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1 INTRODUCTION

This paper revisits a fundamental question of monetary economics: What is the transmission of mon-

etary policy to the economy? Empirical work often finds that responses of macroeconomic variables to

monetary policy shocks have the opposite sign of what standard theory predicts. Researchers trace these

adversely-signed responses to information issues, with existing solutions consisting of either adding

more variables [Sims (1992)] or emphasizing information mismatches between central banks and pri-

vate sector agents as a “Fed information effect”.1

We propose temporal aggregation bias—the information mismatch between the econometrician and

private agents—as a new information-based explanation for the adversely-signed transmission of mon-

etary policy. When using the daily CPI from the Billion Prices Project [Cavallo and Rigobon (2016)] as

a temporally disaggregated macroeconomic indicator, we find that the adversely-signed response of in-

flation is short-lived, if it is present at all. A temporally disaggregated measure of inflation controls for

temporal aggregation bias by aligning the frequencies of shocks and dependent variables and hence the

information sets of the econometrician and private agents. We show that the frequency mismatches can

account for the adversely-signed estimates of monetary policy transmission often found in existing work.

To understand how one can estimate a sizable adversely-signed response to monetary policy shocks

with monthly or quarterly data but only a limited adversely-signed response with high-frequency data,

we combine informal and formal empirical evidence with a simple model of temporal aggregation bias.

We first establish that temporally aggregated high-frequency measures of inflation correlate well with

official lower-frequency measures (e.g. monthly CPI) over our sample period (July 2008 to August 2015).

Our empirical tests corroborate the claim that the high-frequency measure of inflation is “good at antic-

ipating major changes in inflation trends,” [emphasis added, Cavallo and Rigobon (2016)].

Our main finding—the response of inflation is conventionally-signed with only a short-lived adversely-

signed response if one is present at all—is obtained from the local projection specification advocated by

Nakamura and Steinsson (2018b). The monetary policy shocks are identified via high-frequency vari-

ation in asset prices around monetary policy announcements, as is standard in the literature [Kuttner

(2001), Gürkaynak et al. (2005), Campbell et al. (2012), Nakamura and Steinsson (2018a), Bu et al. (2021)].

We thus align the frequency of our variable of interest (inflation) more closely to the frequency of vari-

ation used to identify shocks. Impulse response functions show that although the response of inflation

to a contractionary monetary policy shock is initially ambiguously positive for a few weeks, it is negative

thereafter with 90% credible sets also below zero. By contrast, when inflation is time aggregated to a

monthly frequency, impulse response functions show a significant impulse response that is positive.

Because the effect of temporal aggregation bias in local projections depends on the timing of high-

frequency shocks, we build an unobserved components model that explicitly incorporates when mone-

tary policy shocks occur within a month. This state space model adds the daily CPI and daily break-even

1Bauer and Swanson (2023), Bu et al. (2021), and Caldara and Herbst (2019) also emphasize adding more information. For
evidence and discussions of a Fed information effect see Romer and Romer (2000), Campbell et al. (2012, 2017), Nakamura and
Steinsson (2018a), Jarocinski and Karadi (2020), Miranda-Agrippino and Ricco (2021), Lunsford (2020), Hoesch et al. (2023),
Cieslak and Schrimpf (2019), Acosta (2023), Sastry (2022), Karnaukh and Vokata (2022), Lewis (2020), Bundick and Smith (2020),
Andrade and Ferroni (2021), Golez and Matthies (2023), Nunes et al. (2023), Zhu (2023).
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inflation rates as well as possible effects of monetary policy shocks into a model of inflation dynamics

along the lines of Stock and Watson (2016) and Nason and Smith (2020). These impulse responses cor-

roborate our local projection results by showing conventionally-signed transmission of monetary policy.

To shed light on our empirical estimates that uncover a conventionally-signed responses when fre-

quencies of shocks and response variables are matched but adversely-signed responses when unmatched,

we use two simple data generating processes to illustrate the effects of temporal aggregation bias. We first

use Monte Carlo evidence to show how there is no clean identification of monetary policy transmission

when time aggregating with local projections. Second, we use a well-known model from the monetary

policy literature consisting of an Euler equation and a monetary policy rule to show how temporal ag-

gregation can exacerbate initial impulse response functions.

Our contribution of temporal aggregation bias as an explanation for the adversely-signed transmis-

sion of monetary policy shocks provides further support for the ongoing claim, dating back to at least

Kuttner (2001), that monetary policy needs to be studied in a high-frequency environment. Even though

high-frequency economic indicators and temporal aggregation theory have been available for decades,

we are the first—to our knowledge—to apply them to the study of monetary policy transmission.2 By

pairing high-frequency shocks with high-frequency response variables, our work follows existing spec-

ifications that estimate the transmission of monetary policy shocks to financial indicators.3 Financial

indicators, however, may not be as susceptible to temporal aggregation bias as macroeconomic indica-

tors because the former are observable at high frequencies. By contrast, economic indicators are accu-

mulated over a fixed time interval and published with a lag, resulting in aggregation bias from poten-

tially mismatched information sets between private agents observing high-frequency indicators and an

econometrician relying on official releases.4

Unlike other studies, where competing methodologies or conditioning on different data serves to ob-

fuscate analysis, a distinct advantage of our approach is the consistency in inference. We condition on

the same data and apply the same methodology with the only distinction being the frequency of the data.

An increase in the frequency of inflation observations eliminates adversely-signed monetary impulse re-

sponses. Because our temporal aggregation results are generic, we argue that the benefits of using high

frequency data are neither limited to the study of monetary policy transmission nor prices and will be

a key feature of the nascent field of high-frequency macro [Baumeister et al. (2021), Lewis et al. (2021)].

In a macroeconomic environment characterized by fast-moving turning points, such as the Great Fi-

nancial Crisis or the COVID-19 recession, estimates of policy effects may be sensitive to the sampling

frequency of economic response variables. Although high-frequency observables may be susceptible to

measurement noise because they are only proxies of their lower frequency official counterparts, frame-

works like our state space model allow for measurement error. We thus argue that measurement noise is

not necessarily more important than the bias induced by temporal aggregation.

2Lewis et al. (2020a) discuss how time aggregation affects their estimates of monetary policy transmission to household
expectations. See Shapiro et al. (2022), Aruoba et al. (2009), Lewis et al. (2020b) for other high frequency economic indicators.

3See Golez and Matthies (2023), Andrade and Ferroni (2021), Nakamura and Steinsson (2018a), Bauer and Swanson (2022),
Gürkaynak et al. (2022), and Gürkaynak et al. (2021).

4For example, Stock and Watson (2007) note that time series estimates of the CPI are susceptible to temporal aggregation
bias.
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1.1 CONNECTION TO LITERATURE While Campbell et al. (2012) and Nakamura and Steinsson (2018a)

find adversely-signed responses when estimating the transmission of high-frequency monetary policy

shocks to lower frequency forecasts of macroeconomic aggregates, subsequent work finds that properly

accounting for information delivers results that are either ambiguous or in line with structural predic-

tions. Uribe (2022) takes a contrasting stance and argues that monetary policy shocks may actually be

neo-Fisherian.

Closest to our specification of high-frequency inflation indicators responding to high-frequency mon-

etary policy shocks are specifications that rely on commodity prices [Velde (2009)] or high-frequency

expected inflation (TIPS) [Nakamura and Steinsson (2018a)]. Relative to these previously used proxies,

we argue that the Billion Prices Project daily CPI is a relatively more complete measure of inflation and

hence better suited to assess the transmission of monetary policy shocks. Commodities are known to

be more volatile than measures of inflation which may result in different sensitivities to monetary policy

shocks. Similarly, the responses of expected and realized inflation to monetary policy shocks may differ

because the former tends to be anchored while the latter is more prone to fluctuations. Common spec-

ifications that rely on the change in Blue Chip forecasts may thus be understating the transmission of

monetary policy shocks to inflation because they capture changes in expected rather than current infla-

tion. By contrast, we posit that the different sensitivities of expectations and actual indicators is less of

an issue for the transmission of monetary policy shocks to GDP or other real indicators.

Although Buda et al. (2023) also estimate the response of high-frequency economic indicators to

high-frequency monetary policy shocks, they focus on transmission lags rather than the effects of fre-

quency mismatches. Using high-frequency data on Spanish consumption, sales, and unemployment

along with monetary policy shocks from European Central Bank announcements, this work similarly

finds conventionally-signed impulse responses without prominent adverse signs. The consistency of our

findings with theirs is striking given the differences in indicators (prices vs. quantities) and economies

(US vs. EU). Furthermore, our theoretical and Monte-Carlo based analysis highlights how temporal ag-

gregation can emerge as an important source of bias when estimating the effects of monetary policy and

can account for the responses of both papers.5

Rather than following much of the empirical monetary policy transmission literature and focusing on

information refinements to possible explanatory variables, we instead follow Bauer and Swanson (2023)

and contribute refinements to the less-studied measurement of response variables. Because Bauer and

Swanson’s (2023) survey finds that Blue Chip forecasters rarely change their estimates of economic in-

dicators in response to monetary policy announcements, alternative response variables such as high-

frequency indicators may prove useful. The literature’s focus on explanatory variables stems from sev-

eral studies finding predictability and or bias in standard high-frequency monetary policy shocks such as

those estimated by Nakamura and Steinsson (2018a). These studies mainly focus on the response of GDP

and argue that the adverse sign disappears once the shocks are either orthogonalized [Karnaukh and

Vokata (2022), Bauer and Swanson (2022)] or conditioned on missing information [Caldara and Herbst

5Grigoli and Sandri (2022) relatedly explore the transmission of high-frequency ECB monetary policy shocks to high-
frequency German credit card data and corroborate conventionally-signed responses.
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(2019), Sastry (2022), Miranda-Agrippino and Ricco (2021), Bauer and Swanson (2023)].

Many studies—including Nakamura and Steinsson (2018a)—account for the adversely-signed trans-

mission of high-frequency monetary policy shocks by appealing to Romer and Romer’s (2000) Fed infor-

mation effect, which argues that central banks have an information advantage over private agents.6 For

example, in response to tighter monetary policy private agents revise up their forecasts of inflation be-

cause they perceive a signal that the central bank has relatively optimistic non-public information. Other

papers find that controlling for central bank information advantages affects estimates of monetary pol-

icy transmission [Lunsford (2020), Bu et al. (2021), Hoesch et al. (2023), Cieslak and Schrimpf (2019),

Nunes et al. (2023), Zhu (2023)] or eliminates adversely-signed responses entirely [Miranda-Agrippino

and Ricco (2021), Jarocinski and Karadi (2020)]. In fact, Acosta (2023) and Lewis (2020) identify Fed in-

formation shocks and find evidence that is either mixed or against adversely-signed monetary policy

transmission.

In contrast these existing studies, we do not explicitly test or model how the information sets of cen-

tral banks and private agents account for our conventionally-signed estimates of monetary policy trans-

mission. We instead focus on the less-studied but complementary information mismatch between pri-

vate agents and the econometrician to account for conventionally-signed estimates of monetary policy

transmission with high-frequency data, but adversely-signed estimates with time-aggregated data.

Decades of work support our claim that temporal aggregation bias can affect both the direction and

magnitude of estimates of monetary policy transmission. We follow Marcet (1991) in demonstrating

how the systematic effect of time aggregation can bias the first few coefficients of the moving-average

representation. Coupled with results in Amemiya and Wu (1972), who show that temporal aggregation

of autoregressive processes preserves invertibility, these biases would infiltrate modern approaches to

VAR identification. This puts our main result—that adversely-signed estimates of monetary policy trans-

mission can be explained by temporal aggregation bias—on firm theoretical ground. While applications

of these ideas in applied macroeconomics are still relatively rare, Foroni and Marcellino (2016) highlight

how jointly using data collected at different frequencies can help with the identification of structural

VARs with a focus on traditional recursive identification schemes, whereas Foroni and Marcellino (2014)

make a similar argument for dynamic equilibrium models. Christiano and Eichenbaum (1987) high-

light the impact temporal aggregation can have using two examples in macroeconomics. A related, but

distinct, literature has developed tools to estimate regression-type models when the left-hand side is

sampled at a different frequency than the right hand side (Ghysels et al., 2004).

2 HIGHER-FREQUENCY OBSERVATIONS AND INFLATION DYNAMICS

We first demonstrate that a high-frequency inflation proxy can contain information obfuscated by the

publication lags of official series. Our analysis uses the Billion Prices Project Daily Price Index (BPP).

6Faust et al. (2004) find that the adversely-signed response of inflation disappears once the Volcker disinflation is excluded
from Romer and Romer’s (2000) study. Similarly, Sastry (2022), Bundick and Smith (2020) and Bauer and Swanson (2023) ex-
plicitly test for a central bank information advantage and find no evidence.
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Several papers have already established the ability of the BPP to improve forecasts of the CPI [Cavallo

and Rigobon (2016), Aparicio and Bertolotto (2020) and Harchaoui and Janssen (2018)]. We also refer

readers to these papers for a detailed discussion of BPP construction. Our analysis below confirms that

the BPP contains additional information that is obfuscated by the official CPI’s publication lags over our

sample period.7

2.1 DAILY INFLATION DATA We define daily inflation as the 30-day percentage change in the BPP, which

allows for the units of daily inflation to be comparable to those of official inflation which are measured at

monthly frequency. The BPP is constructed from over five million online prices from 300 retailers in 50

countries webscraped daily. While we provide a brief overview here, a meticulous description of the data

is provided in Cavallo and Rigobon (2016). Our data consists of (publicly available) observations from

2008 to 2015. Advantages of the data are [i.] the higher frequency (daily) vis-a-vis the CPI (monthly or bi-

monthly) or scanner data (weekly); and [ii.] the number of prices collected far exceeds the CPI (500k vs.

80k). The disadvantages are [i.] prices are only collected from online retailers and therefore the sample is

not representative of all consumer prices; specifically, the sample contains no pricing from the services

sector.8 According to Cavallo and Rigobon (2016), the data contain at least 70 percent of the weights in

Consumer Price Index (CPI) baskets of roughly 25 countries; [ii.] Because prices are webscraped, the

data does not contain information on quantities sold. Thus, online prices must be coupled with weights

from consumer expenditure surveys or other sources to yield expenditure-weighted data.9 Even though

prices obtained by physically visiting stores may not necessarily coincide with those observed online,

Cavallo (2017) finds a 70 percent match rate.

2.2 CONNECTION TO THE CPI To alleviate concerns that BPP data may not align well with the US CPI,

we now conduct several tests to show that the BPP can contain additional information obfuscated by the

official CPI’s publication lags, a fact that we will exploit in our econometric analysis.

Statistic Release delay (days)

Mean 16.97
Standard error 2.73
Min 13
Max 30

Table 1: Summary statistics on CPI release delays from July 2008 to August 2015.

7See Appendix E for specific details on the series used including seasonal adjustment.
8Although comparing the BPP to a version of the CPI with the same coverage of categories would be an ideal exercise, we

are limited by data availability. We have instead repeated some of the calculations of this section using sub-categories of the
CPI and the results are broadly similar as shown in Appendix A. These sub-categories include the commodity price index, the
commodity plus shelter index, the official index less energy, and the official index less medical services. Although we focus
on comparing the BPP to the CPI because the former is constructed from the weights of the later, we also compare the BPP
to the PCE index. In fact table 6 shows that the BPP’s Nowcast of the PCE has an R2 that is similar to that of the CPI. The
reported Nowcast coefficient of the PCE specification is much lower than its CPI counterpart which likely can be attributed to
the different weights used in construction.

9The BPP only discloses weights pooled across all countries where they collect data. They do not disclose country specific
weights. See https://www.pricestats.com/approach/data-composition.
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Figure 1: Official and daily inflation, monthly and 30-day percentage change. For month T , ∆C PIT =
100× (logC PIT − logC PIT−1) and for day t , ∆BPPt = 100× (logBPPt − logBPPt−30) so that ∆BPPT =
1
m

∑m
t=1 100× (logBPPt − logBPPt−30) for t = 1, . . . ,m days in month T .

Panel 1a plots the percentage change of the monthly CPI and the BPP daily index; panel 1b plots the

percentage change of the monthly CPI against the aggregated monthly BPP. While the correlation of the

two series plotted in panel 1b is only 0.63, several studies have shown that the BPP index is particularly

adept at picking up turning points in the CPI, which leads to improved forecasts [Cavallo and Rigobon

(2016), Aparicio and Bertolotto (2020) and Harchaoui and Janssen (2018)]. To show this result holds

over our sample period, we use the monthly aggregated BPP series to conduct a Nowcast of the CPI by

estimating, ∆C PIT = β0 +β1∆BPPT + eT . Despite both indices being denoted with subscript T , the CPI

at date T is announced with a slight delay as shown by Table 1, which documents the summary statistics

of release delays in days (e.g., June 2008 CPI was released July 16). Given that our interest lies in high-

frequency changes in inflation, the slight difference in timing is relevant as one can use the monthly

average of the BPP to predict that month’s CPI number. The estimated value is 0.94 with an R-squared of

0.58, implying substantial predictive power as shown in panel 2b. Panel 2a plots the in-sample predicted

values against the realized values.

Given the persistence of inflation, we address the following question: Is there any additional predic-

tive power of the BPP beyond that contained in past values of the CPI? Table 2 compares the Nowcast to

an autoregressive representation of the CPI. Column one reports the AR(1) specification results. Columns

two and three condition only on past values of the BPP, and show a substantial increase in the R-squared

value when conditioning on the contemporaneous BPP, while the lagged BPP has less predictive con-

tent than last month’s CPI. Columns four and five demonstrate an affirmative answer to the question of

additional predictive power of the BPP: The coefficients on the contemporaneous BPP are positive and

6
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Figure 2: Nowcast of CPI using monthly aggregated BPP, monthly percentage change. Standard errors in
parentheses on panel 2b. For month T , ∆C PIT = 100× (logC PIT − logC PIT−1) and for day t and month
T , ∆BPPT = 1

m

∑m
t=1 100× (logBPPt − logBPPt−30) for t = 1, . . . ,m days in month T .

statistically significant. The R-squared value is twice as high as the autoregressive specification.10

∆C PIT

(1) (2) (3) (4) (5)

∆C PIT−1 0.558∗∗∗ 0.178
(0.143) (0.107)

∆BPPT 0.937∗∗∗ 0.878∗∗∗ 0.828∗∗∗
(0.129) (0.097) (0.106)

∆BPPT−1 0.591∗∗ 0.109 −0.030
(0.248) (0.193) (0.222)

R2 0.32 0.58 0.23 0.59 0.61
Adj. R2 0.31 0.58 0.22 0.58 0.60

Standard errors in parentheses. ∗(p < .10), ∗∗(p < .05), ∗∗∗(p < .01)

Table 2: Nowcast of BPP vs. autoregressive CPI. For month T ,∆C PIT = 100×(logC PIT −logC PIT−1) and
for day t and month T ,∆BPPT = 1

m

∑m
t=1 100×(logBPPt − logBPPt−30) for t = 1, . . . ,m days in month T .

3 EMPIRICAL RESULTS

Given that the BPP index can contain information obfuscated by the official CPI’s publication lags, the

next phase of the analysis asks how the index responds to monetary policy and whether this response is

different at a daily or monthly frequency. High-frequency identification methods that exploit variation

10We conduct several robustness checks in Appendix A which corroborate our findings that the BPP index is effective at
predicting changes in inflation. For example, we construct alternative metrics for computing inflation (levels, end-of-month
values) and examine different types of seasonality (day-of-the-week).

7
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in asset prices around monetary policy announcements have become the standard in the literature [e.g.,

Kuttner (2001), Gürkaynak et al. (2005), Campbell et al. (2012), Nakamura and Steinsson (2018a), Bu et

al. (2021)]. Using high-frequency inflation data allow us to align the dependent variable with the inde-

pendent variables, and to the best of our knowledge, we are the first to do so. Our expectation here is not

that inflation jumps immediately (within the day) in response to surprise changes in interest rates, but

that prices could substantially change by the time the CPI is made publicly available.

3.1 MEASURES OF HIGH-FREQUENCY MONETARY POLICY SHOCKS Before estimating monetary policy

transmission with disaggregated inflation data, we briefly describe our choice of monetary policy shocks

and their respective timing and identification. We discuss two such constructions in detail—Nakamura

and Steinsson (2018a) (NS) and Bu et al. (2021) (BRW). We focus on these shocks because they are char-

acterized by a single factor that can be parsimoniously embedded into more complex frameworks like

our state space model. Even though the NS shock is widely used, there are known concerns about pre-

dictability and bias. For this reason, we also include estimates using the BRW shock as it claims to control

for some of these concerns.

NS define a “policy news shock” as the first principal component of the change in five interest rate

futures around a 30-minute window of FOMC announcements. These futures span the first year of the

term structure and include the expected federal funds rate at the end of the month of the FOMC an-

nouncement, the expected federal funds rate at the end of the month of the next scheduled FOMC an-

nouncement, and expected 3-month Eurodollar interest rates at horizons of two, three and four quar-

ters. Together, these futures capture the effects of surprise changes in the federal funds rate and for-

ward guidance. Our extension of this shock series is constructed from the Chicago Mercantile Exchange

Datamine futures tick data to assure as close of a match as possible to the original series. BRW use a

Fama and MacBeth (1973) two-step regression to extract unobserved monetary policy shocks from the

common component of zero-coupon yields encompassing the full yield curve. The first step estimates

the responsiveness of yields of different maturities to monetary policy via standard time-series regres-

sions. Filtering out non-monetary policy news is done through the heteroskedasticity-based estimator

of Rigobon (2003) and Rigobon and Sack (2004), implemented by employing instrumental variables (IV).

We construct both of these shock series ourselves using underlying asset pricing data, see Brennan et al.

(2024) for details and additional analysis.

Figure 3 plots monetary policy shock series for each method over our sample period. As noted in

BRW, their shock series has “moderately high correlation" with that of NS in addition to those of Swanson

(2021) and Jarocinski and Karadi (2020). What is evident from the figure is that the BRW shock series has

much more dispersion because it better captures the expansive 21st century monetary policy toolkit as

explained in Brennan et al. (2024) and Bu et al. (2021).

3.2 LOCAL PROJECTIONS We use local projections (Jorda, 2005) to estimate the impulse responses of

inflation to monetary policy shocks at both daily and monthly frequencies. For the daily specification,

let yt+h be the value of daily inflation over the past 30 days at day t +h, zt be the high-frequency shock

series proxying for exogenous variation in monetary policy, and xt−1 be the vector of controls, which are

8
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Figure 3: Monetary policy shock series from Nakamura and Steinsson (2018a) and Bu et al. (2021). Au-
thors’ construction.

30 lags of daily inflation. We estimate

yt+h =α(h) +β(h)xt−1 +Γ(h)zt +e(h)
t , e(h)

t ∼ N (0,σ(h))

with robust heteroskedasticity and autocorrelation consistent (HAC) standard errors. We normalize the

high-frequency monetary shock series proxying for exogenous variation in monetary policy to have unit

variance for either frequency and then plot impulse responses that raise the instrument by one standard

deviation. We use either the aforementioned series from Nakamura and Steinsson (2018a) or Bu et al.

(2021). The model specification at monthly frequency simply aggregates daily data via an arithmetic

average and includes a lag of monthly data as controls to be comparable.

Figure 4 plots the impulse response to a one-time contractionary NS monetary policy shock at both

the daily and monthly frequency. Panel 4a shows daily inflation responds positively initially; however, the

90% confidence interval substantially overlaps zero for periods zero through 33. After roughly 30 periods

(one month), the inflation response turns negative and is significantly so for the remaining days shown.

At a daily frequency, the NS shock sequence does not produce a substantial and long-lasting positive

response of inflation to a contractionary monetary policy shock. The magnitude of the initial positive

response is roughly half that of the negative (and much more persistent) response. Panel 4b aggregates

the daily index to a monthly frequency.11 When inflation is aggregated to a monthly frequency, the initial

11There is only one month in our sample with two monetary policy announcements suggesting little potential for bias from

9
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Figure 4: Impulse response of daily inflation (30-day percentage change) to a one standard deviation
Nakamura and Steinsson (2018a) shock: aggregated vs disaggregated. For a given month, the aggregated
series are the sum of the monetary policy shocks and the average of 30-day percentage change of daily
inflation, BPPT = 100

m

∑m
t=1(logBPPt − logBPPt−30) for days t = 1, . . . ,m of month T . Error bands are 90

%.

positive response is quantitatively large and one of the few components of the impulse response func-

tion for which the confidence band does not cover zero. Although a prominent positive response is often

found in the literature, it contrasts our findings of a negative and significant response using disaggre-

gated daily inflation.

Figure 5 plots the impulse response of inflation to a contractionary BRW monetary policy shock.

Panel 5a shows that, at daily frequency, the median response of inflation is close to zero or slightly nega-

tive until about period 60 (two months) when it becomes more negative and on the margin of the confi-

dence bands. In contrast, when the daily index is aggregated to a monthly frequency, the point estimate

of the impact response is positive, albeit zero is well contained in the 90% credible sets. Given that the

Fed information effect and its associated adversely-signed responses are not detected in the BRW shock,

the results plotted in figure 5 are not surprising.

3.3 DISCUSSION The monthly / aggregated positive response of inflation to a contractionary NS mon-

etary policy shock plotted in panel 4b behooves researchers to provide an explanation. Standard theory

tells us that a contractionary shock should reduce inflation. This adversely-signed response to mon-

etary policy shocks that we find in panel 4b is a robust finding of the empirical literature while the

conventionally-signed response in panel 4a is relatively novel.

One explanation for what we refer to as an adversely-signed response is the Fed information effect’s

notion that private agents react to the novel information revealed in monetary policy announcements.12

the aggregation / scaling of high-frequency monetary policy shocks.
12Romer and Romer (2000), Campbell et al. (2012, 2017), Nakamura and Steinsson (2018a), Jarocinski and Karadi (2020),
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Daily inflation response to BRW shock
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Figure 5: Impulse response of daily inflation (30-day percentage change) to a one standard deviation Bu
et al. (2021) shock: aggregated vs disaggregated. For a given month, the aggregated series are the sum
of the monetary policy shocks and the average of 30-day percentage change of daily inflation, BPPT =
100
m

∑m
t=1(logBPPt − logBPPt−30) for days t = 1, . . . ,m of month T . Error bands are 90 %.

Thus, a response that runs counter to standard theory could be explained by introducing a discrep-

ancy in information between the Federal Reserve and private agents, as advocated by Nakamura and

Steinsson (2018a). However, testing for this effect requires high frequency data. Previous studies [e.g.,

Jarocinski and Karadi (2020), Lunsford (2020)] examined the reaction of asset prices, such as stocks and

bonds, but we are the first to study inflation at high frequency. Figure 4 demonstrates that the adversely-

signed response to inflation could be due to an information discrepancy between the econometrician

and private agents, and not just the Federal Reserve and private agents. At the daily frequency, no such

adversely-signed response materializes. Temporal aggregation can explain the significant and positive

initial response in aggregated data when no such response is present at higher-frequency. We explore

this conjecture more thoroughly in Section 4.

Moreover, in Brennan et al. (2024) we show that a conventionally-signed impulse response of daily

inflation is robust to other monetary policy shock series—like those of Kuttner (2001) and Jarocinski and

Karadi (2020)—in addition to those of Nakamura and Steinsson (2018a) and Bu et al. (2021) shown here.

Furthermore, Appendix B shows that the impulse response of daily inflation are conventionally-signed

to the federal funds rate target shock of Gürkaynak et al. (2005) but adversely-signed to the forward guid-

ance path shock. If the NS shock can be interpreted as the linear combination of the target and path

shocks, we find that the impulse responses to the distinct components are exactly as one would expect.

Miranda-Agrippino and Ricco (2021), Lunsford (2020), Hoesch et al. (2023), Cieslak and Schrimpf (2019), Acosta (2023), Lewis
(2020), Bundick and Smith (2020), Andrade and Ferroni (2021), Golez and Matthies (2023).
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3.4 UNOBSERVED COMPONENTS MODEL An unobserved components model allows us to study the

response of high-frequency inflation to a monetary policy shock more systematically by taking into ac-

count the exact timing of monetary policy shocks and official inflation releases within a month. We

employ this methodology for several reasons. First, the permanent-transitory decompositions cast in

state space form have proven very useful for inflation at lower frequencies [Stock and Watson (2020)].

Second, there is transparency in modeling assumptions. Relative to the local projections methodology,

the modeling assumptions here are more straightforward. This allows us to take a more definitive stance

on our finding of a conventionally-signed estimate of monetary policy transmission, as opposed to dis-

entangling how temporal aggregation might interact with, say, our IV estimation. Third and relatedly, the

model specification is parsimonious. Finally and most importantly, the state space / estimation method-

ologies allow us to more easily handle data observed at different frequencies and with observations miss-

ing at different dates—we use daily inflation data, data on break-even inflation rates that are available

daily except for holidays and weekends, infrequent monetary policy shocks, and monthly inflation rates.

# Parameter Prior Notes

1 σπ Γ(1,0.5) standard deviation of i.i.d. component of underlying inflation
2 στ Γ(1,0.5) standard deviation of innovation to random walk permanent component
3 ρg β(4,4) persistence of stationary part
4 σg Γ(1,0.5) standard deviation of innovation to stationary part
5 αm N (0,0.00012) intercept of measurement equation of monthly CPI inflation
6 σmonthl y Γ(1,0.5) standard deviation of measurement error of monthly CPI inflation
7 αd ai l y N (0,52) intercept of measurement equation of daily (30-day) inflation
8 σd ai l y Γ(1,0.5) standard deviation of measurement error of daily inflation
9 αBE N (0,52) intercept of measurement equation of daily BE inflation
10 σBE Γ(1,0.5) standard deviation of measurement error of daily BE inflation
11 θ

g
0 N (0,0.252) contemporaneous impact of monetary policy shock on g

12 θτ0 N (0,0.252) contemporaneous impact of monetary policy shock on τ

13 σm,obs Γ(1,0.5) standard deviation of monetary policy shock
14 ∼ 72 θ

g
i

59×1
N (0, (0.25∗0.95i )2) vector of effects of 59 days lagged monetary policy shocks on g

73 ∼ 131 θτi
59×1

N (0, (0.25∗0.95i )2) vector of effects of 59 days lagged monetary policy shocks on τ

Table 3: Prior Specification

Our model consists of the following state equations:

πt = τt + g t +eπt Unobserved daily CPI inflation

τt = τt−1 +
K∑

k=0
θτk mt−k +eτt Permanent component

g t = ρg t−1 +
J∑

j=0
θ j mt− j +eg

t Transitory component

The permanent component of inflation allows for a unit-root specification and a sequence of monetary

policy shocks for 60 periods (K = J = 60). The transitory component permits auto-correlation and the

same number of monetary policy shocks. We assume monetary policy shock dynamics mt = em
t with all

12
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shocks e being i.i.d. and Gaussian.13

The observation equations are:

πm
t =αm +πt−p +emonthl y

t Monthly observation of CPI

π
d ai l y
t =αd ai l y +πt +ed ai l y

t Daily measure of 30-day inflation

πBE ,h
t =αBE +Etπt ,t+h +eBE

t 10-year break-even rates

where p is the publication lag mentioned in Section 2 (which can vary over time as shown in Table 1).

We assume that high-frequency monetary policy shock series are a noisy measurement of the true ex-

ogenous variation in monetary policy: mobs
t = mt + em,obs

t , along the lines of Caldara and Herbst (2019).

Note that the model implies Etπt+h = Et (τt+h + g t+h) = τt +ρh g t ≈ τt , where the last approximation

is imposed on the estimation procedure (our prior imposes that the daily persistence of the transitory

component |ρ| < 1, and h represents the 10-year horizon).
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Figure 6: Impulse responses to a one standard deviation Nakamura and Steinsson (2018a) monetary
policy shock. Error bands are 68 % and 90 % posterior bands centered at the median.

13In contrast to previous work using state space models to describe inflation dynamics, we explicitly incorporate a role for
monetary policy shocks. We allow these shocks (which are measured with error) to affect both transitory and permanent com-
ponents of inflation. This is important because movements in inflation that might seem permanent at the daily frequency can
correspond to persistent, but non-permanent components at a lower frequency.

13



JACOBSON, MATTHES & WALKER: TEMPORAL AGGREGATION BIAS

The estimation is Bayesian with the likelihood function evaluated using the Kalman filter. To ef-

fectively explore the posterior distribution, a sequential Monte Carlo algorithm is implemented [Herbst

and Schorfheide (2016)]. We use 15,000 particles with 200 steps to go from the prior to the full posterior

and five Metropolis Hastings steps per iteration of the algorithm. Table 3 reports our prior distributions,

which are largely uninformative. We do impose somewhat informative priors on the effects of monetary

policy shocks on the transitory and permanent components of inflation. We center those priors at 0 to

not bias our results for or against finding adversely-signed responses, but we do impose shrinkage—the

further a monetary policy shock is in the past, the more we shrink its effect toward zero. These findings

are robust to imposing less shrinkage as shown in Appendix C.

Panel 6a plots the overall impulse response function of inflation to a contractionary NS monetary

policy shock, while panels 6b-6c plot the response of the transitory and permanent components, respec-

tively.14 Darker shaded error bands are 68th percentiles, while lighter shades are 90th. Panel 6a shows

that inflation—at a daily frequency—does not contain an adversely-signed response. The initial reaction

of inflation to a one standard deviation monetary policy shock is negative, even at the 90th percentile,

followed by an increase and an error band that contains zero over the remaining horizon. These results

further corroborate our findings from the local projections; namely, that the adversely-signed response

of inflation to a monetary policy shock is difficult to detect when controlling for the information sets of

the econometrician and private agents.

By decomposing into permanent and transitory components, we are able to parse the conventionally-

signed impulse response as permanent. Panel 6c shows a conventionally-signed impulse response in the

permanent component of daily inflation. The less-persistent transitory response is shown to be quan-

titatively small relative to trend as shown in panel 6b. The variance decomposition, shown in figure 7,

shows that the lion’s share of volatility is explained by the permanent component of inflation as opposed

to the transitory component. Taken together, these figures suggest that methodologies that de-trend in-

flation prior to analysis could miss conventionally signed responses. More germane to our argument,

the transitory component when evaluated at daily frequencies does not display a substantial adversely-

signed response despite the fact that the shocks fed into the system are known to generate adversely-

signed responses at much lower (monthly) frequencies.

3.5 DISCUSSION To summarize, our empirical findings suggest that temporal aggregation, going from

daily observations of inflation to monthly, can generate impulse response functions that are qualitatively

different. Using the Nakamura and Steinsson (2018a) shock series, we find a positive response of infla-

tion to a contractionary monetary policy shock at the monthly frequency, yet no such positive response

emerges at daily frequency. We verify these findings by estimating a flexible unobserved components

model that allows for permanent and transitory components. At daily frequency, the transitory response

is negligible, while the permanent component reacts in a manner consistent with theory (inflation falls in

response to a contractionary shock). We now turn to theory to address how such outcomes are possible.

14Results are similar for the BRW shock series and are available upon request.
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Figure 7: Variance decomposition associated with monetary policy shock as a fraction of total variance.

4 UNDERSTANDING TEMPORAL AGGREGATION

We employ stylized models of monetary policy to show how properties of temporal aggregation can ac-

count for our empirical results of Section 3. Using simulated data and local projections, we show how

a short-lived adversely-signed response (i.e., positive response of inflation to a contractionary mone-

tary policy shock) can seep into lower frequencies due to temporal aggregation bias. We then provide a

more theoretical framework to demonstrate how temporal aggregation leads to substantial bias in im-

pulse response functions; specifically, in the initial values of moving-average representations. We keep

the models sufficiently simple in order to provide clear intuition, acknowledging that these are examples

as opposed to theorems. However, we conjecture robustness of our results by appealing to an earlier

literature that operates in continuous time.
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4.1 TEMPORAL AGGREGATION WITH LOCAL PROJECTIONS Consider the data-generating process of in-

flation,

πt =
59∑

j=0
Θ jε

mp
t− j +ut (1)

ut = ρuut−1 +εu
t

where t is assumed to be daily, and the monetary policy shock εmp
t ∼ N (0,1) is uncorrelated with the

persistent shock ut ∼ N (0,σ2
u). We assume the monetary policy shock occurs only once per month,

while ut occurs every day. We examine three alternative specifications of the timing of the monetary

policy shock—a shock that occurs at the beginning (day 1), middle (day 15), and end (day 30) of the

month. To approximate population moments, we simulate three million daily observations, taking 30-

day averages of shocks and the inflation process (1) to obtain corresponding monthly data. We denote

monthly variables asΠT and εmp
T , where T is measured in months. Local projections are used to estimate

monthly responses of inflation to the monetary policy shock, controlling for lagged inflation outcomes.

We set ρu = 0.99 andσu = 1 to capture the idea that other shocks are just as important as monetary policy

for the evolution of inflation at the daily frequency. The parameters governing the reaction of inflation

to monetary policy are given by Θ j = 1 for j = 0, ...,9 and Θ j = −1 for j = 10, ...,59. Our calibration is

consistent with the local projection response of daily inflation to the NS shock series shown in figure 4.

Our parameterization accomplishes two tasks: first, it introduces what we refer to as an initial adversely-

signed policy response of inflation; that is, the first ten daily observations of inflation following a mone-

tary policy shock are inconsistent with standard theory in that a contractionary shock would lead to an

increase in inflation. Second, the average effect over the 30-day period is consistent with theory. The

remaining two-thirds of the daily observations over the month enter with a negative coefficient, imply-

ing a contractionary shock would lead to a fall in inflation. Note also that the magnitudes of the first

10 days and last 20 days are similar. The implication of our calibration is that one would not expect the

adversely-signed inflationary response to materialize in the aggregate (monthly) data because a majority

of the signs—20 out of 30—are negative instead of positive. The short-lived adversely-signed response

should essentially be dominated by the theoretically-consistent response.

Table 4 shows results for three local projection specifications and various timing of the monetary

policy shock. In two of the three specifications, the econometrician would find a positive initial response

of inflation to a monthly monetary policy shock, despite the fact that the time-averaged response is

negative. Only when the monetary policy shock hits towards the beginning of the month does the sign of

the response of inflation match the temporally aggregated negative value. The lagged shock, ϵT−1, does

enter with a negative sign, so while the initial response could be adversely-signed, the subsequent moves

are standard.

The timing of the monetary policy shock is important. Figure 8 (left panel) plots the time-aggregated

monthly moving average coefficients (i.e. the accumulated response to a monetary policy shock) (left,

y-axis) against the timing of the monetary policy shock (x-axis).15 The time-aggregated MA coefficients

15Note that this accumulated response is not directly comparable to our estimates reported in table 4 since we assume in
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Panel A: Beginning Panel B: Middle Panel C: End

ε
mp
T ΠT−1 ε

mp
T−1 ε

mp
T ΠT−1 ε

mp
T−1 ε

mp
T ΠT−1 ε

mp
T−1

ΠT -0.40 0.82 0.29 0.82 0.03 0.82
ΠT -0.50 -1.16 0.38 -0.85 -0.06 -0.26
ΠT+1 -1.09 0.61 -0.92 0.60 -0.19 0.60

Table 4: Local projection results. Three million observations of daily inflation simulated via (1) and ag-
gregated to monthly (30 day) frequency were estimated using local projections. The panels denote when
the monetary policy shock hits the economy, at the beginning (day 1), middle (day 15) or end (day 30) of
the month. Dependent variables are in the first column, the other columns display the coefficients of the
right-hand-side variable given at the top of each column within a panel. The first row of the results is the
response of inflation to the monetary policy shocks from the current and previous months. The second
and third row of results are the local projections at time T = 0 and T = 1, respectively.

for any month can be written as Ψ ≡ ∑29− j
t=0 (1t≤9 − 1t>9) where j = 29, ...,0 is the day of the month when

the monetary policy shock occurs. For example, when j = 29 the shock occurs on the last day of the

month and Ψ = 1. As j decreases, the shock occurs earlier in the month, and the monthly aggregated

responseΨ becomes larger. In fact, the largest positive responseΨ= 10 is on day j = 21. Thereafter, the

negative MA coefficients enter into the monthly aggregation and the largest negative impact Ψ=−10 is

when the shock occurs on day j = 0 at the very beginning of the month. The histogram plotted on the left

panel of figure 8 shows that over our sample period, the timing of FOMC announcements is consistent

with the shock hitting during the middle of the month. The mean and median FOMC announcement

occurred on the 19th day of the month, and a majority of the announcements occurred after the 10th day

of the month. This simple example shows how researchers using aggregated data can estimate a positive

response of inflation to a contractionary monetary policy shock even though most of the disaggregated

response coefficients are negative.16

Finally, we note that the results are not contingent on the parameterization of the daily process, ut .

Figure 8 (right panel) plots the initial response using the middle of the month timing as in panel B of

table 4 against the serial correlation coefficient and standard deviation. It shows that size of the pos-

itive coefficient in the LP regression is increasing in the correlation of the non-monetary policy shock

and its standard deviation, but remains substantial (0.13) when these values are close to zero. These re-

sults confirm our empirical findings—a short-lived adversely-signed response at daily frequency can be

persistent and significant at monthly frequency.

4.2 DISCUSSION It is important to emphasize how we define “bias" in this example. Of course, the

econometrician would be better off using high-frequency data to estimate the response of inflation to a

monetary policy shock. They would find an adversely-signed positive response that is quickly dominated

our simulations that there is only one monetary policy shock per month and in practice there are eight scheduled FOMC an-
nouncements per year.

16Typically the FOMC meeting schedule is set years in advance. Although unscheduled FOMC announcements do occur, they
are quite rare and there is only one such announcement in our sample. It is therefore possible that the day of the month of an
FOMC announcement is random, but unlikely in practice.
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Figure 8: Robustness. Accumulated responses as a function of shock timing (left panel) and impact IRFs
estimated via local projections as a function of autocorrelation (ρu) and standard deviation (σu) (right
panel).

by the negative response, consistent with the local projection impulse response of panel 4a. However,

suppose only temporally aggregated data are available. One would expect the negative terms to dom-

inate the temporal aggregation, eliminating the initial positive impulse response of monthly inflation.

This does not happen in panel 4b and it does not happen in our simulation, hence the term temporal

aggregation bias. Thus, we have generated a simulation consistent with our empirical findings. The final

section addresses how such a result can occur.

4.3 TEMPORAL AGGREGATION IN A STRUCTURAL MODEL We now provide a more theoretical frame-

work to demonstrate how temporal aggregation leads to substantial bias in impulse response functions.

Consider a nominal bond that costs $1 at date t and pays off (1+ it ) at date t +1. The asset-pricing equa-

tion for this bond can be written in log-linearized form as a Fisher equation, it = r +E[πt+1|It ], where

the real interest rate is assumed to be constant and E[πt+1|It ] is the private agents’ expectation of next

period’s (t + 1) inflation. Monetary policy follows a Taylor rule, adjusting the nominal interest rate in

response to inflation, it = r +φ[πt |It ]+ xt , where the monetary policy shock follows an AR(1) process,

xt = ρxt−1+εt , with ρ ∈ (0,1) and εt distributed as Gaussian with mean zero and varianceσ2
ε. We assume

the information set of the monetary authority is consistent with private agents’ (It ) so that we can isolate

the effects of the information mismatch between private agents and the econometrician. The unique

equilibrium rate of inflation is well known and follows from implementing the Taylor principle (φ> 1),

πt =− xt

φ−ρ = ρπt−1 +wt (2)

where wt =−εt /(φ−ρ).

We assume the econometrician observes realizations of the equilibrium processes at a frequency

that is lower than private agents. Specifically, let t = mT and define the temporally aggregated inflation
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m = 1 m = 2 m = 5 m = 10 m = 20 m = 30 m = 40 m = 50

ρm 0.990 0.980 0.951 0.904 0.818 0.740 0.669 0.605
θ 0.000 0.171 0.250 0.264 0.265 0.266 0.266 0.267
σ2

u 0.028 0.041 0.085 0.160 0.288 0.391 0.476 0.542
σ2
Π 1.397 1.389 1.374 1.351 1.307 1.266 1.226 1.186

Table 5: Estimates of the ARMA(1,1) equation (4) using temporally aggregated observations of equation
(2). Note that for m = 1 (no temporal aggregation), σ2

u =σ2
w .

process as

ΠT =
(

1

m

)(
m−1∑
j=0

L j

)
πmT =

(
1

m

)
(πmT +πmT−1 +·· ·+πmT−m−1) T = 1,2,3, ... (3)

For example, if t is a month and m = 3, then T is a quarter. Inflation, πt , could be interpreted as a

monthly year-over-year percentage change, and the three-month non-overlapping arithmetic mean is

one possible way of aggregating. Alternatively, we could assume to observe month-over-month inflation

and the direct summation yields quarterly inflation. Our analysis below is robust to these alternative

aggregation methods.

Appendix D shows that temporally aggregating the AR(1) inflation process given by (2) yields an

ARMA(1,1) representation,

(1−ρmL)ΠT = uT +θuT−1 uT ∼ N (0,σ2
u) (4)

where, for lag operator L, the autocorrelation coefficient is raised to the power of m (the number of aggre-

gated components), and the estimated shocks (ut ) will be fundamental for theΠt process (Amemiya and

Wu (1972)). The last fact ensures that an autoregressive (or VAR) representation will accurately estimate

the ARMA process. An analytical mapping between the aggregated inflation process and the ARMA(1,1)

parameters is not feasible but Table 5 provides estimates of the parameters for various values of m using

simulated data. We set ρ = 0.99, φ= 1.05, σ2
ε = 0.01, and use one million disaggregated observations.

The estimates in Table 5 reveal important properties of the mapping between an AR(1) process and its

temporally aggregated ARMA(1,1) counterpart: [i.] the autocorrelation coefficient decays exponentially

at rate m; [ii.] the variance of the aggregate inflation process declines multiplicatively in m (see Appendix

D for derivation).

σ2
Π = σ2

π

m2

(
m +2[(m −1)ρ+ (m −2)ρ2 +·· ·+ρm−1]

)
(5)

Taken together, [i] and [ii] imply that the variance of the innovation process σ2
u and the moving average

parameter θ must compensate for the faster decline in the autocorrelation coefficient, ρm . Table 5 shows

that the variance of the innovation (σ2
u) increases 46% for m = 2 and by a factor of ten for m = 20, and the

moving-average parameter also increases with m. The increase in the estimated variance will translate
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Figure 9: Initial impulse response and moving-average filter for various m. Panel a (left-side) shows
the decline in the initial impact coefficient as m increases from 1 to 30. Panel b (right-side) plots the
spectrum for m = 2 (blue) through m = 30 (green), demonstrating why low frequency properties are
preserved.

into a more pronounced initial impact of the impulse response of inflation to a monetary policy shock.

Panel 9a plots the initial impulse response to a one-standard deviation shock (σu) for various levels of

aggregation. Note that the units of the x-axis correspond to the degree of aggregation m. The disaggre-

gated impulse (m = 1) shows an inflation process with an impact response that is substantially mitigated

relative to the temporally aggregated responses. Even a slight increase in the degree of aggregation leads

to a substantial change in the impact response to a monetary policy shock—temporally aggregating over

six periods more than doubles the initial impact. This dynamic is consistent with our empirical findings

in Section 3, specifically figures 4 and 5.17

Panel 9b plots the moving-average filter
( 1

m

)(∑m−1
j=0 L j

)
in the frequency domain over the range of 0 to

π. The panel shows that a MA filter is a low-pass filter, allowing lower frequencies to pass through while

attenuating medium and higher frequencies. What is critical for understanding the bias associated with

temporal aggregation is how the reallocation of the spectrum is distributed across various parameters

of the estimated ARMA(1,1) process. Lower frequencies are preserved when aggregation occurs despite

the decline in the autocorrelation coefficient (from ρ to ρm). Amemiya and Wu (1972) show that, for any

stationary AR(p) representation, temporal aggregation preserves the order of the autoregressive process

(i.e., an AR(p) becomes an ARMA(p,q))18 with the autoregressive roots all raised to the power m. These

seemingly conflicting properties—a decline in the value of the (positive) autocorrelation roots coupled

with no subsequent change in the low frequency properties of the time series process—leads to a sub-

stantial change in the initial impulse response coefficients through an increase in the variance of the

17One distinction between this exercise and our empirics is the normalization of the variance. If one were to normalize the
variance for the temporally aggregated series to match the disaggregated value, the correction would come through the moving
average term and figure 9 continues to be relevant.

18Stram and Wei (1986) show this condition holds as long as the AR roots are distinct from the MA roots.
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innovation process and appearance of positive moving-average parameters.

4.4 DISCUSSION The purpose of this section was to establish how temporal aggregation can sub-

stantially alter initial moving-average coefficients. An econometrician time-aggregating the data will

attribute a structural interpretation to a significant adversely-signed initial reaction of inflation to a mon-

etary policy shock, when the lion’s share of the response is due to temporal aggregation bias. While we

believe this section has established compelling intuition for our results, the models are stylized and so

we briefly discuss robustness. Appealing to Marcet (1991), our primary result is not an artifact of specific

assumptions underlying our model but is due to the more generic properties of temporal aggregation.

Working in a continuous-time framework and with generic Wold representations, Marcet (1991) finds

the “systematic effect of time aggregation is to increase the absolute size of the first few coefficients of the

MAR (moving-average representation) (emphasis added).” This result, coupled with the fact that tempo-

ral aggregation preserves invertibility for autoregressive processes (Amemiya and Wu (1972)), suggests

that our results are robust to alternative specifications.

5 CONCLUDING THOUGHTS

This paper revisits a fundamental question of monetary economics: What is the transmission of mone-

tary policy to the economy? We introduce temporal aggregation bias as a new information-based expla-

nation for the adversely-signed transmission of monetary policy shocks. When using the daily CPI from

the Billion Prices Project as a temporally disaggregated macroeconomic indicator, we find a conventionally-

signed response with only a short-lived adverse sign when present at all. To understand how one can ob-

tain a sizable adversely-signed response to monetary policy shocks with monthly or quarterly data when

only a limited adversely-signed response is found at a higher frequency, we combine informal and formal

empirical evidence with a simple model of temporal aggregation bias. Because our temporal aggregation

results are generic, and macroeconomic indicators are published with a lag, we argue that temporal ag-

gregation bias is not limited to our study of monetary policy transmission and will likely be a key feature

of the nascent field of high-frequency macro.
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A APPENDIX: BPP ROBUSTNESS CHECKS

A.1 ALTERNATIVE CONSTRUCTIONS OF BPP INFLATION This section shows an alternative version of

figure 2.
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Figure 10: Nowcast of CPI using end of month values of the BPP, monthly and 30-day percentage
change. For month T , ∆C PIT = 100× (logC PIT − logC PIT−1) and for day m of month T , ∆BPPT =
100× (logBPPm − logBPPm−30).
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Figure 11: Nowcast of CPI using aggregated monthly values of the BPP index. For month T , C PIT =
logC PIT and for day t of month T , ∆BPPT = 1

m

∑m
t=1 logBPPt for t = 1, . . .m days in month T .
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A.2 CPI SUB-CATEGORIES Table 6 shows how the BPP Nowcast of the headline CPI compares to other

CPI sub-categories and the PCE index.

∆C PI i
T , sub-categories i ∆PC ET

(1) (2) (3) (4) (5) (6)

Headline Commodities
Commodities

& Shelter
Headline
ex energy

Headline
ex Medical

Headline
PCE

∆BPPT 0.937∗∗∗ 1.618∗∗∗ 0.530∗∗∗ 0.180∗∗∗ 1.001∗∗∗ 0.497∗∗∗

(0.129) (0.283) (0.121) (0.052) (0.137) (0.081)

R2 0.58 0.48 0.36 0.21 0.59 0.52
Adj. R2 0.58 0.47 0.36 0.20 0.58 0.52

Standard errors in parentheses. ∗(p < .10), ∗∗(p < .05), ∗∗∗(p < .01)

Table 6: Nowcast of CPI sub-categories using the BPP. For month T and sub-category i , ∆C PI i
T = 100×

(logC PI i
T − logC PI i

T−1); for day t and month T , ∆BPPT = 1
m

∑m
t=1 100× (logBPPt − logBPPt−30) for t =

1, . . . ,m days in month T ; and for month T , ∆PC ET = 100× (logPC ET − logPC ET−1).

A.3 SEASONALITY

BPPt = tr endt +
∑

j
α

d ay
j 1d ay o f week +ϵt

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

96.7 96.8 96.9 97

Figure 12: Day of week effects of the Billion Prices Project daily CPI.
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B APPENDIX: IMPULSE RESPONSE FUNCTIONS WITH OTHER SHOCKS

Daily inflation response to target shock
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Figure 13: Impulse responses of daily inflation (30-day percentage change) to one standard deviation
Gürkaynak et al. (2005) target and path shocks. Error bands are 90 %.

The impulse response of the target shock (left panel) is similar to that of the NS shock shown in panel

4a. Although there is an initial positive impulse response, it is short-lived and not statistically significant

from zero. Meanwhile, the subsequent negative impulse response coefficients are statistically significant

with 90 % error bands. By contrast, the impulse response of the path shock (right panel) has a significant

adversely-signed response for about 30 days before turning conventionally-signed. The signs of these

impulse responses are as expected because the target and path shocks capture surprise changes in the

federal funds and forward guidance, respectively. The adversely-signed response, often attributed to the

Fed information effect’s central bank signaling, is only detected at higher frequencies when using a shock

explicitly designed to capture forward guidance.

C APPENDIX: IMPULSE RESPONSE FUNCTIONS WITH LESS SHRINKAGE

This Appendix shows the impulse responses from the state space model under the assumption of less

shrinkage - the prior standard deviation of lagged coefficients is now 0.25×0.99i , where i is the lag.
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Figure 14: Impulse response of inflation (πt ) to a one standard deviation Nakamura and Steinsson
(2018a) monetary policy shock. Error bands are 68 % and 90 % posterior bands centered at the me-
dian.
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Figure 15: Impulse response of the transitory component of inflation (g t ) to a one standard deviation
Nakamura and Steinsson (2018a) monetary policy shock. Error bands are 68 % and 90 % posterior bands
centered at the median.
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Figure 16: Impulse response of the permanent component of inflation (τt ) to a one standard deviation
Nakamura and Steinsson (2018a) monetary policy shock. Error bands are 68 % and 90 % posterior bands
centered at the median.
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D APPENDIX: TEMPORAL AGGREGATION

Theorem 1. The temporally aggregated inflation process given by (3) and (2) satisfies the following two

properties:

1. The temporally aggregated inflation series,ΠT , follows an ARMA(1,1) process.

(1−ρmL)ΠT = uT +θuT−1 (6)

2. The innovation of the ARMA(1,1) process (6) is fundamental for the temporally aggregated inflation

sequence,ΠT .

This theorem is well known and dates back to at least to Amemiya and Wu (1972); thus, we do not

offer a complete proof but provide intuition and references. To understand part (1), let πt = ρπt−1 +wt ,

where wt is Gaussian with mean zero and variance σ2
w =σ2

ε/(φ−ρ)2, and note

γ(0) = Var(ΠT ) = σ2
π

m2

(
m +2[(m −1)ρ+ (m −2)ρ2 +·· ·+ρm−1]

)
(7)

γ(s) = Cov(Πt ,Πt−s) = σ2
π

m2ρ
m(|s|−1)+1(1+ρ+ρ2 +·· ·+ρm−1)2 s ̸= 0 (8)

γ(s) = ρmγ(s −1) |s| ≥ 2 (9)

where σ2
π = σ2

w /(1−ρ2), see Wei and Ahsanullah (1984). The intuition of (7)–(8) comes from the corre-

lation structure of an autoregressive process, where all elements are multiplied by
σ2
π

m2
. Thus, there are

(m−1) “neighbors", (m−2) elements two periods removed, etc. Given the strength of the autocorrelation

of many macro aggregates, the following limits are useful. As ρ→ 1, the term in brackets in (7) converges

to m(m − 1)/2 and therefore, Var(ΠT ) → σ2
π and Var(ΠT ) ∈ (0,σ2

π). Further, the parenthetic term in (8)

converges to m as ρ→ 1, and Cov(Πt ,Πt+s) →σ2
π.

πt πt−1 πt−2 · · · πt−m

πt 1 ρ ρ2 · · · ρm−1

πt−1 ρ 1 ρ · · · ρm−2

πt−2 ρ2 ρ 1 · · · ρm−3

...
πt−m ρm−1 ρm−2 ρm−3 · · · 1

The covariance difference equation (9) identifies the autocorrelation coefficient of theΠT process as

ρm . We can then multiply [(1−ρmL)/(1−ρL)]
∑m−1

j=0 L j to both sides of πt to give,

(
(1−ρL)(1−ρmL)

∑m−1
j=0 L j

1−ρL

)
πt =

(
(1−ρmL)

∑m−1
j=0 L j

1−ρL

)
wt

(1−ρmL)ΠT =
m−1∑
j=0

(ρL) j wt = uT +θuT−1 (10)
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where uT ∼ N (0,σ2
u). The errors defined by the m moving-average terms

∑m−1
j=0 (ρL) j wt are correlated

and therefore cannot be used to obtain the Wold innovations associated with predictingΠT linearly from

its past. Theorem 1 of Amemiya and Wu (1972) proves that with m ≥ 2, then the moving-average terms

are at most of order one, which establishes the final equality.

The proof of Part 2 also relies on arguments in Amemiya and Wu (1972). In order for the process to be

fundamental, one must show that the roots of 1−θz lie outside of the unit circle (i.e., |θ| < 1). Given that

the initial AR(1) process is positive definite (ρ ∈ (0,1)), then it has a positive spectral density. As shown

in Amemiya and Wu (1972), temporal aggregate maintains the positive definite structure and hence the

roots of the moving-average representation must lie outside the unit circle.

D.1 MOVING-AVERAGE FILTERS Suppose we have a stationary stochastic process xt that is aggregated

according to

XT =
(

1

m

)(
m−1∑
j=0

L j

)
xmT =

(
1

m

)
(xmT +xmT−1 +·· ·+xmT−m−1) (11)

Note that 1+L+L2+·· ·+Lm−1 = (1−Lm)/(1−L). Thus, the covariance generating function of XT is related

to xt by

gX (z) = 1

m2

(
1− zm

1− z

)(
1− z−m

1− z−1

)
gx (z) (12)

In the frequency domain (z = e−iω),

gX (e−iω) = 1

m2

(
1−e−iωm

1−e−iω

)(
1−e iωm

1−e iω

)
gx (e−iω)

= 1

m2

(
1−cos(ωm)

1−cos(ω)

)
gx (e−iω) (13)

where (1 − e−iωm)(1 − e−iωm) = 2 − (e iωm + e−iωm) = 2 − 2cos(ωm) = 2(1 − cos(ωm)) because e iωm =
cos(ωm) + i sin(ωm) and e−iωm = cos(ωm) − i sin(ωm). Plotting this function over the range of [0,π]

gives panel 9b.
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E APPENDIX: DATA

This section lists the source and description of each series used in this paper.

OFFICIAL CPI INDEX Analysis in section 2.2 use the BLS’ seasonally adjusted Consumer Price Index

(FRED: CPIAUCSL) at a monthly frequency. Results in section (3) use the seasonally adjusted (PCPI)

and not seasonally adjusted (CPIN) real-time Consumer Price Index which is accessed via the Real-time

Data Research Center at the Federal Reserve Bank of Philadelphia.19 In each real-time spreadsheet, the

columns are the date of the vintage and the rows are the time series for that vintage. We then construct a

time series by calculating the monthly percentage change for the last two entries for each vintage.

DAILY CPI The Billion Prices Project publicly available daily CPI can be obtained via Cavallo and

Rigobon (2016) for July 2008 through August 2015.20 The index is not seasonally adjusted constructed

from webscraped prices of multichannel retailers that sell both online and offline.

BREAK-EVEN INFLATION RATES 10-year spot breakeven inflation rates are the daily 10-year Treasury

yield at constant maturity (FRED: BC_10YEAR) less the daily 10-year TIPS at constant maturity (FRED:

TC_10YEAR). These rates are obtained from the U.S. Treasury Department via FRED.

ZERO-COUPON TREASURY YIELDS Continuously compounded zero-coupon yields (mnemonic: SVENYXX)

are obtained via the Federal Reserve Board.21

NAKAMURA AND STEINSSON (2018A) MONETARY POLICY SHOCK High-frequency monetary policy shocks

are originally available from 1995 to 2014.22 We extend this shock series from 1994 to present using fu-

tures tick data accessed via CME Group Inc. DataMine (https://datamine.cmegroup.com/) at the Federal

Reserve Board.23 The construction of the shock series follows that of Gürkaynak et al. (2005) as described

in Nakamura and Steinsson (2018a) and Brennan et al. (2024). The shocks are the first principal compo-

nent of changes in high-frequency federal funds rate futures and Eurodollar futures:

19We thank Tom Stark for help obtaining these series. https://www.philadelphiafed.org/surveys-and-data/real-time-data-
research/real-time-data-set-full-time-series-history

20Series indexCPI for country==USA in spreadsheet pricestats_bpp_arg_usa.csv in folder
all_files_in_csv_format.zip at website
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2F6RQCRS. Alternatively, the
data are also available from the pricestats_bpp_ar_usa.dta file in the RAWDATA folder on the website
https://www.openicpsr.org/openicpsr/project/113968/version/V1/view.

21See https://www.federalreserve.gov/data/yield-curve-tables/feds200628_1.html or as a csv file.
22Series FFR_shock from the spreadsheet PolicyNewsShocksWeb.xlsx

https://eml.berkeley.edu/∼jsteinsson/papers/PolicyNewsShocksWeb.xlsx
23https://eml.berkeley.edu/∼jsteinsson/papers/realratesreplication.zip
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MP1s =


D s

D s −d s ( ff 1
s,t − ff 1

s,t−∆t ) if D s −d s > 7

ff 2
s,t − ff 2

s,t−∆t otherwise
(14)

MP2s =


D s′

D s′ −d s′

[
( ff j

s′,t − ff j
s′,t−∆t )− d s′

D s′ MP1s

]
if D s′ −d s′ > 7

ff j+1
s′,t − ff j+1

s′,t−∆t otherwise

(15)

∆ed 2
q =ed 2

q,t −ed 2
q,t−∆t (16)

∆ed 3
q =ed 3

q,t −ed 3
q,t−∆t (17)

∆ed 4
q =ed 4

q,t −ed 4
q,t−∆t (18)

Let s index the month of the current FOMC announcement and s′ index the month of the next FOMC

announcement. For example, s = March 2014 and s′ = April 2014 for the March 19, 2014 FOMC an-

nouncement where s and s′ need not be consecutive months. We define t more precisely as 20 minutes

after the FOMC announcement while t −∆t is defined as 10 minutes before the FOMC announcement.24

For the March 19, 2014 FOMC announcement which occurred at 14:00, t = March 19, 2014 14:20 and

t −∆t = March 19, 2014 13:50.

Let ff j denote the duration j of the federal funds futures contract ff . For example, j = 1 denotes

the contract expiring in the current month, j = 2 the contract expiring next month, etc. For month s, D s

and d s are the number of total days in the month and the day of the FOMC announcement, respectively.

If a monetary policy announcement occurs in the first 23 days of the month, then that month’s federal

funds future j = 1 is used to calculate MP1s . Because the settlement prices are based on the average of

the effective overnight federal funds rate in month s rather than the federal funds rate on a specific day,

one must correct for time averaging and scale by the inverse of the share of days remaining in the month,
D s

D s−d s . Otherwise, if the FOMC announcement occurs in the last seven days of the month, next month’s

future j = 2 is used to calculate MP1s .

MP2s captures the unexpected change in the federal funds futures contracts that expire at the end

of month s′ which is the month of the next scheduled FOMC meeting. Brennan et al. (2024) show that in

practice the next or following month’s federal funds future j = 2,3 is used to calculate MP2s .

Because federal funds futures are highly liquid for contracts expiring in the next three months but

less liquid for contracts thereafter, researchers use Eurodollar futures to cover the remaining first year of

the term structure. Eurodollar futures are listed quarterly and mature in March, June, September, and

December. They are an agreement to exchange, on the second London business day before the third

24As shown by Brennan et al. (2024), the windows are not always this precise in practice and we follow the online Appendix
of Nakamura and Steinsson (2018a). For the t −∆t contact, we use the contract as close to the 10 minutes before the policy
announcement as possible and only consider trades on the day in question. For the t contract, we similarly use the contract as
close to the 20 minutes after the announcement as possible and consider trades as late as noon on the following day. If there
are no eligible trades to consider, the change is set to zero (i.e., we interpret no trading as no price change). We source the time
of the announcements from the Federal Reserve Board and then from Gürkaynak et al. (2005) and Bloomberg News Wire. If
there is a conflict in announcement times, we follow this order of priority.
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Wednesday of the last month of the quarter, the price of the contract minus the three-month US dollar

BBA LIBOR interest rate. Because the BBA LIBOR interest rate is discontinued, Eurodollar futures ceased

trading in April 2023. Let q index the quarter of the current FOMC announcement and q +1 index the of

the next FOMC announcement. For example, q = 2014:Q1, q +1 = 2014:Q2, and q +2 = 2014:Q3 for the

March 19, 2014 FOMC announcement.

The monetary policy shock is then the first principal component of expressions (14)-(18) scaled so

that its effect on one-year nominal Treasury yields is equal to one.

GÜRKAYNAK ET AL. (2005) MONETARY POLICY SHOCKS The target and path shocks of Gürkaynak et al.

(2005) are constructed using principal component analysis over the same instrument set as Nakamura

and Steinsson (2018a)—expressions (14)-(18). Rather than extracting just the first principal component,

Gürkaynak et al. (2005) extract the first two principal components. They rotate these principal compo-

nents so that the second has no effect on the federal funds rate and therefore captures all other surprises

related to monetary policy announcements. The first rotated principal component is the target shock

and is normalized so that it is one-for-one with the federal funds rate. The second is the path shock

which is normalized to be one-for-one with the four-quarter ahead change in the Eurodollar futures

(ed4s in expression (18)).

BU ET AL. (2021) MONETARY POLICY SHOCK Daily monetary policy shocks are available from 1994

to 2020.25 This shock series is constructed by a Fama and MacBeth (1973) two-step regression that ex-

tracts unobserved monetary policy shocks∆is from the common component of the daily change in zero-

coupon yields ∆R j
s .

1. Estimate the responsiveness of zero-coupon yields ∆R j
s with maturities j = 1, ...,30 years to policy

indicator∆is for each monetary policy announcement s via time-series regressions. For maturities

j = 1, ...,30 there will be 30 regressions.

∆R1
s =α1 +β1∆is +ϵ1

s

...

∆R30
t =α30 +β30∆is +ϵ30

s

The implementation assumes ∆is is one-to-one with the daily change in the two-year constant

maturity Treasury yield ∆R2
s . For each maturity j = 1, ...,30, the above expression becomes:

∆R j
s = θ j +β j∆R2

s +ϵ j
s −β j ϵ

2
s︸ ︷︷ ︸

ξ
j
s

The endogeneity arising from cor r (∆R j
s ,ξ j

s ) > 0 due to β j ϵ
2
s being a component of ξ j

s can be rec-

onciled with IV or the heteroskedasticity-based estimator of Rigobon (2003).

25Series BRW_fomc of spreadsheet brw-shock-series.csv https://www.federalreserve.gov/econres/feds/files/brw-shock-
series.csv
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2. Estimate monetary policy shock ∆îs from repeated cross-sectional regressions of ∆R j
s on the re-

sponsiveness index β̂ j for each FOMC announcement s estimated in step 1.

∆R j
s =α j +∆isβ̂ j + v j

s , s = 1, ...,T FOMC announcements

3. Re-scale the estimated shock∆îs by the assumed normalization in step 1. We follow Bu et al. (2021)

and use the daily change in the 2-year Treasury, but our results are robust to scaling by the 1-year

to match the scaling of the NS monetary policy shocks.
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