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Abstract

Time-varying parameter models with stochastic volatility are widely used to study
macroeconomic and financial data. These models are almost exclusively estimated
using Bayesian methods. A common practice is to focus on prior distributions that
themselves depend on relatively few hyperparameters such as the scaling factor for
the prior covariance matrix of the residuals governing time variation in the parame-
ters. The choice of these hyperparameters is crucial because their influence is sizeable
for standard sample sizes. In this paper we treat the hyperparameters as part of a hi-
erarchical model and propose a fast, tractable, easy-to-implement, and fully Bayesian
approach to estimate those hyperparameters jointly with all other parameters in the
model. We show via Monte Carlo simulations that, in this class of models, our ap-
proach can drastically improve on using fixed hyperparameters previously proposed
in the literature.
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1 Introduction

Multivariate time series models form the backbone of empirical macroeconomics. A com-

mon feature of all popular multivariate time series models is that, as researchers include

more variables, the number of parameters quickly grows large, a feature that is maybe most

evident in VARs that feature time-varying parameters and stochastic volatility (Cogley &

Sargent (2005) and Primiceri (2005)), which are the main focus of this paper.

Bayesian inference, via its use of priors, allows researchers to avoid overfitting the

observed sample (which would come at the cost of unrealistic out-of-sample behavior). It

has thus become the standard approach when estimating multivariate time series models

with many parameters. Eliciting priors in such high-dimensional models is a daunting task,

though. A common practice is to focus on prior distributions that themselves depend on

a substantially smaller number of parameters (which we will call hyperparameters). One

prominent example that uses this approach is the ’Minnesota’ prior for VARs (Doan et al.

(1984)), which is especially useful in applications with many observable variables (Banbura

et al. (2010)).

The choice of hyperparameters is crucial because their influence is often sizeable for

standard sample sizes. Nonetheless, the choice of those hyperparameters is often ad hoc in

the literature. In this paper, we propose a fast, tractable, and easy-to-implement Metropo-

lis step that can easily be added to standard posterior samplers such as the Metropolis-

Hastings algorithm or the Gibbs sampler (Gelman et al. (2013)). Researchers can use our

approach with minimal changes in their code (and negligible increase in runtime) to es-

timate these hyperparameters. The estimation algorithm that we present in this paper

exploits the hierarchical structure that is automatically present whenever prior hyperpa-

rameters are used and thus can be used generally in any model with prior hyperparameters.

Our approach interprets the structure implied by the interaction of parameters of the model

and the associated prior hyperparameters as a hierarchical model, which is a standard model

in Bayesian inference (Gelman et al. (2013)).

The Gibbs sampler is already a standard approach to estimate multivariate time series

models and thus our approach fits naturally into the estimation approach used for these

models.
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The importance of hyperparameters for VARs with time-varying parameters and stochas-

tic volatility has been established by Primiceri (2005), who also estimates the hyperparam-

eters (to our knowledge, the only other paper that does so in a Bayesian context for these

models). Unfortunately, Primiceri (2005)’s approach to estimating the prior hyperparam-

eters is computationally involved and requires focusing on only a small number of possible

values for the hyperparameters. Since the hyperparameters interact with the part of the

prior that is set via the use of a training sample (which depends crucially on the specific

data sample), it is also not clear that the same discrete grid of possible parameter values

that Primiceri (2005) used should be employed for other applications.

Some readers might wonder why the choice of prior hyperparameters is important. Shouldn’t

the importance of the prior vanish as the data size increases? In this paper, we show that

the hyperparameters influence estimation outcomes for the class of models we consider

and standard sample sizes available for macroeconomic analysis. This echoes the results in

Reusens & Croux (2017), who carry out an extensive Monte Carlo study of prior sensitivity

using a VAR with time-varying parameters but no stochastic volatility.

Other papers have addressed related issues in a frequentist framework. Stock & Watson

(1996) propose a frequentist approach to estimate scaling parameters in the law of motion

for time-varying parameter models. Benati (2015) adapts their approach to a time-varying

parameter VAR model without stochastic volatility. Benati’s approach is computationally

substantially more involved than ours and a mix of Bayesian and frequentist approaches,

thus making it harder to interpret in the otherwise Bayesian estimation of these models.

Benati focuses on the hyperparameter for the coefficients (since his model does not feature

stochastic volatility), while we also estimate the hyperparameters in the law of motion for

stochastic volatilities.

Our paper is more generally related to the literature on choosing prior hyperparameters

in Bayesian inference. Giannone et al. (2015) estimate prior hyperparameters for time-

invariant VARs with conjugate Normal-Inverse Wishart priors by exploiting the fact that

in this case the density of the data conditional on the hyperparameters (the marginal like-

lihood) is known in closed form, which they propose to either maximize with respect to the

hyperparameters or to draw from. In the second case they then propose to draw the other
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VAR parameters conditional on the hyperparameters. Because the marginal likelihood is

known in closed form in their setup, they can first draw the hyperparameters without condi-

tioning on the other VAR parameters. As such, their second algorithm is not really a Gibbs

sampler, but rather directly generates draws from the joint distribution of hyperparameters

and other VAR parameters by first generating a draw from the marginal distribution of the

hyperparameters and then generating a draw from the conditional distribution of the other

VAR parameters (conditional on the hyperparameters). This is possible exactly because

the marginal likelihood is known in closed form in their case. Our approach can be applied

to any model in which prior hyperparameters are present and thus presents an alternative

to the approach in Giannone et al. (2015) for fixed coefficient VARs when the marginal

likelihood is not known in closed form (as is the case, for example, if non-conjugate priors

are used). In the models with time-varying parameters and stochastic volatility that we

focus on in this paper, there is no closed form for the marginal data density. The approach

by Giannone et al. (2015) can thus not be easily extended to time-varying parameter mod-

els. As highlighted by Giannone et al. (2015), their first approach (which maximizes the

marginal likelihood) is an empirical Bayes approach, while our approach and their second

approach focus on the hierarchical structure imposed by the use of prior hyperparameters.

In an early attempt to tackle the problem of estimating prior hyperparameters, Lopes

et al. (1999) propose an alternative procedure to estimate hyperparameters using sam-

pling importance resampling. Their approach, just as Giannone et al. (2015), requires the

calculation of the marginal likelihood conditional on the hyperparameters of interest, i.e.

the density of data conditional only on the hyperparameters, with all other parameters

integrated out. In contrast to Giannone et al. (2015), Lopes et al. (1999) use numeri-

cal methods to approximate the marginal likelihood. Computing even one such marginal

likelihood is a computationally daunting task in the models we focus on in this paper.

The approach in Lopes et al. (1999) would require the computation of such a marginal

likelihood for every unique draw of the hyperparameters, thus rendering it impractical for

the applications we are interested in. Furthermore, in the class of models we study, re-

searchers regularly use loose priors. It is well known (Gelman et al. (2013)) that in the

case of loose priors, the exact specification of those priors has a substantial influence on the
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value of the marginal likelihood, even though point estimates and error bands are largely

unaffected. If a researcher imposes tighter priors so that the inference on marginal like-

lihoods becomes reliable, our approach does not add any substantial conceptual difficulty

to the estimation of the marginal likelihood - the researcher would then have to integrate

out the hyperparameters as well as all other parameters of the model when computing the

marginal likelihood. Methods such as those presented in Chan & Eisenstat (2017) could

then possibly be adapted to estimate posterior odds.

Korobilis (2014) estimates some prior parameters in a VAR with time-varying param-

eters and stochastic volatility. To be more specific, Korobilis (2014) restricts the prior

covariance of the innovations to the parameters to be diagonal. Those diagonal elements

are then estimated in a Gibbs sampling step. His approach could be combined with ours

since Korobilis (2014) relies on prior hyperparameters for the prior covariance matrix of

the innovations to the parameters.

In the next section, we describe the general algorithm before turning to time-varying

parameter models in section 3. We then carry out a simulation study in section 4 before

showing the effect of estimating prior hyperparameters on two real world applications.

2 How to Estimate Prior Hyperparameters

In this section, we derive a Metropolis step to estimate prior hyperparameters. While our

focus is on models with time-varying parameters and stochastic volatility, the algorithm is

most easily introduced in a general framework, while also showcasing the general applica-

bility of our approach. The model is given by a likelihood function p(Y |θ,K, κ) where Y

is the matrix of data (note that here the data is not necessarily time series data) and θ is

the set of all parameters except for the parameter block K associated with the hyperpa-

rameter vector κ. As we will highlight below, the hierarchical nature of hyperparameters

implies that p(Y |θ,K, κ) is actually independent of κ. The prior for K, which we denote

p(K|κ), depends on the hyperparameter κ. To give a specific example, it might be use-

ful to think of κ as the scaling parameters for the Minnesota prior used in the Bayesian

estimation of VARs - then K would be the intercepts and the coefficients on lagged observ-

ables. More detail on the VAR with a Minnesota prior can be found in the appendix. We
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assume that θ and K are estimated via Gibbs-sampling or the (possibly multiple-block)

Metropolis-Hastings algorithm, as described, for example, in Gelman et al. (2013). The

augmented algorithm that includes the estimation of the hyperparameters then alternates

between draws from the algorithm for θ and K (both those steps condition on a value for

κ) and the drawing of κ conditional on K and θ, which we describe in this section. The

prior beliefs about the hyperparameter κ are encoded in a prior distribution p(κ). From

a conceptual point of view, a researcher could introduce another level of hierarchy and

make the prior for κ depend on more hyperparameters as well. Since we are concerned

with applications where the dimensionality of κ is already small (such as the time-varying

parameter models we describe later), we will not pursue this question further in this paper

- our approach could be extended in a straightforward manner if a researcher was interested

in introducing additional levels of hierarchy. We focus here on drawing one vector of hy-

perparameters, but other vectors of hyperparameters could be included in θ (which could

be high-dimensional, as in our time-varying parameter VAR later). Draws for those other

vectors of hyperparameters would then be generated using additional Metropolis steps that

have the same structure. If J vectors of hyperparameters are present, we denote vector j

by κj (j = 1, . . . , J) and the vector of all hyperparameters by κ̃ = [κ′
1 κ′

2 . . . κ′
J ]

′. When we

discuss the algorithm below, we will denote by κ either the only vector of hyperparameters

present in the model or one representative vector of hyperparameters κj, holding all other

hyperparameters fixed (draws for those vectors can then, as mentioned before, be generated

from additional Metropolis-steps with the same structure). We assume that the following

conditions hold (condition 1 is only necessary if multiple vectors of hyperparameters are

present in the model):

Condition 1 The different vectors of hyperparameters are a priori independent of each

other: p(κ̃) =
∏J

j=1 p(κj)

Condition 2 All parameters of the model except for the parameter block directly linked to a

specific hyperparameter are a priori independent of that specific hyperparameter: p(θ, κ) =

p(θ)p(κ)

Neither of these conditions are restrictive. If condition 1 is violated, the dependent vectors

of hyperparameters just have to be grouped into one larger vector of hyperparameters.
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We later spell out these conditions in more detail for our VAR model. The modifications

for the algorithm in this case are straightforward. Violations of the second condition can

be handled similarly: The different parameter blocks whose priors depend on the same

hyperparameters have to be grouped together in one larger parameter vector, which then

depend on the same vector of hyperparameters.

Deriving a Metropolis step for sampling κ amounts to deriving a formula for the accep-

tance probability in the Metropolis-Hastings step. We draw a realization from the proposal

density q(·), which will be accepted with probability αi at iteration i of the algorithm. This

acceptance probability in the Metropolis-within-Gibbs step at iteration i is given by

αi = min

(
1,

p(θ, κprop, K|Y )q(κprop|κi−1)

p(θ, κi−1, K|Y )q(κi−1|κprop)

)
(1)

a superscript prop denotes a proposed value, a superscript i−1 denotes values from iteration

i− 1 of the algorithm, and superscripts are dropped for K and θ for convenience. We now

simplify αi in this general environment.

First, we rewrite p(θ, κ,K|Y ):

p(θ, κ,K|Y ) ∝ p(Y |θ,K)p(θ|κ,K)p(K|κ)p(κ) (2)

By the hierarchical nature of the model (the hyperparameters only enter the prior for K),

the likelihood p(Y |θ,K) does not depend on κ since it conditions on K. Thus, p(Y |θ, κ,K)

cancels out in the numerator and denominator of αi. By condition 2 and the hierarchical

nature of the hyperparameter structure (and, if necessary, condition 1), the term p(θ|κ,K)

equals p(θ|K), which then also cancels out in the fraction determining αi. We are left with

αi = min

(
1,

p(K|κprop)p(κprop)q(κprop|κi−1)

p(K|κi−1)p(κi−1)q(κi−1|κprop)

)
(3)

A key insight to this equation is that all identities that need to be valuated are either the

proposal density q(·) or prior densities (p(κ) is the prior density for κ while p(K|κ) is the

prior density of K, which depends on the hyperparameter κ). Generally those densities are

known in closed form and thus fast to evaluate, thus making our algorithm computationally

efficient.
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3 The VAR Model and the Estimation of Hyperpa-

rameters

This section presents the class of models we focus on in this paper and the necessary

additional steps in the Gibbs-sampling algorithm for time-varying parameter VARs to

estimate the prior scale parameters. For an introduction to this class of models see Koop

& Korobilis (2010). In the appendix, we lay out the estimation algorithm for this class of

models in detail.

The observable vector yt is modeled as:

yt = µt +
L∑
l=1

Bl,tyt−l + et (4)

where the intercepts µt, the autoregressive matrices Bj,t, and the covariance matrix of et

are allowed to vary over time. To be able to parsimoniously describe the dynamics of our

model, we define X ′
t ≡ I ⊗ (1, y′t−1..., y

′
t−L), bt ≡ vec

(
µt B1,t · · ·B′

L,t

)
and rewrite (4) in the

following state space form:

yt = X ′
tbt + et (5)

bt = bt−1 + ωb,t (6)

I denotes a identity matrix of conformable size and 1 denotes a vector of ones of con-

formable size. The observation equation (5) is a more compact expression for (4). The

state equation (6) describes the law of motion for the intercepts and autoregressive matri-

ces. The covariance matrix of the innovations in equation (5) is modeled following Primiceri

(2005):

et = A−1
t Σtεt (7)

At is a lower triangular matrix with ones on the main diagonal and representative non

fixed element ait. Σt is a diagonal matrix with representative non fixed element σj
t . The

dynamics of the non fixed elements of At and Σt are given by:

ait = ait−1 + ωi
a,t (8)

log σj
t = log σj

t−1 + ωj
h,t (9)
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To conclude the description of our model, we need to make distributional conditions on

the innovations εt, ωb,t, ωh,t, and ωa,t, where ωh,t and ωa,t are vectors of the corresponding

scalar innovations in the elements of Σt and At. We assume that all these innovations,

which govern the time variation for the different parameters in this models, are normally

distributed with the following covariance matrix, which we, following Primiceri (2005),

restrict as follows:

V ar




εt

ωb,t

ωa,t

ωh,t



 =


I 0 0 0

0 Ωb 0 0

0 0 Ωa 0

0 0 0 Ωh

 (10)

Ωa is further restricted to be block diagonal with J blocks, which simplifies inference (this

is inconsequential for our extension to the standard Gibbs sampler, but we decided to use

the standard model in the literature). Note that Ωh, on the other hand, is not restricted,

allowing the increments in the stochastic volatility processes to be correlated.

We will now describe the estimation of general prior hyperparameters in this setting before

turning to the specific prior hyperparameters used by Primiceri (2005) and the subsequent

literature.

The priors for Ωb, Ωa, and Ωh are given by:

Ωb ∼ pΩb
(κΩb

) (11)

Ωh ∼ pΩh
(κΩh

) (12)

Ωa,j ∼ pΩa,j
(κΩa) ∀j = 1, . . . , J (13)

where κi, i ∈ (Ωb,Ωh,Ωa) denotes the vectors of hyperparameters for each set of matrices.

Ωa,j is the j-th block of Ωa.

We are interested in estimating the hyperparameters κΩb
, κΩh

, κΩa . To do so, we attach

priors pX(X) to the hyperparameters (X = {κΩb
, κΩh

, κΩa}). In our empirical applications,

we assume that the prior specification for all other parameters are the same as in Primiceri

(2005), but this is inconsequential for our algorithm. We denote by θ all parameters to be

estimated except for the prior hyperparameters themselves and the associated covariance

9



matrices Ωb, Ωh, and {Ωaj}Jj=1 . Our approach builds on the insight that equations (11) to

(13) can be interpreted as a hierarchical model, which in our case is embedded in a larger

model, the VAR with time-varying parameters and stochastic volatility.

We now restate conditions 1 and 2 for the specific model at hand:

Condition 3 The different vectors of hyperparameters in a TVP-VAR are a priori inde-

pendent of each other:

p(κΩb
, κΩh

, κΩa) = pκΩb
(κΩb

)pκΩh
(κΩh

)pκΩa
(κΩa)

Condition 4 All parameter blocks of the TVP-VAR model except for the parameter block

directly linked to a specific hyperparameter (via one of the equations 11 through 13 in this

model) are a priori independent of that specific hyperparameter (e.g. Ωh and Ωa,j ∀j =

1, . . . , J are a priori independent of κΩb
).

As long as we assume that pΩb
, pΩh

, and pΩa,j
are all inverse Wishart distributions (as

is standard in the literature), the drawing of the covariance matrices themselves can be

carried out just as in the algorithm described in Del Negro & Primiceri (2015) once we

condition on the hyperparameters.

To estimate the hyperparameters, we use a Metropolis-within-Gibbs step (Geweke

(2005)) for each vector of hyperparameters. We focus here on the estimation of κΩb
because

the other blocks are conceptually the same. The acceptance probability αi at iteration i of

the Metropolis-within-Gibbs algorithm is given by:

αi = min

(
1,

p(θ, κprop
Ωb

,Ωb, κΩa , {Ωaj}, κΩh
,Ωh|yT )q(κprop

Ωb
|κi−1

Ωb
)

p(θ, κi−1
Ωb

,Ωb, κΩa , {Ωaj}, κΩh
,Ωh|yT )q(κi−1

Ωb
|κprop

Ωb
)

)
(14)

where a superscript prop denotes the proposed value and a superscript i − 1 the value

from the previous iteration (superscripts are dropped for all other parameters for ease of

reading). yT is the history of observables used for estimation (yT = {yt}Tt=1). Again, q(·)

is the proposal density.

Applying the results from the previous section to this specific model, we find that the

acceptance probability simplifies to

αi = min

(
1,

p(Ωb|κprop
Ωb

)p(κprop
Ωb

)q(κprop
Ωb

|κi−1
Ωb

)

p(Ωb|κi−1
Ωb

)p(κi−1
Ωb

)q(κi−1
Ωb

|κprop
Ωb

)

)
(15)
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p(Ωb|κΩb
) is the prior density for Ωb described above (which is usually an inverse Wishart

density) and p(κΩb
) is the prior on κΩb

. Once we have fixed a proposal density for κΩb
, eval-

uating the acceptance probability is thus straightforward. Not only can the same argument

be made for the other hyperparameters introduced before, but for any hyperparameter since

the logic used for deriving the acceptance probability only hinges on the hierarchical nature

of the model with respect to the prior hyperparameters.

Now turning to the exact specification in Primiceri (2005), the priors for Ωb, Ωa and Ωh

are set as follows:

Ωb ∼ IW (κ2
Ωb
νΩb

VΩb
, νΩb

) (16)

Ωh ∼ IW (κ2
Ωh
νΩh

VΩh
, νΩh

) (17)

Ωa,j ∼ IW (κ2
Ωa
νΩa,j

VΩa,j
, νΩa,j

) (18)

where ν denotes the degrees of freedom, IW is the inverse Wishart distribution, VX , X ∈

{Ωb,Ωh,Ωa}, are prior scaling matrices, and κX are the scalar hyperparameters we want

to estimate. A change in κ2
X linearly scales the mean and mode of the corresponding

inverse Wishart prior distribution while the prior variance is a function of κ4
X . We follow

the literature in having the scaling parameter entering squared in the parameters for the

inverse Wishart distribution. This is why the fourth power of κX appears in the variance.

In this paper, we focus on the estimation of low-dimensional hyperparameters. In

theory, our algorithms could be adapted to estimate the prior scaling matrices VX ; however,

for most practical applications the VX matrices are high-dimensional objects, so we focus

instead on picking the VX matrices using a training sample, as is standard in the literature.

One difference relative to the general algorithm above is that, to be in line with Primiceri

(2005) and the subsequent literature, we use the same κa for all blocks of Ωa. For the

different blocks of Ωa, we use the fact that conditional on κa the priors for the different

blocks are independent inverse-Wishart densities. Thus, in that case we get

P (Ωa|κΩa) =
J∏

j=1

P (Ωa,j|κΩa) (19)

11



Some groups of parameters or volatilities might vary at a different rate than other pa-

rameters. We now show how to incorporate this idea into our framework. Benati (2015)

also estimates different scaling parameters for different equations in his VAR.

We denote by κx vectors of scaling parameters of dimension dx, where matrix x is of di-

mension dx by dx. We then assume the following forms for the priors of the matrices Ωb,

Ωh, and Ωaj:

Ωb ∼ IW (diag(κΩb
)νΩb

VΩb
diag(κΩb

), νΩb
) (20)

Ωh ∼ IW (diag(κΩh
)νΩh

VΩh
diag(κΩh

), νΩh
) (21)

Ωa,j ∼ IW (diag(κΩa,j
)νΩa,j

VΩa,j
diag(κΩa,j

), νΩa,j
) (22)

where diag is an operator that turns a d × 1 dimensional vector into a d × d dimensional

diagonal matrix with the elements of the vector on the main diagonal. In practice, esti-

mating one κ scaling parameter per coefficient/volatility is not feasible for VARs of the size

commonly used in applications because of the large number of coefficients that would have

to be estimated. Instead, we propose to group parameters into a relatively small number

of groups and use one κ scaling parameter per block of parameters. As mentioned before,

natural choices for blocks in the case of the b coefficients could be intercepts vs. all other

parameters or a grouping of b coefficients by equation. We would then augment our de-

scription of the algorithm with a deterministic mapping from the relatively small number

of scaling parameters (which we call κ̆x) to κx.

In terms of the estimation algorithm, nothing of substance changes: in the proposal step,

the proposal density is now multivariate normal and in the calculation of the acceptance

probability we have to adjust the evaluation of p(Ωb|κΩb
) to take into account the updated

form of the density (see equation (20)) and the fact that the prior of the hyperparameters

is now a density of a multivariate vector. One could use independent priors for each ele-

ment of κ̆Ωb
, for example. The rest of the Gibbs sampling steps for other parameters are

unaffected, with the exception of the step where Ωb is drawn: the scaling matrix for the

inverse-Wishart density needs to be updated as described in equation (20).
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4 Monte Carlo Study

In this section, we use VAR(1) models as data-generating processes to assess the perfor-

mance of our algorithm vis-a-vis algorithms that use fixed hyperparameters. Using multi-

variate data-generating processes makes the exercises more realistic, but it comes at a cost:

Assuming a random-walk law of motion of the parameters with non-trivial time variation

is not straightforward. Either we have to reject many simulated parameters because they

yield non-stationary dynamics or our simulated time series are very different from those we

actually use in economics (because the simulated series become explosive).

A natural response to this dilemma is that the random walk evolution of parameters was

never meant to be a description of the true DGP, but rather a flexible and parsimonious

way to approximate a large class of possible patterns of time variation. Furthermore,

note that we will confront both our algorithm and the standard algorithm with the same

data-generating process, and both implementations assume a random-walk evolution of

parameters, so we are not biasing our findings in favor of our approach. In the appendix,

we show additional results for both multivariate as well as univariate data-generating pro-

cesses (including a random walk data-generating process in the univariate case - it is easier

to obtain reasonable simulations in a univariate setting without rejecting too many simu-

lations).

For every data-generating process, we simulate 100 samples of 350 observations each. We

use a training sample of 40 observations to initialize the prior along the lines of Primiceri

(2005). 10000 draws are generated for each sample, of which we use the first 5000 draws to

tune the proposal for our Metropolis-Hastings step. In the case of fixed hyperparameters,

we use 10000 draws as well.

As data-generating-processes, we use trivariate VARs, but in the appendix we also show

results for bivariate VARs to show that our findings are robust to the number of observables

and because both bivariate and trivariate VARs feature prominently in the literature.

First, we show a trivariate VAR with a deterministic law of motion by sine and cosine waves

(the exact description can be found in the appendix). We compute root mean squared er-

rors of the estimated median parameter paths and root mean squared forecasts errors for

each variable in our VAR (computed with the median forecast as point forecast). The exact
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Table 1: Monte Carlo forecast results for deterministic and continuous evolution of param-

eters.

Relative RMSFE

[Out-of-sample forecast of first variable]

Horizons iG half-Cauchy Fixed (κΩb
= 0.1)

1 0.969 0.965 0.972

2 0.945 0.946 0.954

3 0.898 0.898 0.910

4 0.889 0.888 0.905

[Out-of-sample forecast of second variable]

Horizons iG half-Cauchy Fixed (κΩb
= 0.1)

1 0.903 0.903 0.915

2 0.905 0.910 0.920

3 0.939 0.941 0.951

4 0.992 0.989 1.001

[Out-of-sample forecast of third variable]

Horizons iG half-Cauchy Fixed (κΩb
= 0.1)

1 0.928 0.930 0.919

2 0.948 0.950 0.946

3 0.917 0.916 0.919

4 0.953 0.953 0.946

formula we use can be found in the appendix. We then average over all 100 samples and

show the resulting number relative to the value computed for the fixed hyperparameter case

with Primiceri (2005)’s values, which were estimated on US data. We use two priors for

the hyperparameter: one is an inverse gamma with a standard deviation of 0.1 and a mode

of 0.05 (we use the same prior for all hyperparameters), while the other is a half-Cauchy

distribution with the same scale parameter as the inverse gamma distribution we use. In

the section on empirical examples, we elaborate in more detail on prior choice and argue

that the inverse-Gamma prior is a useful benchmark. The half-Cauchy distribution, in

contrast with the inverse-Gamma distribution, has the feature that it has positive density
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at hyperparameter values of 0. The results in this section are robust to either choice of

prior. A natural question to ask is how much our findings depend on the specific values

Table 2: Monte Carlo results for deterministic and continuous evolution of parameters.

Relative RMSE

[In-sample fit of parameter paths bt evaluated at posterior median]

Parameter iG half-Cauchy Fixed (κΩb
= 0.1)

µ1 0.625 0.620 0.680

µ2 0.560 0.557 0.615

µ3 0.448 0.445 0.472

B11 0.422 0.419 0.469

B12 1.102 1.102 1.073

B13 0.926 0.929 0.911

B21 0.497 0.497 0.517

B22 0.373 0.371 0.417

B23 0.727 0.728 1.635

B31 0.417 0.415 0.418

B32 0.417 0.415 0.442

B33 0.270 0.268 0.272

of the hyperparameters we used in the estimation with fixed hyperparameters. While our

approach will always have the advantage that no fixed value needs to be chosen for the

hyperparameters, for one specific application one could wonder whether a higher value of

the hyperparameter can lead to a better performance for the fixed hyperparameter case in

a specific application. To check this, we also estimate a version of the model fixed hyper-

parameters, but the hyperparameter associated with bt (κΩb
) set to 0.1, which is ten times

the value estimated by Primiceri (2005). Table 1 shows the forecasting performance of the

different variants we consider relative to a VAR estimated using the hyperparameter values

considered in Primiceri (2005) (κΩb
= 0.01 = κΩh

,κΩa,j
= 0.1). Our approach improves

forecasts across the board relative to the benchmark of κΩb
= 0.01 and is not doing worse

than the variant with a larger κΩb
.

Table 2 shows the root mean squared error of the parameter paths for all elements of bt
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Figure 1: Monte Carlo results - medians across 100 samples

relative to the model with fixed parameters chosen at Primcieri’s values. The same picture

emerges again: We substantially improve on the benchmark case and are on par with the

higher fixed hyperparameter case. In the empirical application we will see that while our

approach continues to do well, the success of the higher hyperparameter case in terms of

forecasting depends crucially in the data-generating process and is thus not robust. We

focus here on the elements of bt because volatilities are well estimated across the board for

all specifications.

A second natural question is whether our approach comes at a cost - if the true coef-

ficients are fixed over time, does our approach do worse than the fixed hyperparameter

setup? This is a natural question because, as mentioned before, in many applications the

fixed hyperparameter setup finds little to no time variation in many parameters (Cogley &

Sargent (2005)), so one might be tempted to think it has an edge when the coefficients are

indeed fixed. Furthermore, the inverse gamma prior we use bounds the hyperparameter

away from zero, meaning that finding exactly zero time variation is not possible. Tables 3

and 4 show that both in terms of parameter estimates and forecasting ability our approach
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Figure 2: Monte Carlo results - posterior medians for 3 samples

and the fixed hyperparameter approach are very similar in this case. This might leave an

interested reader wondering how well TVP-VARs do on an absolute level when approx-

imating fixed coefficient VARs. Figure 1 shows the median across Monte Carlo samples

of the estimated posterior median path of all elements of bt for the inverse-Gamma prior

(results from the Cauchy prior are very similar) and the fixed hyperparameter case (with

κΩb
= 0.01 - the figure for κΩb

= 0.1 looks very similar). The bold straight lines denotes

the true values, the light gray lines the results with estimated hyperparameters and an

inverse-gamma prior and the dark gray line denotes results for the fixed hyperparameter

case. Across simulations we can see that both specifications on average pick up that there

is no time variation in the data. Digging deeper, we can also check if for a given sample

our approach estimates little to no time variation when there is no time variation present.

Figure 2 plots the posterior median paths for three randomly selected samples (out of our

100 simulated samples). Again we see that our algorithm estimates time variation to be

small. The main takeaway from this exercise is not that the hyperparameters estimated

in Primiceri (2005) are ’wrong’ in any sense, but rather that, if a researcher is interested

17



Table 3: Monte Carlo forecast results for fixed parameter VAR.

Relative RMSFE

[Out-of-sample forecast of first variable]

Horizons iG half-Cauchy Fixed (κΩb
= 0.1)

1 1.000 1.000 1.022

2 0.999 1.002 1.031

3 0.999 1.002 1.034

4 1.001 1.001 1.049

[Out-of-sample forecast of second variable]

Horizons iG half-Cauchy Fixed (κΩb
= 0.1)

1 0.997 1.000 0.985

2 1.000 1.002 1.012

3 0.999 1.000 1.009

4 1.000 1.002 1.018

[Out-of-sample forecast of third variable]

Horizons iG half-Cauchy Fixed (κΩb
= 0.1)

1 1.001 1.002 1.019

2 1.004 0.998 1.026

3 1.001 1.002 1.003

4 1.001 1.002 1.012

in a very different application (including, but certainly not limited to, a different num-

ber of observables, a different data frequency, different historical episodes, the different

properties of financial versus macroeconomic data etc.), then that researcher should think

carefully about the prior hyperparameters. We offer one data-driven and numerically ef-

ficient way to take the dependence of the results on the prior hyperparameters into account.
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Table 4: Monte Carlo results for fixed parameter VAR.

Relative RMSE

[In-sample fit of parameter paths bt evaluated at posterior median]

Parameter iG half-Cauchy Fixed (κΩb
= 0.1)

µ1 1.020 0.991 1.738

µ2 1.007 0.995 1.552

µ3 1.007 1.008 1.502

B11 1.022 0.996 1.598

B12 1.010 1.001 1.355

B13 1.018 1.011 1.418

B21 1.010 0.996 1.363

B22 1.003 1.001 1.380

B23 1.000 1.000 1.093

B31 1.013 1.001 1.369

B32 1.003 1.000 1.383

B33 1.025 0.990 1.536

5 Empirical Application

Going back to the original contributions of Cogley & Sargent (2005) and Primiceri (2005),

VARs with time-varying parameters and stochastic volatility have often been used to study

questions related to monetary policy and inflation dynamics. Other papers in that vein

include Sargent & Surico (2011), D’Agostino & Surico (2012), and Amir-Ahmadi et al.

(2016). As the sample size increases, there seems more reason to allow for the pos-

sibility of changing parameters and volatilities. These changes can come from various

sources - technological progress, changes in institutions, political changes, and interna-

tional conflicts are just some of the reasons why we might suspect that constant param-

eter models are ill-suited for longer samples. With samples that are different from the

time series used by Primiceri (2005), there is little reason to believe a-priori that the

hyperparameters estimated by Primiceri (2005) should reflect a researcher’s view of the

amount of time variation present in the data. To assess the importance of estimating the
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Figure 3: Prior (light gray lines) and Posterior distributions for the hyperparameters

prior hyperparameters, we estimate VARs with time-varying parameters and stochastic

volatility for the UK and the Euro Area. The data are annualized quarter-over quar-

ter inflation, annualized quarter-over quarter real GDP growth rate and an annualized

short-term nominal rate from 1979 to 2013 for the UK and from 1970 to 2015 for the

Euro Area. The prior is set using a training sample of 40 observations along the lines of

Primiceri (2005). In this application we use a different hyperparameter for the intercepts

(denoted by κΩb,constant
) than for the rest of the elements of bt (denoted by κΩb,dynamic

) to

allow for more flexibility along the lines of Benati (2015). The data source for the UK

is the global VAR database at https://sites.google.com/site/gvarmodelling/data.

For the Euro Area we use data compiled for the ECB’s area wide model available at

http://eabcn.org/page/area-wide-model. We chose these specific examples because

the data series closely resemble those used in many studies of monetary policy that use this

class of models, yet the choice of non-US data gives room for hyperparameters to be differ-

ent from those usually used in the literature to best fit the data. It is useful to remember

that the hyperparameters estimated in Primiceri (2005) were estimated on US data. As
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Figure 4: 68 % Posterior Bands for UK impulse responses, estimated hyperparameters in

gray

an aside, using our approach on an updated US dataset yields estimates that are broadly

in line with those used in Primiceri (2005). In particular the hyperparameters associated

with bt are very similar, while the hyperparameter associated with at is somewhat smaller

and the hyperparameter for ht is larger with the updated US dataset. The goal of this

section is not to represent a comprehensive study of time-varying dynamics and the effect

of monetary policy in the UK and the Euro Area, but rather to highlight that estimating

the hyperparameters can make a substantial difference when looking at standard model

output in this class of models such as impulse responses, estimated parameters, measure

of persistence, forecasts, and so on.

To get a sense of whether or not the data calls for hyperparameter values different from

those estimated on US data in Primiceri (2005), figure 3 plots the posterior distributions,

We see that the posterior distributions peak at values different from those obtained by

21



Primiceri using US data (Primiceri (2005)’s value is represented by the vertical line in each

plot). Furthermore, there is information in the data about the values of the hyperparame-

ters - the marginal posteriors are different form the priors, which are in light gray in each

plot.

For simplicity, we assume the same priors across all hyperparameters, which are inverse

gamma with a scale parameter of 0.1 and 2 degrees of freedom - this implies a prior mode

of 0.05 and an infinite variance. Note that in spite of the mode being higher than Primiceri

(2005)’s estimated value and the variance being infinite, the estimated hyperparameters

for all elements of bt except the intercepts are substantially smaller than Primiceri (2005)’s

value. Another takeaway is that, following Benati (2015), the data prefers the scaling

parameters to be different across sets of parameters (we use a different scaling parameter

for the intercepts). In our forecasting exercise below we show that even when imposing

the same hyperparameter within each group of parameters (so that all elements of bt use

the same hyperparameter), we can still substantially improve the forecasting performance

relative to the case of fixed hyperparameters.

A more important question than whether or not these hyperparameters are different from

previously used values is whether or not estimating them makes a difference for object

economists care about. We first show the estimated impulse responses (obtained using a

Cholesky-type recursive ordering just as in Primiceri (2005)) of real GDP growth to an

unexpected monetary policy shock that leads to a 1 percent increase in the nominal in-

terest rate. We compare those obtained using our approach with the inverse gamma prior

on the hyperparameters with estimates obtained using fixed hyperparameters (fixed at the

values from Primiceri (2005)). Since we want to compute some objects that require the

companion matrix of the VAR to have eigenvalues that are less than 1 in absolute value at

each point in time, we follow Cogley & Sargent (2005) and impose this restriction in exactly

the same fashion as in that paper. In the appendix we show that our general findings are

robust to not assuming this restriction. Figures 4 and 5 show these impulse responses at

4 dates in the sample. We can see that in the plotted 68% posterior bands there can be

substantial differences. In particular, the posterior bands obtained using our approach tend

to be narrower than those obtained using the standard approach. These findings carry over
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Figure 5: 68 % Posterior Bands for Euro Area impulse responses, estimated hyperparam-

eters in gray

to the responses of inflation and the nominal rate, which can be found in the appendix.

Where do these differences come from? Figure 6 plots the estimated median parameter

paths for the fixed and estimated hyperparameter paths for the UK. We can see that the

estimated standard deviations of the residuals in the VAR (called Ht in the graph) are

very similar across the specifications, whereas other parameters differ substantially. In

particular, the estimated paths of VAR coefficients bt are much smoother. This carries over

to the Euro Area as well (which we show in the appendix). This is not surprising as the

hyperparameter associated with the non-intercept coefficients is estimated to be smaller

than the standard value assumed in the literature.

Next, we turn to infinite horizon forecasts, which are often interpreted in these models

as trends (to compute infinite horizon forecasts that are guaranteed to be finite, we impose

the eigenvalue restriction mentioned before).
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Figure 6: Estimated median parameter paths, fixed hyperparameters in black

Figure 7 shows these infinite horizon forecasts 68 % posterior bands. Since the message

is similar, we again relegate the Euro Area figure to the appendix. Our long-run forecasts

are much smoother, whereas the fixed coefficient forecast are rather volatile, making it

harder to interpret them as trends. A similar message emerges when we look at measure

of persistence such as the R2 measure from Cogley et al. (2010), which we show in the

appendix for both the UK and the Euro Area.

5.1 Forecasting

D’Agostino et al. (2013) have shown that VAR with time-varying parameters and stochas-

tic volatility can improve upon the forecasting ability of fixed coefficient VARs and other

competing models, in particular for inflation. D’Agostino et al. (2013) used fixed hyper-

parameters. We now ask if our approach can improve forecasting ability even further. We
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Figure 7: Infinite horizon forecasts, fixed hyperparameters in solid black lines.

are going to tie our hands by using one hyperparameter per parameter block, so that the

intercepts share the same hyperparameter with all other coefficients in bt. One could in

theory use multiple fixed hyperparameters to give the fixed hyperparameter model more

flexibility, but it would then not be clear what values to pick for these additional hyper-

parameters. The advantage of our approach is exactly that we don’t have to make such

choices. Nonetheless, we choose to be conservative here and use the same number of hy-

perparameters as in the standard fixed hyperparameter case. The prior we use for the

hyperparameters we use here is the aforementioned inverse gamma prior with a prior mode

of 0.05 and an infinite variance. All settings ( number of draws etc.) are the same as

above. We use the same datasets for the UK and the Euro area as described above. The

first sample we estimate our model on for the UK (Euro Area) start in the third quarter

of 1979 (second quarter of 1970) and ends in the fourth quarter of 2004 (the same for both

datasets). We then compute the posterior median forecast up to 4 quarters ahead. After
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that we increase the sample size one quarter at a time and repeat the forecasting exercise

until the four quarter ahead forecast is for the second quarter of 2013 (fourth quarter of

2015 for the Euro Area), which is the last data point in our sample. While we focus on

point forecasts in this paper, it would be interesting to further study the forecasting perfor-

mance of models estimated with our approach by looking at, for example, longer horizons

or density forecasts. We leave those extensions to future work.

We show the root mean squared error of those forecasts relative to the case of hyperparame-

ters fixed at the values used in Primiceri (2005). We also show the forecasting performance

for the case the hyperparameter for bt is set to ten times the value used in Primiceri (2005).

We do not impose any eigenvalue restrictions in the forecasting exercises.

The main takeaway is that our approach improves forecasting performance relative to

the standard approach using Primiceri (2005)’s hyperparameters (which were estimated

on US data) for the majority of horizons except for the case of the Euro area short-term

nominal rate and Euro Area real GDP growth (where our approach does better for two

horizons and worse for the two others). Our approach does substantially better than the

approach where the hyperparameter for bt is fixed at a higher value.

One question that a researcher wanting to use our approach is facing is what priors to pick

for the hyperparameters. As we showed in the Monte Carlo simulations, even with a prior

that bounds the hyperparameters away from 0 (such as our benchmark inverse-Gamma

prior) the model can effectively estimate constant coefficient paths if that is what the data

calls for. We thus recommend using a prior that puts no mass at a hyperparameter value

of 0 to avoid the possibility of a pile-up problem (as described in Stock & Watson (1996))

occurring. The pile-up problems falsely identifies no time variation, when in reality there

is some time variation. With, for example, the inverse-Gamma prior, we have ruled out the

pile-up problem while still allowing for no estimated time variation, as just discussed. It is

worth pointing out though that in our Monte Carlo simulations we have also used priors

that have a positive density at a hyperparameter value of 0 and have found no pile-up

problem. Still, we recommend guarding against any possibility of this problem occurring.

In practice, we have found inverse-Gamma priors with infinite variance to work well (this

relieves the user from having to make a choice for the variance so that he/she can focus
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Table 5: Forecast results for the Euro Area

Relative RMSFE

[Out-of-sample forecast for Euro Area real GDP growth]

Horizons iG Fixed (κΩb
= 0.1)

1 0.978 0.594

2 1.059 2.759

3 1.033 2.631

4 0.863 9.420

[Out-of-sample forecast for Euro Area inflation]

Horizons iG Fixed (κΩb
= 0.1)

1 0.708 1.613

2 0.698 2.274

3 0.890 1.168

4 1.062 0.907

[Out-of-sample forecast for Euro Area nominal rate]

Horizons iG Fixed (κΩb
= 0.1)

1 1.233 1.818

2 1.305 1.736

3 1.173 2.261

4 1.142 1.597

on picking the prior mode only) - assuming instead a finite, but large, variance has led to

very similar findings. Besides possibly leading to the pile-up problem, we also recommend

against using a uniform prior because it is not clear what the natural parametrization of

the hyperparameters is that should be used for the uniform prior (a standard problem when

using uniform priors for inference). In terms of the details of our algorithm, the user needs

to pick proposal densities for the Metropolis-Hastings steps for the hyperparameters. We

recommend using as many draws for tuning the proposal density (i.e. adjusting its variance

to meet a targeted acceptance probability) as one wants to use for the final inference. This

is a conservative choice, but the algorithm is fast enough to make this not costly.
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Table 6: Forecast results for the UK

Relative RMSFE

[Out-of-sample forecast for UK real GDP growth]

Horizons iG Fixed (κΩb
= 0.1)

1 0.644 4.371

2 1.301 2.490

3 0.954 1.568

4 0.674 5.798

[Out-of-sample forecast for UK inflation]

Horizons iG Fixed (κΩb
= 0.1)

1 0.644 4.371

2 1.301 2.490

3 0.954 1.586

4 0.674 5.798

[Out-of-sample forecast for UK nominal rate]

Horizons iG Fixed (κΩb
= 0.1)

1 0.516 5.490

2 0.758 1.882

3 0.657 2.978

4 1.896 11.273

The online appendix contains evidence that the number of observables in the VAR can have

a substantial effect on the posterior of the hyperparameters, giving further evidence that

choosing the same hyperparameter values irrespective of the specification of the VAR can

give misleading results. The appendix also contains additional Monte Carlo and empirical

results that confirm the findings in this paper.
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6 Conclusion

The choice of prior hyperparameters in large multivariate time series models, particularly

when time-varying parameters and/or stochastic volatility are present in the models, is a

daunting task. Using introspection to obtain a prior is difficult because there are many

parameters. Thus, many researchers have turned to automated or semiautomated prior

choices that depend only on few hyperparameters. Since those hyperparameters influence

the prior distribution of large dimensional objects, their choice can be crucial. The common

approach is to fix the hyperparameters at values that have been used before in the literature.

We argue that, considering the number of hyperparameters is usually relatively small and

considering that many applications use vastly different datasets than the applications from

which they borrow the values for their hyperparameters, researchers should instead consider

estimating these hyperparameters. This is especially relevant because, as we show in this

paper, this estimation can be carried out with only minor changes in existing codes and

at negligible computational cost (because the densities that need to be evaluated in the

additional estimation step are prior distributions that are usually fast to evaluate).

We show that estimating these hyperparameters can drastically change conclusions about

the amount of time variation in parameters. In the online appendix we carry out various

additional robustness checks.
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