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1 Calculating Expectations (and Perceived

Steady States)

One-period-ahead expectations of the output gap and inflation are calcu-
lated using the model probabilities derived in the main text and equilib-
rium laws ofmotion for the relevant variables that are part of the solution
of the commitment and discretion optimal policy problems. In particular,
I assume that

Et(πt+1) = pct−1E
c
t−1(πt+1) + pdt−1E

d
t−1(πt+1) (1)

Et(yt+1) = pct−1E
c
t−1(yt+1) + pdt−1E

d
t−1(yt+1) (2)

The probabilities are calculated using the Quasi-Bayesian approach de-
scribed in the main text, while the expectations are calculated using the
solution to the two optimal policy problems.
Expectations only depend on observables dated t − 1 or earlier to avoid
having to solve a non-linear fixed point problem when estimating the
model1. The perceived steady state of inflation is calculated as follows:2

πt = pct−1π
c + (1− pct−1)π

d (3)
1While this sort of assumption is common in the literature on learning in macroe-

conomics, it is used here for a slightly different reason: it is not the agents in this
model who would have to solve a non-linear fixed point problem, as the expectations in
the equilibrium conditions would only be functions of contemporaneous exogenous vari-
ables zt and gt and predetermined endogenous variables πt−1, λNKPC,t−1 and λIS,t−1.
Rather, the fixed point problem would be one of jointly solving for zt, gt and expectations
consistent with those values when trying to calculate the likelihood of the model. If the
expectations appearing in equations (1) and (2) depend on date t state variables of the
two policy problems (including zt and gt) then by the equilibrium conditions outlined
in the main text zt and gt would have to be jointly determined with model probabilities
and conditional expectations.

2The equations in this section can be derived by log-linearizing the equilibrium con-
ditions of a non-linear New Keynesian model around the perceived steady state, which
is governed by the estimated model probabilities (that are taken as given in the log-
linearization).
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2 Difference in policy prescriptions
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Figure 1: Difference in interest rate prescriptions
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3 Posterior distribution of model probabil-

ities
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Figure 2: Posterior distribution of pct
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4 Contribution of different state variables

to policy prescriptions

It is also useful to ask how different the policy prescriptions coming out
of each model are. After all, this difference plays a major role in deter-
mining model probabilities. 3

For the beginning and the end of the sample, the discretionary central
bank would have set higher interest rates on average than its committed
counterpart. At the end of the 1970s and the beginning of the 1980s, the
commitment central bank would have set interest rates higher to combat
inflation 4. An interesting question is why the discretionary central bank
would have set higher interest rates for most of the sample. To do so, it
is instructive to look at the two policy rules f c(Xc

t ) and fd(Xd
t ): 5

ict = 0.0103− 0.56zt + 0.41gt + 0.38πt−1

+terms depending on λNKPC,t−1 and λIS,t−1 (4)

idt = 0.0136− 1.51zt + 0.92gt + 0.56πt−1 (5)

Part of the answer is the higher inflation target of the discretionary cen-
tral bank. It is worth noting, however, that this higher inflation target
does not translate one-to-one to a higher constant in the policy rule for
that central bank. Instead, while the policy rule for that central bank
does imply a steady state value for the nominal interest rate equal to
πd + r∗, part of that steady state interest rate comes from the coefficient
on lagged inflation. In fact, the difference in the constants of the two
policy rules in annualized percentage terms is only 1.32%. The discre-

3It is the relative squared distance to the actual observed interest rate, though, that
ultimately determines model probabilities. This can be seen in a graph in the appendix.

4A graph of the difference in policy prescriptions is available in the online appendix.
5The negative sign on zt in both policy rules is a result of that shock entering with

a minus sign in the New Keynesian Phillips Curve, which is a standard way of writing
this equation (see, for example, Lubik & Schorfheide (2004)).
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tionary central bank reacts more strongly to both shocks and the lagged
inflation rate than the commitment central bank, but it obviously lacks
the terms depending on the Lagrange multipliers λNKPC,t−1 and λIS,t−1,
coming from the nature of the commitment solution. This stronger con-
temporaneous response is a standard feature of discretionary policymak-
ing, as described in, for example, Woodford (2003).

To come back to the question posed above, the combination of the
stronger response to lagged inflation and the higher inflation target lead
to the higher interest rate prescriptions of the opportunistic central bank
for most of the sample6. The following graphs plot the contributions of
the relevant state variables to the policy prescriptions of the committed
and discretionary policymakers.
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Figure 3: Contributions of different state variables to ict (in annualized
percent)

6The online appendix contains graphs that plot the contribution of different state
variables to the policy prescriptions.
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5 10 year average of squared prediction er-

rors

To gain further insight into how the private sector arrives at the poste-
rior model probabilities, it is useful to analyze squared prediction errors
coming from the two submodels, as they govern the Gaussian conditional
likelihoods lct and ldt :

(400it − 400idt )
2 − (400it − 400ict)

2 (6)

A value of this statistic less than 0 implies a better fit of the discretion
submodel. This statistic is very volatile and periods where one submodel
is preferred by the date are often followed by a period where the other
submodel is preferred. What determines the model probabilities is a 10
year average of this difference in squared prediction errors. This moving
average is plotted in the online appendix.

A positive value of the moving average implies evidence in favor of the
commitment submodel. Because I set the prior model probabilities to 0.5,
a positive value of this moving average implies that pct is larger than 0.5.
The evidence for or against one of the two submodels is strongest in the
1970s, where the magnitude of the moving average is much larger than
what it is at any point after 1980.
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6 Data

In this paper I use a quarterly sample starting in the first quarter of
1960 and ending in the third quarter of 2004. The following data series
are used:

• quarterly PCE inflation

• the quarterly average Federal Funds rate.

• deviations of log per capita real output from a trend calculated us-
ing the Hodrick-Prescott Filter (Hodrick & Prescott (1997)) in real
time. I calculate the trend using the Hodrick-Prescott filter for ev-
ery period in the sample (using only data up until that time period),
then calculate the deviations of the most recent observation from
the most recent value for the trend and build up a sample for the
output gap that way. I do so since I use conditional one-step-ahead
forecast densities to calculate the likelihood, which could be prob-
lematic if the trend is calculated only once using the entire sample.

The raw data for the Federal Funds rate and per capita output are the
same that are used in Smets & Wouters (2007) and more information
about the data can be found in that paper. The source for the PCE price
index used for calculating PCE inflation is the Bureau of Economic Anal-
ysis. Per capita real output and the PCE price index are seasonally ad-
justed.

7 Recursive Computation of the Likelihood

The components of the likelihood function can be recursively computed
as follows:

1. Using prior model probabilities pc and pd, initial state variables for
both submodels, Xc

0 and Xd
0 and initial observations π0, y0 and i0 as
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well as initial values for z0 and g0 (set to 0 in the actual estimation)
and a parameter vector Θ, do the following:

• calculate the optimal policies under discretion and commit-
ment

• solve for the policy prescriptions of both models at time 0 using
the policy rules and initial state vectors for both modelsXc

0 and
Xd

0

• use those policy prescriptions and i0 to calculate the likelihoods
of the submodels at time 0

• use the likelihoods, pc and pd, and equation (10) to calculate pc0
and pd0

• use Xc
0 and Xd

0 to calculate Ec
0(π2), Ec

0(y2), Ed
0(π2) and Ed

0(y2)

which can be computed using the solution to the two optimal
policy problems

• use the calculated expectations and time 1 data to back out z1
and g1 using (1) and (2)

• given observations for z and g dated 0 and 1 back out ε1 and
use that to update the multipliers using (14)

• calculate the time 1 contribution to the likelihood of the entire
model using ε1 and its distributional assumption

2. for all t = 2, ..., T do the following:

• solve for the policy prescriptions of both models at time t − 1

using the policy rules and state vectors for both models Xc
t−1

and Xd
t−1

• use those policy prescriptions and it−1 to calculate the likeli-
hoods of the submodels at time t− 1
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• use the likelihoods, pc and pd, and equation (10) to calculate
pct−1 and pdt−1

• use Xc
t−1 and Xd

t−1 to calculate Ec
t−1(πt+1), Ec

t−1(yt+1), Ed
t−1(πt+1)

and Ed
t−1(yt+1) which can be computed using the solution to the

two optimal policy problems

• use the calculated expectations and time t data to back out zt
and gt using (1) and (2)

• given observations for z and g dated t− 1 and t back out εt and
use that to update the multipliers using (14)

• calculate the time t contribution to the likelihood of the entire
model using εt and its distributional assumption
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8 Numerical Implementation of theMetropolis-

Hastings Algorithm

I use a standard Random Walk Metropolis-Hastings algorithm to gener-
ate draws from the posterior distribution of the parameters. I generate
N = 1100000 draws, where I discard the first 100000 to allow for effects of
the initial condition to wear off.
To generate a starting value Θ0 I start off different optimizers 7 at 1000
randomly chosen points in the parameter space to get a preliminary esti-
mate of the posterior mode 8. I also calculated the negative of the inverse
Hessian at that point. Usually a scaled version of that matrix is used as
the innovation matrix in the random walk proposal, but I found for my
purposes that a weighted average (with weight .5) of that matrix and the
prior covariance matrix worked better numerically. Note that nothing in
the theory of the Metropolis-Hastings algorithm requires the innovation
matrix to be a scaled version of the negative inverse Hessian.
A detailed description of the Metropolis-Hastings algorithm can be found
in, for example, An & Schorfheide (2007). The posterior distributions of
all counterfactuals and statistics such as pct are calculated using 50000

draws, which are drawn uniformly from the entire set of 1000000 draws.

7I used the Knitro suite of optimizers.
8I maximized the posterior kernel since the normalizing constant is notoriously hard

to estimate.
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9 Posterior Distribution

Table 1: Statistics of Posterior Distribution
Variable Posterior Mode Posterior Mean 5th Percentile 95th Percentile

κ 0.6994 0.7304 0.6818 0.7581
σ 1.6055 1.6026 1.4855 1.6906
ρg 0.4021 0.4105 0.3851 0.4359
ρz 0.5727 0.5926 0.5651 0.6211
σν 0.0061 0.0063 0.0057 0.0071
σz 0.0078 0.0081 0.0075 0.0086
σg 0.0157 0.0155 0.0148 0.0161
ρgz 0.6074 0.6326 0.5656 0.6815

400 ∗ πc 1.76 1.92 1.76 2.08
400 ∗ πd 5.48 5.12 4.76 5.48

16 ∗ λc 0.0656 0.3024 0.0224 0.6768
16 ∗ λd 0.4944 0.5280 0.2880 0.7216

λci 0.1128 0.1099 0.0997 0.1199
λdi 0.3149 0.3123 0.2608 0.3689
r 0.0076 0.0059 0.0043 0.0081
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10 Alternative Specifications of theHypothet-

ical Policymakers

So far, the private sector in this model has considered two hypotheti-
cal policymakers that differ across two dimensions: the timing protocol
of policymaking (discretion or commitment) and their preferences over
paths of the inflation rate, the nominal interest rate and the output gap.
This section describes various robustness checks with respect to the set of
hypothetical policymaker considered by the private sector. The learning
setup is the same as in the benchmark model: private agents consider
two models of monetary policymaking and use observed data to figure
out which of the two policy prescriptions is more likely to have generated
the data. Three alternatives are considered:

1. Two policymakers with different preferences who solve for the op-
timal policy under commitment (not taking into account that the
private sector is learning, just as in the benchmark case).

2. The corresponding case where two discretionary policymakers with
different preferences solve for the optimal policy (not taking into
account that the private sector is learning, just as in the benchmark
case).

3. A committed and a discretionary policymaker who share the same
preferences solve for the optimal monetary policy under their re-
spective timing protocols (not taking into account that the private
sector is learning, just as in the benchmark case).

As outlined in the main text, a discretionary and a committed policy-
maker generally differ because acting under discretion (i.e. in Markov-
perfect equilibrium) there is both an average inflation bias and a stabi-
lization bias - the discretionary central bank has less power to smooth the
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effects of shocks over time. The third scenario checks whether these two
biases alone can induce enough differences between a committed and a
discretionary policymaker to make the data fit as well as the benchmark
case in which I impose differences in average inflation outcomes (whereas
in the third scenario those differences are endogenously coming from the
average inflation bias induced by different output targets) and differences
in preferences that help fit the data. In the first and second case the
priors in the Bayesian estimation of the model are the same as for the
original model, i.e. the priors on the preference parameters for one of the
policymakers is equal to the priors for the committed policymaker in the
baseline model, while the priors for the preference parameter of the other
policymaker correspond to the priors attached to the preference param-
eters of the discretionary policymaker in the baseline model.
The third case features a smaller parameter space since the preference
parameters are the same across the two hypothetical policy makers. For
that case, I have adjusted the prior mean of the preference parameters
of the policymakers to be the mean of the corresponding preference pa-
rameters in the other cases 9. In the third case I allow for a non-zero
output gap target. Since preferences are the same across policymakers
the identification argument for not including such an output gap target is
no longer valid. The introduction of this additional parameter introduces
the possibility of an average inflation bias arising for the discretionary
policymaker (if the output gap target is not equal to zero): the private sec-
tor thinks that the average inflation under the discretionary policymaker
will be higher than under the committed policymaker even though both
share the same preferences. I use a uniform prior on the output gap
target, with a lower bound of 0 and the upper bound of max(yt). The
only prior restrictions I thus enforce on this parameter estimate are non-

9The prior standard deviations are the same for corresponding policy parameters in
the other cases. Therefore I did not modify any prior standard deviations.
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negativity and an upper bound of the maximum observed output gap. As
we will see below it is important to impose an upper bound on this pa-
rameter estimate.
For the sake of brevity, I focus on the posterior mode estimates. All esti-
mation results reported in this section also use the prior on reasonable
policy modes as described above. Estimates labeled 1 in the table be-
low are estimates of the preference parameters based on the prior used
for the commitment central bank in the original model, while estimates
labeled 2 are based on the prior for the discretionary policymaker.

TABLE 2 HERE

The preference parameter estimates differ substantially across the spec-
ifications, with the hypothetical policymakers in the case of two commit-
ted policymakers not caring at all about the output gap and very little
about interest rate deviations from target. In the case of two discre-
tionary hypothetical policymakers, these two policymakers turn out to
have the same target for inflation10. The non-policy parameters are very
similar across the first two specifications (and also similar to the esti-
mates of the original model). The third specification leads to substan-
tially different parameter estimates for that set of parameters, though.
In particular, the z process is almost white noise and the estimate of κ is
substantially lower, implying more price rigidity is needed to fit the data.
In addition, the estimate of the output gap target is equal to the upper
bound of the uniform prior distribution discussed above. To fit the data,
the third specification calls for an unreasonably high output gap target

10This is an artefact of a restriction imposed during estimation: the inflation target
of the policymaker with the lower prior mean on the inflation target has to be less or
equal to the other policymakers inflation target. If that restriction is not imposed the
two inflation targets are still very similar, but the policymaker that starts out with a
lower prior mean on the inflation target has a posterior mode estimate for the inflation
target that is 0.2 annualized percentage points higher. Other estimates are basically
unchanged in that case. This switching in the ordering of inflation targets can happen
because the prior distributions for the other preference parameters of the two policy-
makers are also different.

17



and more price rigidity than what is otherwise needed.
In order to give a first estimate of the relative fit of the specifications
considered here, table 2 reports the value of the posterior kernel at the
posterior mode. The corresponding number for the main model is 1908,
a number 10 log points higher than the highest number reported in table
2. While this exercise can not replace the calculation of Bayesian model
probabilities, it is hopefully at least indicative of the relative empirical
performance of the various model specifications.

Table 2: Posterior Modes, Alternative Specifications of Hypothetical Pol-
icymakers

Variable First Case Second Case Third Case
κ 0.7459 0.7512 0.0944
σ 1.7020 1.3912 2.0577
ρg 0.3133 0.4072 0.4673
ρz 0.6478 0.6176 0.0406
σν 0.0070 0.0059 0.0060
σz 0.0078 0.0082 0.0058
σg 0.0150 0.0154 0.0151
ρgz 0.6500 0.6134 0.2956

400 ∗ π1 2.3326 4.0967 3.2587
400 ∗ π2 7.5872 4.0967 -
16 ∗ λ1 0 0 0.1280
16 ∗ λ2 0 1.2112 -

λ1i 0.0530 0.4214 0.0917
λ2i 0.0398 0.3056 -
r 0.0073 0.0069 0.0057

log likelihood + log (ddp) 1860.2 1898.3 1890.8
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11 InferenceUsing aConditional Likelihood

Function

As described in the main text, I use a likelihood function conditional on
the path of nominal interest rates to shield myself against possible mis-
specification of the actual monetary policy rule. To see the advantages
and disadvantages of such an approach, let’s consider for amoment build-
ing a joint model for (yT , πT , iT ) = XT . As in the main text, the parame-
ters governing private agents’ behavior are called Θ. The parameters of
the actual policy rule are called Γ. Note that Γ could be very high dimen-
sional if time variation in the monetary policy rule coefficients is allowed
for. For convenience, I will drop the conditioning argument I (the initial
values used in estimation) throughout this exposition. We can think of
all densities possibly being conditioned on I. It is crucial to realize that
the posterior density for Θ derived in this section implicitly conditions on
the model for the actual (and not only the perceived) evolution of iT , even
after we integrate over the parameter values for that actual policy rule.
In contrast, the posterior used in the paper does not depend on a specific
model for the actual evolution of nominal interest rates. The posterior of
the joint model is

p(Θ,Γ|XT ) ∝ p(Θ,Γ)p(XT |Θ,Γ) (7)

Next, let’s make the common assumption of independent priors:

p(Θ,Γ)p(XT |Θ,Γ) = p(Θ)p(Γ)p(XT |Θ,Γ) (8)

We can rewrite the likelihood to arrive at:

p(Θ,Γ)p(XT |Θ,Γ) = p(Θ)p(Γ)p(yT , πT |Θ,Γ, iT )p(iT |Θ,Γ) (9)
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Given the assumption made on the learning model, p(yT , πT |Θ,Γ, iT ) does
not depend on Γ once we condition on the path of nominal interest rates:
private sector behavior only depends on monetary policy through the ac-
tual path of the monetary policy instruments since that is what deter-
mines private agents’ beliefs and influences their actions. Thus the pos-
terior can be rewritten as (up to a constant factor)11:

p(Θ)p(Γ)p(yT , πT |Θ, iT )p(iT |Θ,Γ) (10)

Integrating this expression over Γ yields:

p(Θ|yT , πT , iT ) ∝ p(Θ)p(yT , πT |Θ, iT )

∫
p(Γ)p(iT |Θ,Γ)dΓ (11)

In this paper I am only interested in inference on Θ. Building a joint
model of output, inflation and nominal interest rates only helps me in
this endeavor through p(iT |Θ,Γ)12. The behavior of nominal interest rates
will tell me something about Θ because in general any reasonable model
of nominal interest rates will depend on output and inflation, which are
determined by private agents (and thus depend on Θ). This information,
which is most likely not as useful as that contained directly in output and
inflation data, comes at the cost of possible misspecification. If p(iT |Θ,Γ)

is misspecified, then any gains from modeling the monetary policy rule
will most likely vanish quickly. In this paper, I follow a substantial part
of the learning literature (e.g. Sargent, Williams & Zha (2006)) and do
not assume that private agents necessarily have the correct model of the

11Integrating this posterior with respect to Γ will give the posterior of Θ conditional
on a specific model for the evolution of iT . Below I describe why this posterior will in
general differ from the posterior when I do not make an assumption on what model
determines iT , as is done in the paper. Note that even when one integrates out the
specific parameters for the monetary policy rule Γ, the form of that policy rule will still
matter for the marginal posterior of Θ if one takes a stand on a model for the policy
instrument.

12If p(iT |Θ,Γ) does not depend on Θ, then the posterior above and the posterior used
in the paper will exactly coincide since

∫
p(Γ)p(iT |Θ,Γ)dΓ can then be subsumed into

the factor of proportionality in the equation determining the marginal posterior of Θ.
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economy, which is why I introduced a separate vector of parameters Γ for
the actual policy rule in this section. If the parameters of the perceived
policy rule would be a part of Γ, then the above derivationwould obviously
not hold. If we were to impose that the true policy rule would switch be-
tween the two perceived types according to an exogenous (and persistent)
two-state Markov Chain13 (after all we should allow for some switching
between the two types), but if the real policy rule is not of this type, then
we introduce severe misspecification not present in the estimation algo-
rithm in the paper. This is exactly the misspecification I want to avoid.
On the other hand, if the proposed policy rule is the actual data generat-
ing process then the estimated model probabilities of the agents will give
a good approximation to filtered estimates of the model probabilities and
the gains from efficiency coming from explicitly modeling the policy rule
are likely to be small. This happens because in the case in which the
discrete state Markov Chain is persistent, looking at the last 10 years of
data and calculating which model is more likely to have generated the
data (as private agents do in the model), will be a good approximation to
filtered model probabilities calculated using the Markov chain approach.

12 Using a Simulation-Based Prior

This section uses an alternative set of prior distributions to assess the
robustness of the estimates presented above. I keep the "standard" priors
described earlier, but replace the data-driven prior with a prior on the

13Having this feature in addition to the learning would make inference substantially
harder from a computational perspective, but let’s use this setup for our thought exper-
iment.
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mean and variance of the average policy prescription14:

iavt ≡
ict + idt

2
(12)

If we denote the vector of the sample mean and sample variance of iavt by
χ, then the prior distribution I will be using has the form

p(Θ, χ|yT , πT , I, iT )︸ ︷︷ ︸
posterior

∝ p(Θ)︸︷︷︸
prior

p(yT , πT |Θ, I, iT )︸ ︷︷ ︸
likelihood

(13)

= p1(Θ)︸ ︷︷ ︸
”standard” prior

psim2 (χ(Θ)|Θ, I, iT )︸ ︷︷ ︸
simulation based prior

p(yT , πT |Θ, I, iT )︸ ︷︷ ︸
likelihood

The above expression emphasizes the dependence of χ on the parameter
vector Θ. Furthermore, psim2 conditions on the path of observed interest
rates and the initial values used for the computation of the likelihood.
Since the likelihood also conditions on these variables, an application of
Bayes’ Law shows that this conditioning is valid. As mentioned before,
there are in general no closed form expressions for χ as a function of θ and
the condition arguments of psim2 available. Therefore, following Gallant
& McCulloch (2009), I use a simulation-based prior. When simulating,
I take as given the same initial values I used to compute the likelihood
and the path of actual nominal interest rates. For every evaluation of
the prior, I use N = 500 simulated paths of the exogenous disturbances
and then calculate the mean and variance of iavt across those simulations
and across time15. I then choose a shape for psim2 (in this case two in-
dependent Gaussian distributions, one of which is truncated since the
variance is non-negative) and evaluate psim2 at the given value of Θ and
the calculated value for χ. This approach to modeling prior information

14iavt is defined as the simple average of the policy prescriptions instead of the prob-
ability weighted average to decrease identification problems in areas of the parameter
space where one model of policymaking has very low probability. Remember that a
similar argument was made when defining the data driven prior earlier.

15To reduce simulation noise, I keep the standardized values of the disturbances fixed
across evaluations of the prior density.
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in Bayesian inference is similar in spirit to the approach proposed in
Del Negro & Schorfheide (2008)16.
Table 3 shows the estimation results using this approach, focusing on the
posterior mode for sake of comparability. For most parameters, the es-
timates are reasonably close to the estimates calculated using the data
driven prior. The main difference are the preferences of the hypotheti-
cal committed central bank, which now cares substantially more about
fluctuations in the output gap and the nominal interest rate. The main
conclusions found using the original approach do carry over to this ap-
proach, as can be seen by looking at the estimated series for pct (figure
6) implied by the posterior mode calculated using the simulation based
prior. While this probability goes to zero slower at the beginning of the
sample and does not rise as fast in 1980, the overall pattern does re-
main the same. To confirm this, figure 7 plots the private sector expecta-
tions using the posterior mode estimates calculates using the simulation-
based prior, which are very similar to the expectations obtained using the
original approach17.

16The priormean for the sample average is 6 % annualized and the standard deviation
is .5% annualized. While this is a rather tight prior, I want to impose the strong prior
belief that the average policy prescription is close to the levels of the interest rate that
we have seen since 1960. The prior mean for the sample variance is 7e-5, which is
roughly the variance of the nominal interest rate used in the estimation. The standard
deviation of the normal distribution for the variance (before truncation) is 1e-5.

17Other results such as counterfactual outcomes are also broadly similar.
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Figure 6: Posterior mode estimate of pct , simulation-based prior
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Figure 7: Private sector expectations, simulation-based prior

24



Table 3: Posterior Mode Estimates, Simulation-Based Prior

Variable Posterior Mode
κ 0.4486
σ 1.4074
ρg 0.4334
ρz 0.3217
σν 0.0126
σz 0.0074
σg 0.0160
ρgz 0.6570

400πc 1.5008
400πd 6.0911

16 ∗ λc 2.67
16 ∗ λd 0.0064

λci 0.2697
λdi 0.3826
r 0.0067

13 Additional Robustness Exercises

This section briefly shows results for two additional robustness exercises.
For the sake of brevity, I only show a subset of the results for these cases.
First, what would happen if agents use the entire sample to form model
expectations? Results are very similar to the benchmark case. Figures
8 and 9 show results for this case. The model probabilities evolve in a
smoother fashion (as expected), but are qualitatively and quantitatively
very similar. The same is true for the expectations of private agents.
Other results (such as the counterfactuals) are not effected by this as-
sumption either.
The paper shows that Bayes rule calls for a ’prior’ conditional on iT . To
see the effect of this ’prior’, I re-estimated the model without it. Figure
10 shows the expected interest rate at the posterior mode for that case.
Agents hold highly unreasonable views in this case.
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Figure 8: Probability associated with committed policymaker, agents use
full sample
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Figure 9: Private sector expectations, agents use full sample
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Figure 10: Expected interest rates, estimation without p(Θ|iT )
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14 Proof that Bayesian Model Probabilities

are Martingales

Let x be a variable of interest (in our case x corresponds to the nominal
interest rate). Suppose a Bayesian entertains two models for x, which
I will denote model A (with prior model probability P (A) and likelihood
p(x|A)) and model B (with prior model probability P (B) and likelihood
p(x|B)). Bayes’ theorem tells us that

P (A|x) =
p(x|A)P (A)

p(x)

where p(x) = p(x|A)P (A) + p(x|B)P (B). Let’s next calculate the expecta-
tion of P (A|x):

E(P (A|x)) = E(
p(x|A)P (A)

p(x)
) =

∫
p(x|A)P (A)

p(x)
p(x)dx

=

∫
p(x|A)P (A)dx = P (A)

∫
p(x|A)dx = P (A)

The same calculations go through when a Bayesian sequentially updates
his prior (in which case we have to explicitly use conditional expectations
in the equation above).

References

An, S. & Schorfheide, F. (2007), ‘Bayesian analysis of DSGE models’,
Econometric Reviews 26, 113–172.

Del Negro, M. & Schorfheide, F. (2008), ‘Forming priors for DSGEmodels
(and how it affects the assessment of nominal rigidities)’, Journal of

Monetary Economics 55(7), 1191–1208.

28



Gallant, A. R. & McCulloch, R. E. (2009), ‘On the determination of gen-
eral scientific models with application to asset pricing’, Journal of

the American Statistical Association 104(485), 117–131.

Hodrick, R. J. & Prescott, E. C. (1997), ‘Postwar U.S. business cycles:
An empirical investigation’, Journal of Money, Credit and Banking

29(1), 1–16.

Lubik, T. A. & Schorfheide, F. (2004), ‘Testing for indeterminacy: An
application to U.S. monetary policy’, American Economic Review

94(1), 190–217.

Sargent, T., Williams, N. & Zha, T. (2006), ‘Shocks and government be-
liefs: The rise and fall of American inflation’, American Economic

Review 96(4), 1193–1224.

Smets, F. & Wouters, R. (2007), ‘Shocks and frictions in US business
cycles: A Bayesian DSGE approach’, American Economic Review

97(3), 586–606.

Woodford, M. (2003), Interest and Prices: Foundations of a Theory of Mon-

etary Policy, Princeton University Press.

29


	Calculating Expectations (and Perceived Steady States)
	Difference in policy prescriptions
	Posterior distribution of model probabilities
	Contribution of different state variables to policy prescriptions
	10 year average of squared prediction errors
	Data
	Recursive Computation of the Likelihood
	Numerical Implementation of the Metropolis-Hastings Algorithm
	Posterior Distribution
	Alternative Specifications of the Hypothetical Policymakers
	Inference Using a Conditional Likelihood Function
	Using a Simulation-Based Prior
	Additional Robustness Exercises
	Proof that Bayesian Model Probabilities are Martingales

