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This online appendix presents a number of complementary results. Section 1 shows that

any mean-reverting impulse response function can be approximated by a sum of Gaussian basis

functions. Section 2 discusses the construction of the likelihood for FAIR models and Section 3

presents our estimation algorithm. Section 4 discusses the issue of identification in asymmetric

vector moving-average models. Sections 5 to 7 present three different Monte-Carlo simulations

to illustrate the workings of FAIR models as well as to evaluate their performances in finite

sample. We evaluate the performances of FAIR in the linear case; first for a well-specified

FAIR model and then for a mis-specified FAIR model, and we then evaluate the ability of FAIR

models to detect asymmetric effects of shocks. Section 8 discusses the prior IRFs implied by

our priors on the a-b-c parameters with a focus on the sign-restriction identification (section

3 of the main text); Section 9 clarifies the conceptual differences between a FAIR model and

a (finite state) Markov-Switching (MS) model and discusses why a MS model cannot easily

capture asymmetric impulse response functions.

1 Approximating IRFs with Gaussian basis functions

In this section, we show that any mean-reverting impulse response function can be approxi-

mated by a sum of Gaussian basis functions. The following Theorem is a simple extension of

Alspach and Sorenson (1971, 1972).

Theorem 1. Let f be a bounded continuous function on R that satisfies
∫∞
−∞ f(x)2dx < ∞.

There exists a function fN defined by

fN (x) =
N∑
n=1

ane
−(x−bn

cn
)2

with an, bn, cn ∈ R for n ∈ N, such that the sequence {fN} converges pointwise to f on

every interval of R.
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Proof. Following Alspach and Sorenson (1971, 1972) in the context of approximating distri-

butions, the problem of approximating a function f can be considered within the context of

delta families of positive types.

Delta families are families of functions which converge to a delta function as a parameter

characterizing the family converges to a limit value.

Let {δλ} be a family of functions on the interval ]−∞,+∞[ which are integrable over every

interval. {δλ} forms a delta family of positive type if the following conditions are satisfied:

1. For every constant γ > 0, δλ tends to zero uniformly for γ ≤ |x| ≤ ∞ as λ→ λ0

2. There exist s in R so that
∫ s
−s δλ(x)dx −→ 1 as λ tends to some limit value λ0

3. δλ(x) ≥ 0 for all x and λ

Defining

δλ(x) ≡ Gλ(x) =
1√

2πλ2
e−

x2

λ2 , (1)

it is easy to see that the Gaussian functions {Gλ} form a delta family of positive type as λ→ 0

(i.e., λ0 = 0). That is, the Gaussian function tends to the delta function as the variance tends

to zero.1

We can then make use of the following theorem.

Theorem: The sequence {fλ} which is formed by the convolution of δλ and f

fλ(x) =

∫ +∞

−∞
δλ(x− u)f(u)du (2)

converges uniformly to f as λ→ λ0 for x on every interval [x0, x1] of R.

Proof. See Korevaar (1968).

Using (1) in (2), the function fλ given by

fλ(x) =

∫ +∞

−∞
Gλ(x− u)f(u)du (3)

converges uniformly to f as λ→ 0 for x in some arbitrary interval [x0, x1] of R.
Next, we want to approximate (3) with a Riemann sum. To do so, first rewrite fλ as

fλ(x) =

∫ −s
−∞

Gλ(x− u)f(u)du︸ ︷︷ ︸
=A(λ,x)

+

∫ +s

−s
Gλ(x− u)f(u)du+

∫ +∞

s
Gλ(x− u)f(u)du︸ ︷︷ ︸

=B(λ,x)

(4)

1Note that this proof can be easily applied to other functions (such as the inverse quadratic function x →
1

1+( xλ )2
) that form a delta family of a positive type, so that our approach is not restricted to Gaussian functions.
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for s > 1.

Note that for any s > 1, we have

0 ≤
∫ +∞

s
Gλ(u)du

≤ 1√
2πλ2

∫ +∞

s
e−

u
λ2 du since u2 > u for any u in [s,+∞[, s > 1

≤
[
−λ2√
2πλ2

e−
u
λ2

]+∞
s

=
|λ|√
2π
e−

s
λ2 −→

λ→0
0

which shows that ∀s > 1, lim
λ−>0

∫ +∞
s Gλ(u)du = 0. Symmetrically, we can show lim

λ−>0

∫ −s
−∞Gλ(u)du =

0.

Going back to (4), we have

0 ≤ |B(λ, x)| ≤M
∫ x−s

−∞
Gλ(t)dt

where M = sup
x∈R
|f(x)| . Since x ∈ [x0, x1], we can choose an s > 1 such that x − s < −1, so

that we can apply the previous result and get

lim
λ→0
|B(λ, x)| = 0. (5)

Proceeding symmetrically, we have lim
λ→0
|A(λ, x)| = 0.

Finally, since the function u 7→ Gλ(x−u)f(u) is continuous over [−s, s], we can approximate∫ +s
−s Gλ(x− u)f(u)du with a Riemann sum. Denoting

fλ,N (x) =

N∑
n=1

Gλ(x− ξn)f(ξn) (ξn − ξn−1)

where ξn = −s+ n2s
N , we get that

lim
N→∞

fλ,N (x) =

∫ +s

−s
Gλ(x− u)f(u)du. (6)

Denoting an = f(ξn) (ξn − ξn−1), bn = ξn and cn = λ, using (6), (5) in (4) and combining

with (3), we get that

lim
λ→0

(
lim
N→∞

fλ,N (x)

)
= f(x)

which completes the proof.
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2 FAIR estimation

We now discuss how to estimate FAIR models using maximum likelihood or Bayesian methods.

While the computational cost is not as trivial as OLS in the case of VARs, the estimation is

simple and relatively easy thanks to modern computational capabilities.

The key is to construct the likelihood function p(yT |θ) of a sample of size T for a linear

moving-average model with parameter vector θ and where a variable with a superscript denotes

the sample of that variable up to the date in the superscript. To start, we use the prediction

error decomposition to break up the density p(yT |θ) as follows:2

p(yT |θ) =

T∏
t=1

p(yt|θ,yt−1). (7)

To calculate the one-step-ahead conditional likelihood function needed for the prediction

error decomposition, we assume that all innovations {εt} are Gaussian with mean zero and

variance one,3 and we note that the density p(yt|θ,yt−1) can be re-written as p(yt|θ,yt−1) =

p(Ψ0εt|θ,yt−1) since

yt = Ψ0εt +

H∑
h=1

Ψhεt−h. (8)

Since the contemporaneous impact matrix is a constant, p(Ψ0εt|θ,yt−1) is a straightforward

function of the density of εt.

To recursively construct εt as a function of θ and yt, we need to uniquely pin down the

values of the components of εt from equation (8), that is we need that Ψ0 is invertible. We

impose this restriction by assigning a minus infinity value to the likelihood whenever Ψ0 is not

invertible. It is also at this stage that we impose the identifying restriction that we describe

next. Finally, to initialize the recursion, we set the first H innovations {εj}0j=−H to zero.4,5

3 FAIR estimation algorithm

This section describes our FAIR estimation algorithm in more detail. We are interested in

estimating the parameter vector θ by combining the likelihood function p(yT |θ) with the

2To derive the conditional densities in decomposition (7), our parameter vector θ thus implicitly also includes
the H initial values of the shocks: {ε−H ...ε0}. We will keep those fixed throughout the estimation and discuss
alternative initializations below.

3The estimation could easily be generalized to allow for non-normal innovations such as t-distributed errors.
4Alternatively, we could use the first H values of the shocks recovered from a structural VAR.
5When H, the lag length of the moving average model is infinite, we truncate the model at some horizon H,

large enough to ensure that the coefficients of the lag matrix ΨH are “close” to zero. Such a H exists since the
variables are stationary.
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prior distribution p(θ). We want to generate N from the posterior by using a multiple-block

Metropolis-Hastings algorithm (Robert & Casella 2004) with the blocks given by the different

groups of parameters in our model (there is respectively one block for the a parameters, one

block for the b parameters, one block for the c parameters and one block for the constant

and other parameters). We use N tune draws to tune the proposal distributions, which we

update every ntune draws during the tuning process. We split the parameter vector into J

non-overlapping blocks θ1, ..., θJ . We denote θ−j the parameters in all blocks but block j.

• estimate a VAR on yT and compute the implied structural MA representation (imposing

a identification scheme that is consistent with the scheme used in the FAIR model).

Compute the parameter value θV AR that minimizes the quadratic distance between the

VAR-implied IRFs and the FAIR IRFs.

• starting from θV AR, use an optimizer to maximize the posterior kernel p(yT |θ)p(θ). De-

note the resulting parameter estimate by θstart

• for j = 1, ..., J , compute the inverse of the Hessian of the posterior kernel Σj at θstartj

(holding all other blocks fixed at θstart−j ) and use this as the first guess for the variance of

the proposal density in block j

• for n = 1 to Ntune

ntune

– for j = 1, ..., J , compute ntune draws for block j using the Metropolis-Hastings,

holding all other parameters fixed at the latest draws for the respective blocks

– if the acceptance probability is smaller than some threshold (say 0.15), multiply the

variance of the proposal density by a positive constant smaller than 1

– if the acceptance probability is larger than some threshold (say 0.5), multiply the

variance of the proposal density by a positive constant larger than 1

• for m = 1 to N

– for j = 1, ..., J generate a draw of θj (conditioning on θ−j) using the Metropolis-

Hastings algorithm

Computational cost: To give a sense of the computational cost of our approach, on a

2016 MacBook Pro (3.3 GHz Intel Core i7 with 16 GB of RAM) 100 likelihood evaluations of a

linear FAIR model with 1 basis function, 3 observables and 40 lags for 120 observations takes

1.98 seconds. A full estimation run (with initial optimization etc.) using the same data and

model as well as hardware takes 36 minutes (with 20000 draws to tune the Metropolis-Hastings

steps, 20000 draws from the posterior and 4 blocks in the Metropolis-Hastings algorithm).
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4 Identifying restrictions in non-linear VMA models

We now discuss how to impose identifying restrictions in VMA models, notably non-linear

VMA models with asymmetric impulse responses. We only discuss the non-linear model yt =
∞∑
h=0

Ψh(εt−h, )εt−h, since it includes the simpler linear model yt =
∞∑
h=0

Ψhεt−h.

As described in the main text, we impose the identifying restriction when we construct

the likelihood, so that constructing the likelihood and imposing identifying restrictions are

intimately linked, and we thus describe them jointly. To recursively construct the likelihood at

time t, one must ensure that the shock vector εt is uniquely determined given a set of model

parameters and the history of variables up to time t. As described in section 2 of this appendix,

in order to construct the likelihood recursively, the system of equations

Ψ0(εt)εt = ut (9)

need to have a unique solution vector εt given ut = yt −
H∑
h=0

Ψh(εt−h)εt−1−h. That is, we

must ensure that there is a one-to-one mapping from εt to Ψ0(εt)εt. In the linear case, this

means that we must ensure Ψ0 is invertible. In the non-linear case, ensuring that the shock

vector εt is uniquely determined becomes more complicated, when we allow Ψ0 to depend on

the sign of the shock.6

Consider an asymmetric model where Ψh depends on the sign of εt. A complication

arises when one allows Ψ0 to depend on the sign of the shock while also imposing identifying

restrictions on Ψ0. The complication arises, because with asymmetry, the system of equations

Ψ0(εt)εt = ut need not have a unique solution vector εt, because Ψ0(εt), the impact matrix,

depends on the sign of the shocks, i.e., on the vector εt.

We now show how to address the issue when we allow the identified shocks to have asym-

metric effects on the impulse response functions. We successively consider each identification

scheme used in the paper: (i) recursive ordering, (ii) narrative identification, and (iii) sign

restrictions.

4.1 Recursive identification scheme

It will be convenient to adopt the following conventions for notation:

• Denote y`,t the `th variable of vector yt and denote y<`t = (y1,t, ..., y`−1,t)
′ the vector of

variables ordered before variable y`,t in yt. Similarly, we can define y≤`t or y>`t .

6Note that if the impact matrix Ψ0 is a constant and does not depend on εt (so that Ψh depends on εt only
for h > 0), then one can construct the likelihood just as in the linear case, because as long as Ψ0 is invertible,
there is (one-to-one) mapping from εt to Ψ0εt, and εt is uniquely defined from ut.
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• For a matrix Γ of size L× L and (i, j) ∈ {1, ..., L}2, denote Γ<i,<j the (i− 1)× (j − 1)

submatrix of Γ made of the first (i− 1) rows and (j − 1) columns. Similarly, we denote

Γ>i,>j the (L − i) × (L − j) submatrix of Γ made of the last (L − i) rows and (L − j)
columns. In the same spirit, we denote Γi,<j the submatrix of Γ made of the ith row and

the first (j − 1) columns. Γi,<j is in fact a row vector. A combination of these notations

allows us to denote any submatrix of Γ. Finally, denote Γij the ith row jth column

element of Γ.

With these notations, we can now state the recursive identifying assumption

Assumption 1 (Partial recursive identification). The contemporaneous impact matrix Ψ0 of

dimension L× L is of the form

Ψ0 =


Ψ<`,<`

0
(`−1)×(`−1)

0<`,`
(`−1)×1

0<`,>`
(`−1)×(L−`)

Ψ`,<`
0

1×(`−1)
Ψ0,``
1×1

0`,>`
1×(L−`)

Ψ>`,<`
0

(L−`)×(`−1)
Ψ>`,`

0
(L−`)×1

Ψ>`,>`
0

(L−`)×(L−`)

 .

with ` ∈ {1, .., L}, Ψ<`,<`
0 and Ψ>`,>`

0 matrices of full rank and 0 denoting a conformable

matrix of zeros.

Assumption 1 states that the shock of interest ε`,t, ordered in `th position in εt, affects the

variables ordered from 1 to `−1 with a one period lag, and that the first ` variables in yt do not

react contemporaneously to shocks ordered after ε`,t in εt. For instance, in the monetary model

used in section 5, the policy rate is ordered last, and the recursive identification scheme states

that shocks to the policy rate do not affect unemployment and inflation contemporaneously,

i.e., that the last column of Ψ0 is filled with zeros except for the diagonal element.

We consider a model with asymmetry in response to the structural shock {ε`,t}`∈{1,..,L} and

we establish the following proposition:

Proposition 1. Consider the non-linear moving average model defined in section 4 of the

main text with

Ψh(εt−h) = Ψh(ε`,t−h) (10)

=
[
Ψ+
h 1ε`,t−h>0 + Ψ−h 1ε`,t−h<0

]
, ∀h ∈ {0, ..,H}, ∀t ∈ {1, .., T} (11)

with ` ∈ {1, .., L}, ε`,t, the `th structural shock in εt and with Ψ0 satisfying Assumption 1.
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Then, given {yt}Tt=1, given the model parameters and given H initial values of the shocks

{ε−H ...ε0}, the series of shocks {εt}Tt=1 is uniquely determined.

Proof. We first establish the following lemma:

Lemma 1. Consider a matrix Γ that can be written as

Γ =

(
A B

C D

)

where A,B,C and D are matrix sub-blocks of arbitrary size, with A a non-singular squared

matrix and D−CA−1B nonsingular. Then, the inverse of Γ satisfies

Γ−1 =

(
A−1+A−1BF−1CA−1 −A−1BF−1

−F−1CA−1 F−1

)

with F = D−CA−1B.

Proof. Verify that ΓΓ−1 = I.

We prove Proposition 1 by induction, so that given past shocks {εt−1−H , ..., εt−1} (and

given model parameters {Ψh}Hh=0), we will prove that the system

ut = Ψ0(ε`,t)εt (12)

with ut = yt −
H∑
h=0

Ψh(ε`,t−1−h)εt−1−h, has a unique solution vector εt.

Notice that (12) implies the sub-system with ` equations

u≤`t =

(
Ψ<`,<`

0 0<`,1

Ψ`,<`
0 Ψ0,``(ε`,t)

)
ε≤`t (13)

and notice that the matrix in (13) depends on ε`,t only through the scalar Ψ0,``(ε`,t). Denoting

A ≡ Ψ<`,<`
0 a (`− 1)× (`− 1) invertible matrix (from Assumption 1), C ≡ Ψ`,<`

0 a 1× (`− 1)

matrix, B ≡ 0 of dimension (`− 1) × 1, and D(ε`,t)≡Ψ0,``(ε`,t) the (`, `) coefficient of Ψ0 (a

scalar), we can use Lemma 1 to invert the system (13) and obtain

ε≤`t =
1

D(ε`,t)

(
D(ε`,t)A

−1 0<`,1

−CA−1 1

)
u≤`t . (14)

The last row of (14) provides the equation ε`,t = 1
D(ε`,t)

( −CA−1 1 )ut, which defines

ε`,t. Since the right hand side of that equation only depends on ε`,t through D(ε`,t), the sign
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of the right hand side depends on ε`,t only through the sign of D(ε`,t) = Ψ0,``(ε`,t). But since

Ψ0,``(ε`,t), the sign of the contemporaneous effect of the shock ε`,t on variable yl,t, is posited to

be positive as a normalization, the sign (and the value) of ε`,t is uniquely determined from the

last row of (14). Then, with Ψ<`,<`
0 and Ψ>`,>`

0 invertible, (12) has a unique solution vector

εt.

Proposition 1 ensures that the system (9) has a unique solution vector, even when the shock

ε`,t, identified from a recursive ordering, triggers asymmetric impulse response functions.

With Proposition 1, we can then construct the likelihood recursively. To write down the

one-step ahead forecast density p(yt|θ,yt−1) as a function of past observations and model

parameters, we use the standard result (see e.g., Casella-Berger, 2002) that for Ψ0 a function

of εt, we have

p(Ψ0(ε`,t)ε`,t|θ,yt−1) = Jtp(εt)

where Jt is the Jacobian of the (one-to-one) mapping from εt to Ψ0(εt)εt and where p(εt) is

the density of εt.
7

Finally, note that while we considered the case of a partially identified model, we can

proceed similarly for a fully identified model with Ψ0 lower triangular and show that the shock

vector εt is uniquely determined by (9) even when all shocks have asymmetric effects.

4.2 Narrative identification scheme

For a narrative identification scheme, we can use the previous results on recursive identification,

since the use of narratively identified shocks can be cast as a partial identification scheme.

Indeed, if one orders the narratively identified shocks series first in yt, we can assume

that Ψ0 has its first row filled with 0 except for the diagonal coefficient, which implies that

the narratively identified shock does not react contemporaneously to other shocks (as should

be the case if the narrative shocks were correctly identified). With Assumption 1 satisfied

with ` = 1, Proposition 1 then imply that (9) has a unique solution vector εt even when the

narratively identified shocks have asymmetric effects.

4.3 Set identification from sign restrictions

We now consider the case of a set identification scheme based on sign restrictions. Denote εrt

the structural shock of interest identified from sign restrictions.

7In our case with asymmetry, this Jacobian is simple to calculate, but the mapping is not differentiable at
ε`,t = 0. Since we will never exactly observe ε`,t = 0 in a finite sample, we can implicitly assume that in a small
neighborhood around 0, we replace the original mapping with a smooth function.
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We establish the conditions under which system (9) has a unique solution vector in a model

with asymmetry:

Proposition 2. Consider the asymmetric moving average model defined in section 4 of the

main text with

Ψh(εt−h) = Ψh(εrt−h) (15)

=
[
Ψ+
h 1εrt−h>0 + Ψ−h 1εrt−h<0

]
, ∀h ∈ {0, ..,H}, ∀t ∈ {1, .., T} (16)

with εrt the structural shock identified from sign restrictions. Then, given {yt}Tt=1, given the

model parameters and given H initial values of the shocks {ε−H ...ε0}, the series of shocks

{εt}Tt=1 is uniquely determined provided that sgn(det Ψ+
0 ) = sgn(det Ψ−0 ).

Proof. Without loss of generality, let us order the variables such that εrt , the shock with

asymmetric effects, is ordered last. We can then write Ψ0(ε
r
t ) (of dimension L× L) as

Ψ0(εt) =

(
A B(εrt )

C D(εrt )

)

with A a (L− 1) × (L− 1) invertible matrix, C a 1 × (L − 1) matrix, B(εrt ) a matrix of

dimension (L−1)×1 that depends on εrt , and D(εrt )≡Ψ0,LL(εrt ) a scalar. Notice that only the

last column of Ψ0 depends on εrt .

We will make use of the following lemma:

Lemma 2. Consider the same matrix Γ as in Lemma 1. We have

det Γ = det(A) det(D−CA−1B).

Proof. Rewrite Γ as

Γ =

(
A 0

C I

)(
I A−1B

0 D−CA−1B

)
and the lemma follows.

Using Lemma 1 and noting that D(εrt ) is a scalar, we have that the inverse of Ψ0 satisfies

Ψ−10 =
1

D(εrt )−CA−1B(εrt )

( (
D(εrt )−CA−1B(εrt )

)
A−1+A−1BCA−1 −A−1B(εrt )

−CA−1 1

)
.
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The last row of the system εt = Ψ−10 ut provides the equation

εrt =
1

D(εrt )−CA−1B(εrt )
( −CA−1 1 )ut, (17)

which defines εrt . Since the right hand side of (17) only depends on εrt through D(εrt ) −
CA−1B(εrt ), the sign of the right hand side of (17) depends on εrt only through the sign

of D(εrt )−CA−1B(εrt ).
8 Using Lemma 2, we have det Ψ0(ε

r
t ) =

(
D(εrt )−CA−1B(εrt )

)
det A,

so that the sign of the right hand side of (17) depends on εrt only through the sign of det Ψ0(ε
r
t ).

Thus, with sgn(det Ψ+
0 ) = sgn(det Ψ−0 ), the sign of εrt is uniquely pinned down, so that with

A invertible, the system ut = Ψ0(εrt )εt has a unique solution vector.

Proposition 2 states that the system ut = Ψ0(εrt )εt determines a unique solution vec-

tor εt as long as sgn
(
det Ψ+

0

)
= sgn

(
det Ψ−0

)
, i.e., as long as sgn

(
D+ −CA−1B+)

)
=

sgn
(
D− −CA−1B−)

)
, which means that there is a unique solution vector εt as long as the

asymmetry on the impact coefficients is not too strong.

In practice, we impose this restriction by assigning a minus infinity value to the likeli-

hood whenever sgn(det Ψ+
0 ) 6= sgn(det Ψ−0 ). Then, to construct the likelihood, we proceed as

described in the recursive identification section by using the fact that there is a one-to-one

mapping from εt to Ψ0(εt)εt.

5 Simulation study #1: a well-specified linear FAIR model

In this section we describe our first simulation study, where we consider the case of a linear

FAIR(1) data generating process (DGP), so that the FAIR estimation is carried out with a

correctly specified model. We first describe the DGP, and then assess (i) the finite performances

of FAIR against a VAR, (ii) the convergence property of our MCMC, (iii) whether FAIR models

are well identified, and (iv) to what extent the initialization of the initial shocks to zero matters

for inference.

5.1 The Data Generating Process

The true DGP is a trivariate FAIRG(1) model with 40 lags. The impulse responses (which

completely characterize the DGP) are given in Figure A1.

With this DGP, we try to capture a number of different patterns of impulse responses

regularly observed in linear analysis, while at the same time trying to keep the DGP simple

via the use of one basis function only. We simulate 50 data sets of 120 observations each - we

8In fact, we have D(εrt )−CA−1B(εrt ) = Ψ0,LL(εrt )−
L−1∑̀
=1

(
CA−1

)
`
Ψ0,`L(εrt ).
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have in mind the DGP mimicking a monthly model with 10 years of data. The data-generating

process imposes a recursive identification scheme (the matrix of initial impacts of the shock is

lower triangular), which we also impose in our estimation. Beyond this restriction we do not

impose any priors to focus solely on the in the likelihood function and highlight that FAIR

parameters can be well estimated without informative priors.

For estimation, we use 20000 draws for the FAIR(1) model (20000 additional draws for

burn-in/fine-tuning the proposal densities), and we only use 1 block in the Metropolis-Hastings

algorithm.

5.2 FAIR performances and comparison with a VAR

To assess the performances of FAIR, we compare our results with those of a Gaussian VAR(12).

We use very loose (conjugate Normal-Wishart) priors for the VAR, so that just as in the case

of the FAIR model, all relevant information comes from the likelihood function. Note that

as long as the VAR can capture the lagged dynamics of the data (we use large number of

lags in the VAR exactly to give it a fair shot to match impulse responses, echoing results in

De Graeve & Westermark (2013)), it will be able to capture the true impulse responses via a

simple Cholesky identification scheme.

For each of our 50 Monte Carlo samples, we compute the mean squared error for all impulse

responses (3 shocks and 3 observables for a total of 9 impulse response paths) for the first 25

time periods. The average mean squared error (across responses and Monte Carlo replications)

is 150 percent higher for the VAR. This result holds across all Monte Carlo samples as well,

with the 25th percentile of the increase in mean squared errors across replications being already

65 percent.

While we use a VAR with relatively many lags to give the VAR a good chance to match

impulse responses, a natural response to our results might be that they are driven by the

VAR lag length. To rule this out, we also estimated VAR(4) models on our 50 datasets. The

same pattern of results emerges - the mean squared error across responses and Monte Carlo

samples is 106 percent higher in the VAR case than with a FAIR(1) and the 25th percentile of

the increase in mean squared errors across replications is 35 percent. Looking at the impulse

responses over the first 40 time periods yields an even stronger picture: The average mean

squared error of a VAR(12) relative to a FAIR model is 284 percent. The 25th percentile of

the increase in mean squared errors across replications is 146 percent in that case.

To illustrate the range of impulse response estimates for the VAR(12) and for FAIR(1),

figures A2 and A3 plot the true responses along with the estimated responses across our 50

Monte Carlo samples. Note that the y-scale is substantially smaller for FAIR estimates than

for the VAR, so to make comparison easier, figure A4 plots the FAIR impulse responses on
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the same scale as for the VAR. We can see that VAR estimates display substantially more

variability than FAIR estimates. First, VAR estimates are more noisy while FAIR estimates

are smooth by construction. Second, and more importantly, VAR estimates are very variable

across replications, and the VAR-estimated IRF can show large deviations from the true IRF

(e.g., the response of variable 3 to shock 1 in the lower-left corner). Intuitively, when estimating

IRFs from a finite-order VAR, researchers faces a difficult bias-variance trade-off, balancing

between the need to estimate a high-enough order VAR and the need to keep the number of

free parameters small. In situations where the order of the VAR must be large to guarantee

a good approximation of the DGP (as in this Monte Carlo simulation), a FAIRG model can

provide a useful alternative to estimate IRFs. Third, because VAR-based IRF are basically

linear combinations of damped sine-cosine functions, the VAR-based IRFs can display counter-

factual oscillations.9 With its tight parametrization, a FAIRG with only a few basis functions

avoids this problem.

Importantly, our goal was not to claim that FAIR models are superior to VARs. Instead,

this simulation is meant to convey that FAIR models can provide a useful alternative approach,

especially in short samples.

5.3 Convergence

To get a sense of how well our MCMC algorithm mixes, we (randomly) focus on 15 of the

50 data sets and run a second Markov chain on them. For simplicity, we only focus on the

estimated impulse responses on impact that are not restricted to be zero. Figure A5 shows the

trace plots for 2000 consecutive (post burn-in) draws from both chains and one dataset. The

straight lines show the averages for the 2000 draws. We can see that relative to the estimated

posterior means displayed in those 2000 draws, the difference in means is small. This conclusion

carries over to all 15 datasets. If we compute the difference between the estimated posterior

means relative to the posterior mean for the original chain, the median difference (across all

impulse responses and datasets) is less than 5 percent of the estimated posterior mean of the

original chain.

5.4 Identification

To assess whether FAIR models are well identified, we plot slices of the likelihood surface at

the true values (holding all other parameters constant at their true values. We do this for two

random samples, one of size 120 (as in our MC simulations, shown in Figure A6) and one with

9Going back to our second point, the order of the VAR may need to be very high to avoid these oscillations.
However, this may be difficult in practice, because the number of parameters to estimate grows exponentially
with the number of lags.
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1200 observations (shown in Figure A7). What we can see is that (at least locally, which is all

we can learn from this exercise) the FAIR model is well identified even in small samples.

5.5 Shock Initialization

Finally, to assess whether setting the initial shocks to 0 (when we construct the likelihood)

matters for inference, we have conducted an experiment where we simulated data from our

tri-variate FAIRG(1) DGP, generating 20 samples of 120 observations each. For each sample,

we estimated two versions of the model: one where the true initial shocks (set to 0) were used,

and one where the initial shocks were set to a series of standard normal random variables. For

illustration, we focus on the peak effects to the third shock in our trivariate FAIR (the results

for the other shocks are similar). Figure A8 shows the estimated median peak effects across

samples for the two specifications. The true value for the first two peak effects is 1, while

the true value for the third response is 2. For all samples and specifications, the estimated

mean values fluctuate around the true value, with no discernible difference in the average

performance across the two specifications

6 Simulation study #2: A mis-specified linear FAIR model

We now consider a simulation in which the true DGP is a VAR(4), so that the FAIRG is

mis-specified. The idea of the exercise is to show that a parsimonious FAIR model that only

approximates the true DGP can be helpful.

6.1 The Data Generating Process

To construct a plausible VAR-based DGP, we proceed as follows. We first estimate a structural

VAR on US data (using a recursive identification scheme), invert it to obtain a set of impulse

responses
{

Ψ̂h

}∞
h=0

, and we modify these baseline impulse responses to introduce asymmetry.

From these impulse responses, we generate simulated data from

yt =
∞∑
h=0

Ψ̂hεt−h (18)

with εt Normally distributed, Eεt = 0 and Eεtε
′
t = I.

We use 50 Monte-Carlo replications with a sample size T = 200, which roughly corresponds

to the sample size available for the US.

The DGP is obtained from estimating the quarterly VAR(4) considered in the main text

with the unemployment rate, the PCE inflation rate and the federal funds rate over 1959-2007.
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The impulse response functions to a monetary shock can be seen in Figure 1 of the main text.

6.2 FAIR performances and comparison with a VAR

For each simulated dataset, we estimate (i) a FAIR model with two Gaussian basis functions

(with priors defined exactly as in the main text), and (ii) a (well-specified) VAR(4), and we

evaluate the Mean-Square Error (MSE) of the estimated impulse response function over the

horizons h = 1...25.10 Importantly, we stack the odds in favor of the VAR and against the

FAIR model, because the estimated VAR is a correctly specified model.

The first row of Table A1 presents the average MSEs over the simulations. For unemploy-

ment and inflation, the FAIR model is respectively 25 percent and 50 percent more accurate on

average than the VAR. For the fed funds rate, the MSE is small in both cases, but again with

a slight advantage for FAIR. The advance of FAIR over VAR is not as large in this simulation

as in the previous one, but recall that FAIR is now mis-specified.11 Table A1 also presents the

average length and coverage rate of the confidence bands capturing the 95 percent posterior

probability and compares it with the confidence bands implied by a Bayesian VAR with loose,

but proper, Normal-Wishart priors. We report the average length and coverage rate at the

time of the peak effect of the shock of the variable of interest. We can see that the average

lengths are smaller for FAIR than for the VAR, while the coverage rate of FAIR remains good.

7 Simulation study #3: An asymmetric DGP with a mis-

specified FAIR model

We now present a simulation exercise to evaluate whether FAIR is able to detect non-linearities.

7.1 The Data Generating Process

For the DGP, we proceed as in the previous section except that we modify the baseline impulse

responses to introduce asymmetry. We start from a VAR with (log) GDP, inflation and the fed

funds rate, where we detrend GDP with a quadratic trend. Although we could have used the

same VAR as previously, we preferred this one, because the price puzzle is more substantial

in this specification (Figure A9), so that the Monte-Carlo exercise will be a more stringent

test on a FAIR model with one Gaussian function that cannot capture the oscillating pattern

10Specifically, we report MSE =
∑25
h=1(ψ̂(h) − ψ(h))2 where ψ̂ is the estimated impulse response function

and ψ is the true function.
11As with the earlier simulation study with a well-specified linear FAIR, the reason for the superior perfor-

mances of FAIR is the fact that the VAR often shows counterfactual oscillation patterns. In contrast, FAIR is
disciplined by its stricter parametrization.
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in inflation. Again, the goal of the exercise is to assess whether a FAIR model that only

approximates the main feature of the impulse responses can still recover non-linearities.

We consider a DGP where the impulse response functions to monetary shocks depend on

the sign of the shock. To introduce asymmetry, we modify the impulse responses
{

Ψ̂h

}∞
h=0

to

make them depend on the sign of the monetary shock, and Figure A9 plots the asymmetric

impulse response functions. For realism, the level of asymmetry that we simulate is chosen to

roughly match the magnitude of the asymmetry we later find in US data. Note that we do

not impose asymmetry for the response of the fed funds rate. This is done to test whether our

procedure incorrectly reports the existence of asymmetry when there is none.

From these impulse responses, we the generate simulated data from

yt =
∞∑
h=0

Ψ̂h(εt−h)εt−h (19)

with εt Normally distributed, Eεt = 0 and Eεtε
′
t = I.

As in simulation study #2, we use 50 Monte-Carlo replications with a sample size T = 200.

7.2 FAIR performances

We estimate a one-basis-function FAIR model with asymmetry on each set of simulated data,

and Table A2 presents summary statistics for a+ − a−, which captures the amount of peak

asymmetry for each one of the three variables in the model.

A number of results emerge. First, as shown by the frequency of rejection of zero coefficient

for a+ − a−, the algorithm can detect asymmetry when it exists (case of output and inflation,

first row of Table A2), even when the impulse response is not generated by one Gaussian,

and even when, as with inflation, there is a strong oscillating pattern that cannot be captured

by a one Gaussian approximation.12 This is encouraging, because it supports our motivating

idea that by approximating the most important feature of an impulse response, one can detect

important non-linearities. Moreover, the algorithm does not detect asymmetry when there

is none (case of the fed funds rate). Second, looking at the mean and standard-deviation of

the estimates across Monte-Carlo replications (second row of Table A2), we can see that the

algorithm under-estimates the amount of asymmetry (both for output and inflation). This

indicates that in our empirical application on US data, our algorithm may under-estimate

the magnitude of asymmetry present in the data. Third, the dispersion (third row) in the

estimates across the Monte-Carlo replications is reasonably small, while the coverage rate of

12Specifically, the 90 percent posterior probability of a+−a− excludes zero for output and inflation respectively
94 and 90 percent of the time.

16



the posterior distribution – the frequency with which the true value lies within 90 percent of

the posterior distribution–, is also good (fourth row).

8 Prior IRFs and sign-restrictions identification

In this section, we give two examples of how the a-b-c priors translate into priors on the IRFs.

Specifically, Figure A10 plots the prior IRF of unemployment as used in all identification

schemes and the prior IRF of inflation as used in the sign-restriction schemes (the prior IRFs

are in response to a 100bp monetary shock).

For the IRF of unemployment, recall that we used the following a-b-c priors: we centered

the priors on the values for a, b and c obtained by matching the impulse responses obtained

from the VAR, and we set the standard-deviations of the priors as σa = 10 ppt, σb = 10

quarters and σc = 20 quarters with the constraint c > 0. The upper panel of Figure A10

shows that the prior IRF for unemployment is very loose: Notice that the scale of the y-axis

is two orders of magnitude larger than the initial guess (plotted in figure 1 of the main text).

Moreover, the shape of the IRF is also little restricted by our priors.

Turning to inflation, Figure A10 (bottom panel) shows the sign-restriction in action. Recall

that we imposed (section 3 of the main text) that the loading on the second basis function is

negative (aπ,2 < 0), while the first basis function (meant to capture a possible price puzzle) can

load positively or negatively but is restricted to peak within a year (bπ,1 ≤ 4) with a “half-life”

of at most a year (cπ,1
√

ln 2 ≤ 4). Figure A10 shows that our identification restriction on

inflation is that the price puzzle cannot last for too long, roughly not more than 2 years, as

the response of inflation must be negative after that. Note again that apart from this sign

restriction, the prior on the magnitude or the shape of the IRF is very loose.

9 Contrasting a FAIR model and a finite state Markov-switching

model

In this section, we clarify the conceptual differences between a FAIR model and a (finite state)

Markov-Switching (MS) model, notably why a MS model cannot easily capture asymmetric

impulse response functions.
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Consider as Data-Generating Process (DGP) a univariate non-linear FAIRG1 model13

yt =
H∑
h=0

ψ(h, εt−h)εt−h (20)

where εt is an i.i.d. innovation with Eεt = 0 and Eε2t = 1, and H is the number of lags, which

can be finite or infinite, and

ψ(h, εt−h) = a(εt−h)e
−
(
h−b(εt−h)
c(εt−h)

)2

In (20), the lag coefficient ψ(h, εt−h, ) is the impulse response of yt at horizon h to innovation

εt. In this non-linear model, the impulse response function ψ depends on the values of the

innovations εt (for instance, positive vs negative), because the a-b-c coefficients are (continuous)

functions of εt.

Turning to the Markov-switching model, an MS model for yt would write

yt =
H∑
h=0

Mst(h)εt−h (21)

where Mst(h) depends on the value of the state variable st.

Note first that a finite state MS model will not be able to perfectly reproduce the moving-

average coefficients, because the a-b-c coefficients (and thus ψ) can take on an infinite number

of values, depending on the realization of the continuous variable ε.

Next, consider a more specific version of (20) with asymmetric impulse responses, i.e.,

where the a-b-c coeficients depend only on the sign of the shock. The FAIR model in that case

is

yt =
H∑
h=0

ψ+(h)εt−hI(εt−h > 0) +
H∑
h=0

ψ−(h)εt−hI(εt−h ≤ 0) (22)

with ψ+(h) = a+e−(
h−b+
c+

)2 and similarly for ψ−.

Note that DGP (22) can now be described with a finite number of states, since ψ can only

take a finite number of values. However, a very large number of Markov states (2H) would be

needed to perfectly approximate the MA coefficients of (22), much larger than typical empirical

applications (for say quarterly data with H = 20, that would be 220 states).

Moreover, even if the MS model could allow for 2H states, the typical Markov-Switching

13We consider a univariate model for clarity of exposition, but the argument would be identical with a
multivariate model.
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model would be misspecified. Indeed, in empirical applications, the discrete Markov state

driving it is typically either assumed to be exogenous (and independent of the other shocks in

the model, in particular independent of εt) or dependent on lagged endogenous variables (e.g.,

Sims, Waggoner and Zha, 2008). However, ψ(0, εt) –the contemporaneous moving-average coef-

ficient in model (22)– depends on the current period shock. This will lead to a misspecification

of the typical MS model.

10 The asymmetric effects of shocks: additional results

To give a complete set of results for the asymmetric effects of shocks, we plot the impulse

responses to positive and negative monetary shocks under the narrative and sign identification

schemes (Figure A11 to A12).14

For both identification schemes, a contractionary monetary shock significantly increases

unemployment whereas an expansionary monetary shock has little on effect on unemployment

(and non-significantly different from zero). A similar mirror image pattern holds for inflation.

14When comparing impulse responses to positive and negative shocks, keep in mind that the impulse responses
to expansionary monetary shocks (a decrease in the fed funds rate) were multiplied by -1 in order to ease
comparison across impulse responses. With this convention, when there is no asymmetry, the impulse responses
are identical in the upper panels (responses to a contractionary monetary shock) and in the bottom panels
(responses to an expansionary monetary shock).
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Figure A7: likelihood surfaces, 1200 observations. The titles in the subplots denote which
group of parameters the specific parameter plotted belongs to. If only a red line appears then
that parameters is restricted to a specific value in estimation.
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distribution on FAIR parameters.

30



 0 10 20
−0.1

0

0.1

0.2

0.3

0.4

C
on

tr
ac

tio
na

ry
 s

ho
ck

Unemployment

 0 10 20
−1.5

−1

−0.5

0

0.5

Price level

 0 10 20
0

0.5

1

1.5
Interest rate

 0 10 20
−0.1

0

0.1

0.2

0.3

0.4

E
xp

an
si

on
ar

y 
sh

oc
k

(−) Unemployment

 0 10 20
−1.5

−1

−0.5

0

0.5

(−) Price level

 0 10 20
0

0.5

1

1.5
(−) Interest rate

Figure A11: Asymmetric IRFs, narrative identification: FAIR estimates of the IRFs of
unemployment (in ppt), the (log) price level (in percent) and the federal funds rate (in ppt) to
100bp monetary shock identified by Romer and Romer (2004). Shaded bands denote the 5th
and 95th posterior percentiles. For ease of comparison, responses to the expansionary shock
are multiplied by -1. Sample 1969-2007
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Figure A12: Asymmetric IRFs, sign-restrictions identification: FAIR estimates of the
IRFs of unemployment (in ppt), the (log) price level (in percent) and the federal funds rate (in
ppt) to a 100bp monetary shock identified with sign restrictions. Estimation from a FAIR with
asymmetry (plain line). Shaded bands denote the 5th and 95th posterior percentiles. For ease
of comparison, responses to the expansionary shock are multiplied by -1. With this convention,
when there is no asymmetry, the impulse responses are identical in the upper panels (responses
to a contractionary monetary shock) and in the bottom panels (responses to an expansionary
monetary shock). Sample 1959-2007.
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