SW sample, but

almost 60% in the full sample. This discrepancy is arguably due to differences in policy

across the two periods, either at the beginning of the full sample period between 1954 and

1964 or during the Great Recession. In any case, the long-term FFR component is more

pronounced over the longer period. The results in Table 3 do show, however, that the SW

model struggles to match these facts, while the dNGS model is closer to the data.

This pattern is also evident from the CET model, where we find that the long-term

FFR component in the full sample explains more of the overall volatility. This suggests

that the Great Recession period has had a noticeable effect on the behavior of the FFR -
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which may not be surprising since during this period the Federal Reserve held its policy rate

essentially fixed at its effective lower bound of zero. This, by itself, imparts persistence onto

the FFR. Interestingly, such differences are not visible in any of the other variables, GDP

growth and inflation, with the exception of the unemployment rate. It therefore seems that

the behavior of the policy rate is largely disentangled from that of other macroeconomic

aggregates. Table 3 also shows that the behavior of the unemployment rate is different across

the samples and that the CET model under alternative offer bargaining cannot capture the

behavior in the different sample either.

In summary, we conclude that the three canonical DSGE models are able to replicate

the wavelet decomposition we found in the data. We identify a stochastic trend in pro-

ductivity and a time-varying inflation target as the key modeling elements. The random

walk component in the former and a highly persistent inflation target capture the long-term

components in real GDP and inflation exceptionally well. Replicating the frequency-specific

components of the unemployment rate proves to be more diffi cult. While the decompositions

from the simulated data go broadly in the same direction, the challenge is that the vari-

ance decomposition is more evenly distributed among frequency bands than for the other

variables. Based on these findings we advocate wavelet decompositions as a straightforward

tool to assess the validity of a DSGE model as a data-generating process, especially with

respect to the contribution of individual modelling elements.26

5 Conclusion

This paper advances three main findings. First, we show that more than two thirds of

inflation and unemployment fluctuations in the US occur at low frequencies, whereas at most

a quarter are attributable to business cycle frequencies. However, it is mainly these latter

fluctuations that are the focus of monetary policymakers and researchers: policy objectives

are normally phrased in terms of stabilizing fluctuations around trends or potential. This

dichotomy is generally reflected in the DSGE models that are used to study monetary

policy and its effects. Frequency-specific decompositions such as the one we performed

using wavelet methodology thus produce information relevant for policymakers.

Our second finding shows that several standard DSGE models do a credible job of

26 In a sense, we are simply confirming the results of Sala (2015) who estimates the SW-model in the
frequency domain using likelihood-based methods and working off the counterpart of the time-series resp-
resentation of a state-space model. He finds that this DSGE model broadly performs well and matches the
data at various frequencies, but fails at capturing labor market data and the interactions between real and
nominal variables. However, he uses stationary, thus pre-filtered data, and can therefore not speak to the
overall decomposition into the several frequency bands.
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replicating behavior at business-cycle frequencies that we identified in the data. However,

the models need to be suitably modified to account for long-term movements via stochas-

tic trends or time-varying inflation targets. They generally fail in capturing behavior at

medium-term cycles of between 8 and 32 years. We demonstrate in a third set of results

that monetary policy shocks exert influence over all frequency bands and in a broadly sim-

ilar manner with the exception of the relationship between short-term interest rates and

inflation where the Fisher effect prevails in the long run.

Our paper thus contributes to a growing area of research that suggests that the notion

of a cycle relevant for stabilization policy should be extended to include at least the medium

term. Specifically, the analysis in the paper indicates that temporary shocks can have long-

lasting effects that traditional business cycle modelling largely abstracts from. Future work

could therefore study time-frequency decompositions in models with such a transmission

mechanism as in, for instance, Comin and Gertler (2006). Similarly, the findings in this

paper also support the idea that what matters for monetary policy is less the short-term

response of policy rates to deviations of economic activity from some target, but rather the

credible anchoring of expectations.27 Typical analyses of optimal monetary policy focus on

weighted averages of the unconditional variances of policy targets. It is common to compare

policies by considering, for example, a weighted average of the unconditional variances of

inflation and unemployment. However, such computations mask the effects of policies on

the variance of fluctuations at different frequencies. Frequency-based optimal policy in the

vein of Brock et al. (2013) would thus be an interesting extension based on the analysis in

this paper.
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Table 2: Variance Decomposition for Simulated Data

Short Term Business Cycle Medium Term Long Term
∆RGDP

Data 56 32 8 4
SW 59 29 10 2

(48-71) (21-38) (5-18) (1-5)
dNGS 60 28 10 2

(50-70) (20-35) (5-17) (1-3)
CET (Nash) 65 27 6 2

(56-74) (21-34) (3-9) (1-5)
CET (AOB) 27 40 23 10

(20-35) (29-50) (14-37) (3-22)

Inflation
Data 16 18 25 41
SW 20 35 29 15

(13-31) (22-48) (14-36) (3-36)
dNGS 17 20 29 34

(7-31) (8-32) (14-47) (9-66)
CET (Nash) 27 39 18 16

(18-37) (24-50) (9-29) (3-42)
CET (AOB) 13 22 20 44

(4-25) (6-41) (8-36) (10-80)

FFR
Data 4 16 24 57
SW 16 36 33 17

(9-23) (23-50) (16-51) (3-38)
dNGS 12 24 33 31

(5-21) (10-39) (17-53) (8-61)
CET (Nash) 25 38 19 16

(16-34) (25-50) (11-31) (3-41)
CET (AOB) 10 23 25 43

(3-17) (7-42) (11-44) (9-79)

Unemployment
Data 5 29 45 21

CET (Nash) 6 18 30 46
(2-11) (5-33) (12-52) (13-79)

CET (AOB) 1 10 30 59
(0-3) (2-21) (10-57) (23-86)

31



Table 3: Variance Decomposition for Simulated Data - Alternative Sample

Short Term Business Cycle Medium Term Long Term
Smets-Wouters
FFR
Full Sample 4 16 24 57
SW Sample 8 25 35 32
Simulated 16 36 33 17

dNGS
FFR
Full Sample 4 16 24 57

dNGS Sample 7 25 32 36
Simulated 12 24 33 31

CET (AOB)
FFR
Full Sample 4 16 24 57
CET Sample 6 21 28 45
Simulated 10 23 25 43

Unemployment
Full Sample 5 29 45 21
CET Sample 6 27 37 30
Simulated 1 10 30 59
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Figure 1: Wavelet Decompositions: Real GDP Growth

Figure 2: Wavelet Decompositions: Unemployment
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Figure 3: Wavelet Decompositions: Inflation

Figure 4: Wavelet Decompositions: Federal Funds Rate
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Figure 5: Wavelet Decompositions: 10-Year Treasury Rate

Figure 6: Wavelet Decompositions: Term Spread
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Figure 7: Wavelet Power Spectra: Real GDP Growth

Figure 8: Wavelet Power Spectra: Unemployment

Figure 9: Wavelet Power Spectra: Federal Funds Rate
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Figure 10: Wavelet Decompositions for Alternative Filters: Real GDP Growth

Figure 11: Wavelet Decompositions for Alternative Filters: Unemployment
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