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Abstract

We estimate a panel model with endogenously time-varying parameters for COVID-

19 cases and deaths in U.S. states. The functional form for infections incorporates

important features of epidemiological models but is flexibly parameterized to capture

different trajectories of the pandemic. Daily deaths are modeled as a spike-and-slab

regression on lagged cases. Our Bayesian estimation reveals that social distancing and

testing have significant effects on the parameters. For example, a 10 percentage point

increase in the positive test rate is associated with a 2 percentage point increase in the

death rate among reported cases. The model forecasts perform well, even relative to

models from epidemiology and statistics.
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1 Introduction

A new form of coronavirus, SARS-CoV-2, which causes the respiratory disease COVID-19,

appeared in the U.S. in January 2020.1 Since then, the U.S. has seen over 5 million cases and

170,000 deaths as of mid-August.2 Any policy response to the pandemic crucially depends

on understanding how the virus spreads, how the disease evolves over time, what its effects

on mortality rates are, and how factors such as increased testing and measures such as social

distancing affect outcomes. We contribute to this effort from a statistical perspective that

pays heed to prior epidemiological research.

To that end, we develop and estimate a time series model for infections and deaths

in U.S. states that has three key features: (i) it exploits the panel dimension of the data

without forcing dynamics to be the same across states, (ii) it is a statistical model that, while

using some insights from epidemiological models, is more flexible than common models in

epidemiology, and (iii) it features time variation in parameters tied directly to fluctuations

in observable predictors to account for the fact that citizens and governments changed their

behavior as the pandemic grew.3 The model produces accurate forecasts for COVID-19 cases

and deaths in the U.S., outperforming a widely used and publicized benchmark model from

epidemiology. Our estimates show that increased social distancing and testing are associated

with a lower number of cases, but this association does not hold in all states. In addition,

increased testing is associated with lower death rates among reported cases. We estimate the

model using Bayesian methods, which allows us to quantify the uncertainty in our forecasts

and estimates explicitly.

Our model is based on the observation that the time path of infections during an epi-

demic follows a typical pattern. When a pathogen enters a population that is susceptible to

infection, the number of cases is initially low. However, the growth rate of new infections

is high and tends to rise sharply at an exponential rate since each infected person creates

a chain of new infections. At some point, however, the pathogen runs out of susceptible

hosts because they are already infected, immune, or simply not physically present because

of health policies such as social distancing. At this inflection point, the growth rate of in-

fections falls until it eventually declines to zero. We replicate these broad patterns of an

epidemic by specifying a flexible functional form that describes the path of infections over

time as depending on the current and the lagged levels of the number of infections.

Since deaths from COVID-19 fundamentally arise from infections, we model deaths as

1https://en.wikipedia.org/wiki/COVID-19_pandemic
2https://coronavirus.jhu.edu
3The usefulness of time-varying parameter models during times of policy changes was first noted by

Robert Lucas in his original work on the Lucas Critique (Lucas (1976)).
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depending on lagged cases. In particular, we use a spike-and-slab regression model (Mitchell

and Beauchamp (1988); Ishwaran et al. (2005)), in which the number of deaths on a given

day in a particular state depends on the lagged number of daily new cases in that state. Due

to the long lag between the time COVID-19 patients test positive and the time they may die,

our specification includes 35 lags, which introduces a large number of coefficients relative

to the length of the sample period. The spike-and-slab structure shrinks the regression

coefficients in order to improve forecast performance.

We adapt our empirical specification to account for the fact that over time and across

states there has been heterogeneity in how the pandemic has evolved and how states have

responded. First, we introduce endogenous time-varying parameters (TVP). The parame-

ters for the model of infections depend on social distancing and testing, while the death rate

depends on testing only. We measure social distancing using geolocation data from around

16 to 20 million mobile devices, while the intensity of testing is measured using the ratio of

infections to tests conducted. The model thus captures how these factors alter the predicted

path of infections and deaths while providing additional flexibility to match different tra-

jectories in a way that is tightly disciplined by data. Second, we utilize the panel structure

of the data. In particular, our estimation allows the data to determine the correlation in

parameters across states and imposes that social distancing and testing have the same effect

on parameters in all states. Exploiting the panel structure sharpens estimates and forecasts

for a short sample period by leveraging data from all states to inform the estimates for a

given individual state.

The model forecasts from May and June at horizons of up to 4 weeks are generally

corroborated by the data. In particular, we check the empirical frequency at which the

data realizations fall below various quantiles of our model forecasts. The forecasts match

the empirical realizations for daily new cases except during the sharp rise at the end of

June and start of July. However, by mid-July, the parameter estimates update and produce

forecasts that largely match the data in the second half of July. The density forecasts for

daily new deaths also match the empirical realizations well, especially at the upper quantiles.

Our forecasts perform favorably relative to a variety of alternative specifications, the widely

used IHME model4, and a repository of models from leading teams of epidemiologists and

statisticians.

The endogenous TVP framework allows us to consider how social distancing and testing

drive the model-implied paths for cases and deaths. Due to the nonlinearity of our model,

we find that the effect of increased social distancing and testing on the predicted number of

cases differs across states even though the parameters determining this dependence are fixed

4https://covid19.healthdata.org/
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across states. For instance, under the median estimates for Texas, quantitatively plausible

increases in social distancing or testing are associated with a reduction in the number of cases

by up to 50%. Under the median estimates for New York, the peak number of cases is early

and sharp, and neither social distancing nor testing substantially changes the model-implied

path for cases. We also find that more testing is associated with a lower death rate since the

reported infections are likely to include more asymptomatic or mild cases.

Epidemiologists have long studied the spread of infectious diseases, using both increas-

ingly complex theoretical models and also more purely empirical frameworks. We contribute

to the latter by utilizing the toolkit prevalent in the analysis of economic data. In that

respect, our work is similar to Harvey and Kattuman (2020), Li and Linton (2020), and Liu

et al. (2020), who also use statistical models to forecast the pandemic. Our work is closest

to Liu et al. (2020), who similarly use a panel structure. They use a linear time-trend model

that allows for an exogenous break, whereas our model is a nonlinear autoregressive model

whose parameters are connected to observable predictors. Our functional form shares simi-

larities with the generalized logistic curve used by Harvey and Kattuman (2020) to model the

number of cases. Both are flexible models for monotone progress from an initial condition

toward a saturation point. In contrast, Li and Linton (2020) use a polynomial time trend

for the logarithm of cases that is less flexible. Both Harvey and Kattuman (2020) and Li

and Linton (2020) focus on locality-by-locality estimation. In the biology literature, an early

example of such statistical models is Richards (1959), who introduced a generalized logistic

curve that has since been used to model the spread of epidemics.

Our paper also connects with recent work that enriches structural models from epidemiol-

ogy, primarily the so-called Susceptible-Infected-Recovered (SIR) framework. The structural

nature of the SIR model allows for the analysis of policy and counterfactual scenarios (e.g.,

Atkeson (2020); Fernández-Villaverde and Jones (2020); Hornstein (2020)). A hybrid ap-

proach is taken by Atkeson et al. (2020), who fit data on daily deaths to a mixture of Weibull

functions to obtain a time-varying reproduction rate for an SIR model. However, Koroloev

(2020) and Kopecky and Zha (2020) highlight identification issues in SIR frameworks, which

pose a challenge to accurate forecasting and quantification of uncertainty.

With the growing data on the COVID-19 pandemic, numerous attempts have been made

to study the connection between different variables and the spread of the disease. One ap-

proach is to incorporate the SIR model into a choice-theoretic framework (e.g., Eichenbaum

et al. (2020); Farboodi et al. (2020); Bognanni et al. (2020)) in order to model the feedback

between individual or policy decisions and the transmission of the virus. Our reduced form

approach seeks to minimize assumptions and gives the data a greater role in informing the

researcher. A second approach is to estimate a SIR model with exogenous TVP (e.g., Ar-
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royo Marioli et al. (2020); Buckman et al. (2020); Dandekar and Barbastathis (2020)), then

check the correlation of the parameters with various observables, such as social distancing

or quarantine measures, ex post. In contrast, we estimate the dependence of parameters

on these predictors jointly with the rest of the model. Finally, numerous papers have used

microeconometric methods that make use of differences across localities (e.g., Almagro and

Orane-Hutchinson (2020); Desmet and Wacziarg (2020); Glaeser et al. (2020)). By incor-

porating the panel structure, we similarly utilize variation across both states and time to

determine how social distancing and testing affect the path of the virus.

The paper is structured as follows. In Section 2, we introduce our model specification,

which we use to capture the evolution of infections and deaths over the course of an epi-

demic. We describe the data and estimation procedure in Section 3 and present the posterior

estimates in Section 4. In Section 5, we discuss the forecasting performance of the model.

Section 6 concludes.

2 A Panel Model for Estimating and Forecasting Pan-

demics

We now introduce and specify our empirical modeling framework for estimating and fore-

casting infections and deaths over the course of a pandemic. We formally introduce the

model setup before highlighting the distinctive features of our specifications.

2.1 Model Setup

We begin by modeling the number of infections independently since it is the key variable in

any theoretical or empirical model that studies the evolution of an epidemic. The number of

subsequent deaths is a function of the number of infections, which we consequently model as

a function of the lagged number of new cases. To be precise, we use (number of) infections to

denote the newly observed cases on any given day, that is the, inflow into the stock to total

infections measured. When we specifically refer to the latter, we explicitly use cumulative

cases or infections. We use the same nomenclature for deaths.
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2.1.1 Number of Cases

We specify the following model for the reported number of infections.5 Given states i =

1, ..., N and time periods t = 1, ..., T , denote the cumulative number of reported cases nor-

malized by population by Ci,t. We assume that Ci,t follows:

∆ logCi,t = log(1 + γi,t)
φ(Ci,t−1;αi,t, ζi,t, ηi,t)

φ(10−5;αi,t, ζi,t, ηi,t)
exp(uCi,t) , (1)

φ(C;α, ζ, η) ≡ exp[−C−α − (ζη − Cη)−2] , (2)

uCi,t = ρiu
C
i,t−1 + εCi,t , (3)

where εCi,t ∼ N (0, (1 − ρ2
i )(σ

C
i,t)

2). The normalization by φ(10−5;αi,t, ζi,t, ηi,t) ensures that

when a fraction 10−5 of the population has been infected, the growth rate in the absence of

shocks or time-variation in parameters is γ. The AR(1) processes uCi,t allow for potentially

persistent deviations from the deterministic trend. We assume these shocks are stationary.

Equation (1) expresses the growth rate of cases as a function of the current number of

cases, in contrast to Richards (1959), who models the cumulative number of cases. We focus

on the number of new infections because it is arguably a key metric for policymakers and the

public to assess the stage of the pandemic and the efficacy of mitigation efforts, especially

when deciding how stringent lockdown policy should be or predicting the strain on hospitals.

Nevertheless, it is straightforward to move between new and cumulative cases: to obtain the

cumulative number of cases, we integrate over the daily number of new cases over time.

In what follows, we describe the role of each of the parameters in giving flexibility to the

model-implied path for number of cases, before describing how the parameters vary across

time and states.

Functional Form. A key feature of the model is the functional form for φ in equation (2)

and the resulting range of trajectories implied by equation (1). We choose φ so that the

model with fixed parameters follows the general pattern of infections in a pandemic, with

an initial sharp increase as the disease spreads, followed by a leveling off and decline due to

public health policies or herd immunity. On the other hand, we ensure that the functional

form is flexible enough to match a wide range of such paths.

Figure 1 plots the trajectories for a range of time-invariant parameter values, illustrating

the role of each parameter. Each path begins with the same initial condition, while each panel

5We model the number of reported cases directly since it is the most common approach in the literature.
Testing in the U.S. has increased substantially since the onset of the pandemic, which we capture by allowing
the parameters to depend on the positive test rate. Therefore, the estimates and projections should not be
interpreted as capturing the unobserved true number of cases in the population.
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shows the effect of changing one parameter leaving the rest unchanged. The functional form

allows for different rates of increase and subsequent decrease in the number of new cases,

different peaks, and different asymptotic numbers of cumulative cases. Each parameter

corresponds to a specific phase of the pandemic, giving the model freedom to flexibly match

each of these characteristics of the data.

Identification of the model parameters is based on the growth rate and changes in the

growth rate of infections, with the different parameters associated with distinct phases of the

epidemic. Initially, the rate of growth is approximately exponential. The effect of increasing

α, shown in the top-right panel of Figure 1, is to increase the curvature of the number of new

cases, ∆Ct, in the early phase of the epidemic, which can capture the appearance of large

clusters or the effects of social distancing measures. As the stock of susceptible hosts starts

getting smaller, the rise in the growth rate decelerates until it reaches a peak. Afterwards,

the growth rate of new infections declines.

The parameters η and ζ determine the long-run number of cumulative cases and the

speed at which a population converges to that number, which could depend on factors

such as demographics or policies.6 In particular, the bottom panels of Figure 1 show that

increasing ζ or η leaves the initial path of Ct unchanged but increases the number of new

cases around the peak. While ζ does not affect the overall shape of the trajectory materially,

decreasing η flattens the peak and leads to a slower decline in the number of cases.

A key feature of our functional form is that it does not impose a fixed relationship between

the different stages of the pandemic. In an SIR model with time-invariant parameters, the

transmission and recovery rate determine both the initial rise in infections and the eventual

decline. However, the mapping between the different stages of the pandemic need not be

fixed, as policies or individual decisions vary over time. Atkeson (2020) argues that statistical

models without sufficient flexibility can face a similar problem by showing that the initial

IHME model implicitly assumes a declining trend in the effective reproduction number of

an SIR model. Our approach avoids such assumptions by decoupling the different phases

of the pandemic through the various parameters. An alternative way to avoid such a tight

relationship between different parts of the trajectory is to allow for time-varying parameters

(e.g., Buckman et al. (2020) for SIR models and Liu et al. (2020) for statistical models).

While such an approach provides great flexibility for fitting data, it may yield large forecast

error bands if the parameters are allowed to vary without restriction. Intuitively, our model

assumes that determinants of the path of the virus can vary substantially between phases

but less so within phases. At the same time, we discipline the estimation by utilizing the

6We also estimated a model that replaces the exponent of 2 on the second term in (2) with a freely
estimated parameter. We fix the exponent because it is not well-identified separately from ζ.
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Figure 1: Model-implied daily new cases with time-invariant parameters and no shocks.
Gray lines are identical across all panels. Each panel shows change in model-implied number
of new cases associated with a change in one parameter.

panel structure in our framework.

Panel Structure and Time-Varying Parameters. Denote a generic parameter by

θ ∈ {γ, α, ζ, η, σC , ρ}. We assume that the parameters depend on a vector of observables

Xi,t, which could include demographic variables, social distancing metrics, or the amount of

testing:

g(θi,t) = g(θi) + κ′θXi,t (4)

g(θi) ∼ N (µθ, ω
2
θ). (5)

The function g depends on the support of the particular parameter θ:

g(θ) =


θ supp(θ) = (−∞,∞)

log(θ) supp(θ) = (0,∞)

log( 1
1−θ − 1) supp(θ) = (0, 1)

. (6)
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Each of the functions in 6 are chosen to map the support of θ to the real line to match the

support of the normal distribution in (5).

The model (4) assumes that time variation in the parameters within a state can arise

only through time-varying predictors but does not allow for exogenous time variation in

parameters. Instead, we allow for differences across states through the fixed effect θi. The

joint distribution of parameters across states is determined by the hyperparameters µθ and

ωθ, which we estimate.

2.1.2 Number of Deaths

In addition to modeling infections, we also consider the mortality rate. Not all infections are

fatal, and an observed death is the outcome of a process that can vary over time. We thus

assume that the number of deaths on any given day depends on the lagged number of cases,

but allow the data to determine the rate at which infections translate to deaths at different

horizons and which lags are most important.

Modeling deaths as a function of the lagged number of infections has two advantages

over modeling the number of deaths directly by using a specification analogous to equations

(1)-(3). First, we are able to estimate the mortality rate and its determinants, both of which

are key inputs into understanding the human cost of the pandemic. Second, due to the long

lag between infection and death the recent number of new infections is informative about

the number of deaths in the near future. For example, if we observe a spike in the number

of cases, we would expect a future spike in the number of deaths even though this may not

be apparent from the current mortality data alone.

We consider an extension of the spike-and-slab regression for the number of new deaths

∆Di,t as a function of lagged new cases ∆Ci,t−`:

∆Di,t =
1∑
` ιi,`

L∑
`=1

ιi,`λ(λi,`, δ;Xi,t−`)∆Ci,t−` + εDi,t (7)

εDi,t ∼ N (0,
1∑
` ιi,`

L∑
`=1

ιi,`∆Ci,t−` × (σDi )2), (8)

where ιi,` ∼ Bernoulli(p`) is a variable selection indicator. In the absence of shocks, the setup

nests a deterministic SIR model, in which infections lead to deaths at a Poisson rate, and the

values of λ will fall geometrically with ` at the recovery rate. We provide greater flexibility

by allowing the coefficient λ to vary freely across lags. In addition, we include shocks whose

variance scales with the number of lagged cases. The scaling captures the trade-off between

a lower variance due to a larger number of cases, over which to average and a higher variance

9



due to a larger number of expected deaths.

The variable selection parameter ιi,` shrinks small coefficients to zero, which can improve

forecast precision since there are a large number of coefficients relative to observations. On

one hand, the parameter L is relatively large because COVID-19 patients who do not survive

the illness have a relatively long lag time between testing positive for the virus and dying.

On the other hand, COVID-19 is a recent disease for which we have a relatively short panel

of data. By making p` depend on `, the model assumes that lags, which are more important

for predicting mortality in one state, are likely important for other states as well.

The death rate λ roughly captures the fraction of infected individuals who die after a

given number of days.7 It depends on a state- and window-specific parameter λi,` and a

coefficient δ that determines the dependence of death rate on the predictors Xi,t−`. For

instance, the death rate likely decreases with the extensiveness of testing, as more mild and

asymptomatic cases are documented. Here we consider the functional form:

λ(λi,`, δ;Xi,t−`) = λi,`(1 + δ′Xi,t−`). (9)

To allow the death rates to be correlated across states, we specify:

(σDi )−2 ∼ Γ(aσ, bσ) (10)

λi,` | ιi,` = 1 ∼ N (µλ, (σ
D
i )2/υ), (11)

where (aσ, bσ, µλ, υ) are hyperparameters to be estimated.

2.2 Discussion of Model Features

Endogenous Time Variation in Parameters. A key feature of our model is the endoge-

nous time variation in parameters. In contrast to most models in the Covid-19 literature,

we assume that the model-implied path of the pandemic can only change if the observables

Xi,t fluctuate. While the time variation in parameters offers the flexibility to track a wide

range of trajectories for infections and deaths, the endogeneity of the time variation adds

discipline to these fluctuations.8 By restricting the parameters to only vary with observable

data, we also rely more on the functional form in (2) to fit the data and produce accurate

forecasts.

7This is exactly true if the number of new cases is independent across days and ιi,` = 1 for all `.
8This is similar in spirit to the literature on endogenous Markov regime-switching, for instance, Diebold

and Lee (1994); Chang et al. (2017). However, in our model, the observables drive the actual parameter
values rather than the probability of moving between regimes.
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In addition, we are able to estimate how different observables change the path for infec-

tions and deaths. This allows us to compute counterfactual trajectories for the pandemic

that condition on different paths for Xi,t. A more common approach in the literaure to

estimate the effect of observables has been to estimate a TVP model with exogenous time

variation, then to assess the correlation of the smoothed parameters with observables as a

second step (e.g. Arroyo Marioli et al. (2020); Buckman et al. (2020); Dandekar and Bar-

bastathis (2020)). Our approach estimates the effect of the observables jointly with the rest

of the model, allowing for coherent quantification for both point estimates and posterior

uncertainty.

Panel Structure. Rather than estimate the model state-by-state, we consider a panel

specification, in which the parameters are correlated across states. This is designed to

tighten estimates for states that are in the early stages of transmission, since their state-

specific parameter estimates are informed by the data for states that are further along in the

pandemic. The panel structure also aids in the estimation of κθ and δ. Since these parameters

are common across states, our panel estimates leverage the state-level heterogeneity in Xi,t,

yielding tighter estimates of the effect of these predictors.

Statistical Model. Our models for infections and deaths are both statistical, unlike a

majority of models that are variants of the SIR model (see, for instance, Table A.1 in the

Appendix for the list that we compare our forecasts against). Our model’s relative flexibility

allows us to fit the data well despite the restrictions we place on the time variation in

parameters. Nevertheless, the minimal structure that the model imposes on the rise and fall

in the number of cases helps generate tighter long-run forecasts.9

3 Data and Estimation

3.1 Data

We use publicly available data on the daily number of reported COVID-19 cases and deaths

in the 50 U.S. states and Washington, D.C. from The New York Times10 from January 21,

9We consider this aspect as similar to the tension between DSGE models and VARs that exists in the
macroeconomic literature. A DSGE model has a time-series representation that is highly restricted. A
VAR model can attempt to capture this reasonably well, but without the possibly invalid cross-coefficient
restrictions that the DSGE representation would imply. As time-varying parameter VARs have been used
to add flexibility to VARs, we introduce our specific form of time variation to allow for such additional
flexibility, which is, however, guided by the information contained in the panel dimension.

10For full details, refer to the associated GitHub repository.
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2020 through August 11, 2020. For each state, we start the sample when the state has a

cumulative number of cases of at least 20. The data set collects the cumulative number of

infections at the end of each day reported by local government and health authorities.

We also use two predictors for the variation in the parameters: the Mobility and En-

gagement Index (MEI), constructed by the Federal Reserve Bank of Dallas from January 3,

2020 through August 8, 2020, and positive test rates from The Atlantic’s Covid Tracking

Project from March 1, 2020 through August 8, 2020. We allow the parameters of the model

of infections to depend on both the MEI and testing, and allow the parameters of the model

for deaths to depend on positive test rates only. See Figure A.1 in the Appendix for the time

paths of these predictors.

The MEI summarizes the deviation from normal mobility behavior since the start of

the COVID-19 outbreak. The index is formed using principal components on seven variables

based on geolocation data from 16 to 20 million mobile devices. Each variable is a measure of

how much individuals travel away from home, and the index is normalized so that a higher

value corresponds to greater mobility (i.e., less social distancing).11 We take a seven-day

lagged moving average to smooth out seasonal fluctuations. While all states show a common

pattern of declining mobility in March followed by an increase in mobility from the second

half of April, there is heterogeneity across states in how much and how quickly mobility

changed at different points of the pandemic cycle.

We define the positive test rate as the total number of reported cases over the past seven

days divided by the total number of tests conducted over the past seven days. A lower

positive test rate is an indication of more extensive testing. As reporting errors occasionally

lead to a positive test rate that is negative or greater than one, we truncate the positive

test rate to be within the [0, 1] interval. While the positive test rate for the U.S. declined

in aggregate as states increased their testing capacities in March and April, the path for the

positive test rates has differed greatly across states.

In what follows, we estimate the model using data through August 8, 2020, when our

samples for the MEI and testing data end. We also estimate the model using data through

every other Sunday from May 3, 2020 to June 14, 2020, and check the performance of

our forecasts at a horizon of 1 to 28 days. This covers the period during which states were

reopening and until the point when many states experienced a second wave of sharp increases

in case numbers. Finally, we also take forecasts using data through July 15, 2020, in order

to show how the estimates update around the peak of the second wave.

11See Atkinson et al. (2020) for details on the construction and comparison with other measures of social
distancing.
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3.2 Estimation and Forecasting

We estimate the model using Gibbs samplers to obtain Monte Carlo draws from the posterior,

whereby we specify a relatively uninformative prior. For the parameters in the mortality

model, we scale the prior to ensure that it is consistent with the the scale of the mortality

data. Appendix B provides full details of the Gibbs samplers and the prior.

To forecast the number of cases and deaths in each state, we need to condition on a path

for the time-varying predictors. As our benchmark, we estimate an AR(1) model via OLS

independently for each predictor in each state using the last 14 days of data. One particular

source of uncertainty we want to take account of is the long-run behavior of the predictors

Xit. To do this, we use a two-step procedure: We first estimate Xi,t = ρXi,t−1 + ui,t. If the

estimator ρ̂ < 1 we use this AR model to forecast the path of the predictors, as described

below. If instead ρ̂ ≥ 1, we estimate Xi,t = (1− ρ)c+ ρXi,t−1 +ui,t, where c is the maximum

absolute value of the predictor observed in the sample. We then extrapolate from the last

data point using this AR(1) model without shocks. With this approach we do not observe

any explosive paths for future Xit in our simulations.

While this method is arguably somewhat crude, it provides a plausible conditional fore-

cast path for the endogenous predictors. In principle, one could use a more sophisticated

model for the predictors and incorporate uncertainty about the future paths of the predictors

when forecasting. However, for the purpose of this paper we abstract from this problem and

focus on conditional forecasts instead. To understand the role of our assumed path, we also

consider forecasts that condition on a path of Xi,t that remains constant at the mean over

the past 14 days of data in each state.

4 Parameter Estimates

We now present the parameter estimates based on data through August 8, 2020, whereby

we provide an overview of the results from the 50 U.S. states and D.C. We then show how

these parameter estimates depend on measures of social distancing and testing.

4.1 State-Specific Parameters

Figure 2 shows the marginal posterior distributions from the infections model for both the

state-specific components of γ, α, ζ, η, σC , and ρ, as defined in equation (4), and the

aggregate distribution from equation (5). A large amount of heterogeneity across states

is required to match the wide range of trajectories even after accounting for the MEI and

positive test rates. Nevertheless, the posteriors for the aggregate distributions of γ, α, η,
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Figure 2: Marginal posteriors for γ, α, ζ, η, σC , and ρ. Thin gray lines: posteriors for
each state; Thick red line: aggregate distribution across states.

and σC are substantially tighter than their priors, and the data are informative as indicated

by the shifts of the posteriors.

For the mortality model, we define λi,` ≡ λ(λi,`, δ;
1
T

∑T
t=1Xi,t−`) and plot the posterior

means of ιi,` and λi,` | ιi,` = 1 in Figure 3. The former is the probability of including a lag,

while the latter captures the average death rate in a state for a given lag. We also plot the

mean of these parameters across states on the same axes. Both parameters show a clear

weekly seasonal component, potentially reflecting measurement error due to different rates

of processing test results or documenting deaths over the week. Nevertheless, the degree of

seasonality differs greatly across states.

The posterior estimates for the mortality model also indicate that the number of deaths

on a given day depends on the number of new cases up to five weeks prior. While there is

a decreasing trend in the estimates for ιi,` as ` increases, the data favors including cases at

long lags to predict future deaths. For instance, the mean estimate for ` = 35 is 0.07, which

is roughly half the mean estimate for ` = 1. The estimates for λi,` | ιi,` = 1 show a small

upward trend. In terms of magnitude, the average posterior estimates of λi,` | ιi,` = 1 across

states lie between 0.01 and 0.04 across lags, corresponding to the typical range of death rates

reported for the U.S.. These estimates reflect the relatively long lag time between infection

and death. This is further evidenced by the second wave of cases in the U.S. in July, as the

rise in new cases was not followed by a corresponding increase in the number of new deaths

until several weeks later. From the perspective of forecasting, the long lag time emphasizes
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Figure 3: Posterior mean estimates for ιi,` and λi,` | ιi,` = 1. Gray dots correspond to
posterior means for individual states. Red crosses indicate average across states.

that there is substantial information from recent infection data for the number of deaths in

the coming weeks, justifying our decision to model new deaths as a function of lagged new

cases.

Notably, the lag time between infection and death stands in contrast with the assumption

of Poisson death and recovery rates in standard SIR models. This assumption is generally

made for modeling convenience. However, our coefficient estimates do not appear to be

generated from a Poisson structure. Specifically, the fatality and recovery rates used in the

recent COVID literature range between 0.2% - 1.4% and 1/4 - 1/14, respectively.12 An OLS

regression, in which the numbers of cases are independent across lags, would likely show

the regression coefficients decaying rapidly. Intuitively, the spike-and-slab regression likely

inherits a similar structure both for ιi,` and λi,` | ιi,` = 1.

12Atkeson et al. (2020) provide an overview and use baseline fatality and recovery rates of 0.5% and 1/5,
respectively.
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4.2 Dependence of Parameters on Social Distancing and Testing

Our estimates show that differences in the MEI and positive test rates are associated with

significant variation in the model parameters. In particular, Figure 4 shows that the pa-

rameters in both the models for cases and deaths are significantly connected to the MEI

and the positive test rate through (4) and (9). These correlations are statistical and do not

identify causality. In general, one would expect a greater level of social distancing when cases

increase (e.g. Glaeser et al. (2020)) due to an endogenous response from both households

and governments. On the other hand, a higher number of cases mechanically increases the

positive test rate if the number of tests remains constant.

In order to give a sense of how the parameter estimates in Figure 4 for κγ, κα, κζ , and κη

map into the behavior of the nonlinear model, we compare the model-implied path of new

cases under baseline paths for the MEI and positive test rate against alternative paths with

more social distancing or testing in Figure 5. The respective paths of the MEI follow the

typical path in the data: it decreases in the first 60 days, then increases and levels off below

the initial level of zero. For testing, we consider constant positive test rates 0.1 and 0.2. To

show how social distancing and testing can affect the model-implied paths differently across

states, we consider the model-implied paths under the median parameter estimates using

New York and Texas as examples. In particular, we initialize the number of cases at 10−4%

of the population, then simulate the model forward without shocks.

Social distancing and testing can be associated with a lower number of infections, but

this relationship depends on the underlying trajectory of cases. Under the Texas parameter

estimates, both a lower MEI and a lower positive test rate are associated with flatter curves.
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Figure 5: Model-implied paths of cases for different levels of social distancing and testing,
using posterior median for (γ, α, ζ, η) for New York and Texas and posterior median for κθ.
Gray solid line: baseline; Blue dashed line: increased social distancing (lower MEI);
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In contrast, under the New York parameter estimates, the model-implied trajectories remain

relative unchanged for different MEI and positive test rates. These differences arise because

of the different trajectories that New York and Texas faced: New York had a relatively rapid

rise and fall in the number of cases, whereas in Texas infections increased only gradually at

first. Under the baseline paths for the MEI and a positive test rate, the number of new cases

for the New York parameters falls to around 70% of its peak level by the 60-day mark, while

the number of new cases for the Texas parameters continues to rise. Our result that the

underlying trajectory of cases matters is consistent with Atkeson et al. (2020), who use an

estimated SIR model to show that the effects of distancing measures depend on the precise

scenario considered.

The MEI and the positive test rate are also associated with variation in the variance

and persistence of the shock uCi,t in (1). Lower levels of social distancing are associated with

shocks of higher variance and higher persistence, while lower levels of testing coincide with

shocks of higher variance and lower persistence. Reduced social distancing likely leads to

more clusters developing and could cause any temporary spikes in cases to last longer. On

the other hand, lower levels of testing can also result in more measurement error.
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The estimate of δ, the dependence of the death rate on the positive test rate, shows

that a higher positive test rate is associated with a substantially higher death rate. At the

posterior mean for the average death rate µλ of 0.006, an increase in the positive test rate of

10 percentage points corresponds to an increase in the death rate of two percentage points.

Intuitively, a higher positive test rate occurs when individuals who are tested have a higher

ex-ante probability of being infected. These individuals tend to have more severe symptoms,

leading to a higher reported death rate.

5 Forecasts

We now assess the forecast performance of our model. This is a critical aspect of our

analysis since the global pandemic is still ongoing. Moreover, the course of the pandemic in

the U.S. has proven to be very volatile and heterogeneous across the states as reported above.

The ability to forecast well in this changing environment is a key aspect for an empirical

epidemiological model, which our panel framework with endogenous TVP is designed to

accomplish.

5.1 Overall Performance

To check the forecast performance of our model, we estimate it using an initial subsample of

the data and compare the model forecasts to the actual realizations. We do this every two

weeks from May 3, 2020 to June 14, 2020, covering the period during which the aggregate

number of cases in the U.S. was declining after the initial peak until the sharp spike in cases

leading to the second peak. During this time, states reopened at different rates, and the

number of cases and deaths across states followed a wide range of paths. The heterogeneity

across states provides a test for whether our model is sufficiently flexible to match the

numerous possible paths for the pandemic.

Figure 6 shows Q-Q plots to compare the empirical realizations to the quantiles for our

forecasts of new cases and new deaths at the 1- to 28-day horizon. These plots compare

the model’s forecast quantiles to the data, providing a graphical check of the accuracy

entire forecast distribution. In particular, for each horizon, we check the fraction of states

whose realized number of new cases or deaths fall below the qth quantile of our forecast for

that state. We also average over each week to remove any weekly seasonality by counting

the fraction of state-horizon observations that fall below the respective qth quantile of our

forecasts. If the model is an accurate representation of the data, the model forecast quantiles

will match the empirical quantiles, yielding Q-Q plots with points close to the 45-degree line,
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as the realized number of cases or deaths should fall below qth quantile of their respective

forecasts a fraction q of the time.13

Overall, our forecasts match the realized data well. For new cases, the posterior quantiles

of our forecasts match the empirical frequency closely, except for the forecasts from June 14,

2020. This coincides with the sharp spike in cases in numerous states. In many cases, our

model predicts a rise in cases, but one that is smaller than the eventual spike. One likely

reason for the underprediction is that we tie the time-variation in parameters solely to the

time-variation in the MEI and positive test rates. Nevertheless, later forecasts from July

15, 2020 indicate that the parameter estimates were updated in response to the new inflow

of data. In the appendix we report baseline forecasts for daily new cases in all U.S. states

in Figures A.2. They show that the 95% error bands of the corresponding forecast largely

contain the realized data in late July and early August, thereby providing further evidence

of the strength of our approach also in the panel dimension.

The forecasts for new deaths in the lower half of Figure 6 match the empirical frequencies

well at the upper quantiles, but tend to undershoot slightly at the lower quantiles. The

undershooting arises largely among states that have many days without deaths. This occurs

more regularly in the early part of the sample and in states with a low number of cases.

Indeed, by June 14, 2020, the forecasts undershoot less as the zeros no longer bias the

forecasts downward as much. In addition, Figures A.3 show the corresponding forecast

paths and actual data for the 50 U.S. states. Similarly to the forecasts for infections, our

model performs well at the level of individual states.14

5.2 Comparison to Other Models

To understand the role of different features of the model in producing our forecasts, we now

compare our main forecasts against three alternative versions of the model. To understand

the role of the TVP components, we consider forecasts from a constant coefficient version of

our model with κθ = 0 and δ = 0. We then consider the effect of omitting the positive test

rate from the predictors Xi,t for the infections model. Finally, instead of using an AR(1) to

extrapolate Xi,t, we assume that Xi,t remains at its average level from the last 14 observations

for each state. This allows us to determine if there is a difference in using the level instead

of the trend of Xi,t as an input into forecasting.

13This is a more stringent test of the model compared to only studying root mean squared errors or
coverage of error bands since the RMSE just focuses on point forecasts, while coverage does not account for
asymmetries in the distribution.

14Ho et al. (2020) discuss estimation and forecast performance for aggregate U.S. in a similar statistical
model, but without the panel dimension
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Figure 6: Q-Q plots for forecasts of daily new cases and deaths one to 28 days ahead.
Translucent markers: fraction of states whose realized number of new cases or deaths
falls below given quantile of forecast for a specific horizon; Opaque outline markers:
average over each week. Marker colors and shapes indicate week of forecast.
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To gauge the forecast performance of our model relative to the literature, we take as a

benchmark the IHME model, which has been regularly cited both in the press and by policy-

makers. The IHME forecast is based on a rich TVP-SEIR model with numerous explanatory

factors including mobility, testing per capita, temperature, and population density.15

For all comparisons, we consider the root-mean-square error (RMSE) of the median

forecasts in each model as well as the coverage of the equal-tailed 50% and 95% forecast

error bands.

Alternative Model Forecasts. We compare the baseline model forecasts with its differ-

ent variants using data ending May 3, May 17, May 31, and June 14, 2020 in order to be

consistent with the Q-Q plots in Figure 6. We consider the number of daily new cases and

deaths. We aggregate all statistics by week, reporting the RMSE and average coverage over

seven-day intervals. One caveat about the RMSE is that there is a lot of seasonality and

noise in the data, to the effect that the RMSE may understate differences in accuracy.

Overall, we find that the TVP specification improves forecasts. For daily new cases, the

constant-coefficient model with state-specific but time-invariant parameters yields an RMSE

of 12% higher at the one-week horizon and 3-4% higher at longer horizons relative to the full

model. In addition, the empirical coverage of the 50% and 95% forecast error bands are 5

to 10% further from their theoretical levels as compared with the full model. The difference

in performance for daily new deaths is smaller, which is likely due to two key aspects. First,

new deaths are a function of lagged new cases up to 35 days ago. As a result, the forecasts

for deaths up to 4 weeks ahead depend heavily on observed daily new cases rather than

forecasts of daily new cases. Second, the state-specific components θi and λi,` absorb some

of the variation in Xi,t.

In our second forecast comparison, we omit the positive testing rate as a predictor for

time variation in the parameters. While the positive test rate could generally be considered

a priori an important indicator of future increases in daily case counts, we find only a

relatively small effect of omitting it on forecast performance, perhaps surprisingly. One

possible explanation is that the MEI and testing are correlated, which reduces the efficacy

of latter as an independent predictor. Alternatively, the testing data is very noisy so that

our estimation has difficulty extracting information.

In our final exercise, we find that the assumed path of Xi,t is important. Taking future

Xi,t to be constant at the average over the two most recent weeks of data, we find a 2 to

15The IHME regularly updates its model, as documented on its website. We directly take the forecasts
reported to the COVID-19 Forecast Hub. While the updates may result in some inconsistencies between
IHME forecasts on different dates, they ensure that the IHME forecast uses the best methodology possible
in the judgement of researchers there and the state of the research at the time the forecasts are made.
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Root-mean-square Error (Relative to Full Model)

Daily New Cases Daily New Deaths

1 wk 2 wk 3 wk 4 wk 1 wk 2 wk 3 wk 4 wk

Constant coefficients 1.12 1.03 1.04 1.03 1.03 0.85 1.17 0.94

Omit testing for cases 1.01 1.01 1.02 1.02 1.00 1.01 1.02 1.06

Future Xi,t constant 1.08 1.02 1.04 1.04 0.98 0.96 0.89 1.00

50% Error Band

Daily New Cases Daily New Deaths

1 wk 2 wk 3 wk 4 wk 1 wk 2 wk 3 wk 4 wk

Full model 0.50 0.36 0.32 0.25 0.49 0.49 0.49 0.46

Constant coefficients 0.40 0.31 0.26 0.21 0.44 0.45 0.43 0.40

Omit testing for cases 0.51 0.36 0.33 0.24 0.49 0.49 0.50 0.47

Future Xi,t constant 0.43 0.32 0.26 0.21 0.49 0.50 0.49 0.47

95% Error Band

Daily New Cases Daily New Deaths

1 wk 2 wk 3 wk 4 wk 1 wk 2 wk 3 wk 4 wk

Full model 0.91 0.84 0.75 0.64 0.78 0.78 0.76 0.75

Constant coefficients 0.89 0.78 0.68 0.57 0.78 0.78 0.77 0.76

Omit testing for cases 0.92 0.84 0.75 0.66 0.78 0.78 0.77 0.75

Future Xi,t constant 0.89 0.79 0.68 0.57 0.78 0.78 0.76 0.75

Table 1: Root-mean-square error and coverage for full model compared and variants of model
aggregated across May 3, May 17, May 31, and June 14, 2020. Each column corresponds to
a seven-day interval beginning 1, 8, 15, and 22 days after the last observation.

8% higher RMSE and lower coverage for daily new cases. These results show that it is

important to capture not only the levels but also the trends for social distancing and testing.

Interestingly, the RMSE for daily new deaths is lower than in the full model, although the

coverage is about the same.

IHME. Comparisons with the IHME are based on forecasts using data ending May 18,

May 29, and June 15, 2020, as these are the dates close to those we used in Figure 6, for

which the full range of IHME forecast quantiles are available on the COVID-19 Forecast

Hub. As the repository primarily provides forecasts for the number of deaths, we focus our
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assessment on weekly new deaths.16

Relative RMSE

Weekly New Deaths

1 wk 2 wk 3 wk 4 wk

IHME 2.96 5.71 2.90 7.63

Coverage: 50% Error Band

Weekly New Deaths

1 wk 2 wk 3 wk 4 wk

Full model 0.34 0.45 0.37 0.33

IHME 0.37 0.30 0.30 0.29

Coverage: 95% Error Band

Weekly New Deaths

1 wk 2 wk 3 wk 4 wk

Full model 0.86 0.85 0.86 0.82

IHME 0.73 0.70 0.69 0.67

Table 2: Root-mean-square error (relative to full model) for IHME model and coverage for
full model and IHME, aggregated across May 18, May 29, and June 15, 2020. Each column
corresponds to the forecast ending on one to four Saturdays following the day after the
last observation in the data. Weekly new deaths correspond to the total number of deaths
between Sunday and Saturday.

Table 2 shows that our model produces forecasts that are comparable or better than the

IHME. The IHME RMSE for weekly new deaths is between three to eight times that of our

model. In terms of coverage, our model generally dominates the IHME model, especially for

the 95% error bands.

Nevertheless, our model’s error bands tend to undercover. One possible explanation is

that we have not accounted for uncertainty in future values of Xi,t, which would widen our

error bands. The fact that the IHME model accounts for different plausible trajectories for

the drivers they use could explain why its relative performance in terms of coverage tends

to be better at longer horizons, even though overall the IHME model still undercovers even

more than our model.

Figure A.6 in the appendix shows that our model also performs relatively well compared

16The IHME uses a weighted moving average of daily new deaths as input data for their estimation instead
of the raw number of daily new deaths. By focusing on weekly deaths, we avoid differences in the comparison
that may arise from weekly seasonality.
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with a larger set of models compiled by the COVID-19 Forecast Hub.17 These forecasts

come from leading teams of epidemiologists and statisticians and are curated to ensure

overall accuracy. Since many models only update their forecasts once a week on Sunday

or Monday, we compare our forecasts taken on Sunday to any forecasts in the COVID-19

Forecast Hub from the same day or one day later. We present the comparison in Figure A.6

using Q-Q plots containing both our own forecasts and the competing forecasts for the one-

to four-week horizon. Our relative performance is notable given that the competing models

include both statistical and richly specified theoretical SIR models, many estimated using

more data than we have used. Table A.1 in the Appendix provides further details on these

models.

5.3 Case Studies: New York, California, and Texas

For further insight into how the model forecasts adapt to the data, we plot expanding window

forecasts for New York, California, and Texas in Figure 7. We focus on these three states

not only because they have among the largest populations in the U.S., but also because

the epidemic progressed differently in each, thereby providing a template for assessing the

forecasts in the other states. We plot forecasts from May 17, June 14, and July 15, 2020.

These correspond roughly to the decline in cases after the initial wave, the increase in cases

moving into the second wave, and the peak of the second wave. While all three states have

been severely affected by the COVID-19 pandemic, they have displayed different paths for

the number of cases, number of deaths, social distancing, and testing. The model forecasts

reflect these differences. To understand the role of the time-varying parameters, Figure 8

compares the median forecasts for the baseline model with the three alternative versions of

the model from Section 5.2.

New York. While New York was one of the hardest hit states during the early part of the

pandemic, the number of cases has steadily decreased since the first half of April. By May,

the number of cases was significantly lower than its peak. This is the typical path of cases

predicted by standard SIR models, and our model is able to fit this path well. In particular,

the model forecasts match the realized gradual decline in number of cases and deaths, with

the realized data falling within or close to the 95% error bands, which are relatively tight.

With the relatively standard path for cases in New York, the different model variants forecast

17Since we check the forecasts against the New York Times data, the relative performance may be at-
tributed partly to differences in the data used by different models. However, to fully explain the wide
dispersion in performance across models, one would require implausibly large and systematic differences
across data sets.
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Figure 7: Forecasts for daily new cases, new deaths, MEI, and positive test rates in New
York, California, and Texas, using data through May 17, June 14, and July 15, 2020. Top
two panels: 95% error bands; Bottom two panels: extrapolation based on AR(1) model
for last 14 days.
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Figure 8: Median forecasts for daily new cases, new deaths, MEI, and positive test rates in
New York, California, and Texas, using data through May 17, June 14, and July 15, 2020
for different versions of model.

similar median paths.

California. The number of cases in California plateaued in April, began to increase in

May, and accelerated in June before starting to stabilize at the end of July. The model

forecasts match these patterns qualitatively. In May, we forecast a relatively stable number

of cases up to September at least. The data fall mostly within the 95% error bands until mid-

June when the number of cases begins to accelerate at an increasing rate. When we forecast

case numbers from mid-June on, the model predicts a possible rise for several weeks, albeit

a smaller one than what actually occurs in the second half of June. Finally, even though

infections continued to rise through the first half of July, the model forecasts a plateau

between mid-July and early September. The data in the second half of July corroborate

this forecast, as the number of cases has fluctuated around the upper half of the 95% error

bands.

The forecasts for the number of deaths mirror those for the number of cases, except for

the mid-July prediction. In particular, the model indicates an increase in daily new deaths.

This prediction is borne out by the data, with the number of deaths rising in late July even

as the number of new cases began to decline. This reflects the result that the number of new

deaths depends on the number of new cases up to five weeks prior.

Time variation is key for these forecasts. In mid-June, the model forecasts a lower number
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of cases with the constant coefficient model or if we extrapolate a constant level for the MEI

and testing. The baseline model predicts an increase in mobility, which is borne out in the

first week of the data. While the MEI subsequently declines, that difference from the AR(1)

extrapolation is offset by a relatively high positive test rate during that period. In mid-July,

the full model forecasts a higher number of cases than the constant-coefficient model or the

model for infections that omits testing. The positive test rate during this period was around

8%, which was higher than the 5% positive test rate between May and mid-June. The model

thus interprets the rise in cases as coming from a persistent lack of testing rather than a

temporary deviation from the model.

Texas. The data and forecasts for Texas are qualitatively similar to California. In mid-

July, the model forecasts slightly faster growth in infections in Texas than in California.

However, there is substantial uncertainty about the rate of this increase, as the error bands

are about twice as wide than those of the June forecast. The realized data in the second

half of July show a slight decrease that is comfortably within the error bands. While the

patterns of cases in California and Texas were relatively similar, the positive test rate during

the first half of July increased more rapidly in Texas than in California. The forecasts for the

two states thus condition on different projected paths for testing, leading to the contrasting

predicted trends in new cases. In contrast to the baseline model, the alternative versions of

the model predict declines in the daily number of new cases since they do not account for

the rising positive test rate.

6 Conclusion

We develop and estimate a statistical model of the COVID-19 pandemic that has three key

features. First, parameters are allowed to vary over time, but only in line with observable

variables. Second, the model has a panel structure that sharpens estimates and forecasts.

Third, the underlying functional forms for the model are flexible and able to track the typical

paths of cases and deaths in a pandemic. The model’s forecasts perform favorably relative to

alternative epidemiological and statistical models, especially the widely used IHME model.

By allowing parameters to depend on social distancing and testing, our estimates high-

light the interaction between these predictors and underlying state-specific parameters in

generating model predictions. Specifically, while both increased social distancing and more

intensive testing can be associated with lower case numbers, this does not occur when the

peak in a locality is relatively early and followed immediately by a sharp decline. In addition,

we estimate a decline in death rates associated with a lower positive test rate, accounting
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for the different composition of cases reported as testing becomes more widely available.

Our chosen functional forms capture the trajectory of cases as well as the connection

between infections and deaths that motivate SIR models. However, our statistical approach

minimizes modeling assumptions relative to the structural SIR literature, providing estimates

that can help inform the calibration or specification of these models. The autoregressive

structure of our setup is akin to time series econometric models and is conducive to fore-

casting. At the same time, we introduce a panel structure to leverage the variation across

states and time that microeconometric methods often rely on. The Bayesian estimation

transparently quantifies parameter and forecast uncertainty. Our framework thus bridges a

range of approaches to provide insights into the evolution of this global pandemic.
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A Supplementary Figures and Tables
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Figure A.1: MEI and positive test rate for all U.S. states.
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Figure A.2a: Baseline forecasts (95% error bands) for daily new cases in U.S. states, using
data through May 17, June 14, July 15, and August 8, 2020.
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Figure A.2b: Baseline forecasts (95% error bands) for daily new cases in U.S. states, using
data through May 17, June 14, July 15, and August 8, 2020.
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Figure A.3a: Baseline forecasts (95% error bands) for daily new deaths in U.S. states, using
data through May 17, June 14, July 15, and August 8, 2020.
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Figure A.3b: Baseline forecasts (95% error bands) for daily new deaths in U.S. states, using
data through May 17, June 14, July 15, and August 8, 2020.
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Figure A.4a: Median forecasts for daily new cases in U.S. states, using data through May
17, June 14, July 15, and August 8, 2020. Black solid line: baseline model; Blue dashed
line: constant coefficients; Red dotted line: omit testing for cases; Green dot-dash line:
future Xi,t constant.
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Figure A.4b: Median forecasts for daily new cases in U.S. states, using data through May
17, June 14, July 15, and August 8, 2020. Black solid line: baseline model; Blue dashed
line: constant coefficients; Red dotted line: omit testing for cases; Green dot-dash line:
future Xi,t constant.
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Figure A.5a: Median forecasts for daily new deaths in U.S. states, using data through May
17, June 14, July 15, and August 8, 2020. Black solid line: baseline model; Blue dashed
line: constant coefficients; Red dotted line: omit testing for cases; Green dot-dash line:
future Xi,t constant.
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Figure A.5b: Median forecasts for daily new deaths in U.S. states, using data through May
17, June 14, July 15, and August 8, 2020. Black solid line: baseline model; Blue dashed
line: constant coefficients; Red dotted line: omit testing for cases; Green dot-dash line:
future Xi,t constant.
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Figure A.6: Q-Q plots comparing weekly new deaths and cumulative deaths forecasts one
to four weeks (starting Sunday and ending Saturday) ahead for full model and COVID-19
Forecast Hub models. Markers show fraction of states whose realized numbers of deaths
fall below quantiles of forecast. Opaque outline markers: baseline model; Translucent
markers: COVID-19 Forecast Hub models. Marker colors and shapes indicate horizon.
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B Estimation Details

B.1 Gibbs Samplers

We draw from the posterior of the model for the number of infections using the following

Gibbs sampler:

1. Condition on θ1:N .

(a) Draw (µθ, ω
2
θ) from a normal-inverse-gamma distribution.

(b) Draw κθ using Metropolis-Hastings.

2. Draw θ1:N | κθ using Metropolis-Hastings.

Step 1(a) is standard and uses the property that the normal-inverse-gamma distribution

is a conjugate prior (see, for instance, Zellner (1971)). Step 1(b) requires computing the

likelihood contribution from equation (1) for the entire panel. Step 2 can be done state-

by-state, similar to the estimation of the baseline model without time-varying parameters.

Hence, Step 2 could also be parallelized if a researcher wanted to use our model on a larger

set of locations.

To draw from the posterior of the model for mortality, we make use of the spike-and-slab

structure. In particular, we take the following steps:

1. Conditional on µλ, υ, aσ, bσ, p`,

(a) Conditional on δ,

i. Draw ιi,` state-by-state using Metropolis-Hastings.

ii. Draw λi,`, σ
D
i | ιi,` from a normal-inverse-gamma distribution.

(b) Draw δ | ιi,`, λi,`, σDi using Metropolis-Hastings.

2. Draw µλ, υ | λi,`, σDi from a normal-inverse-gamma distribution.

3. Draw aσ, bσ | σDi using Metropolis-Hastings.

4. Draw p` | ιi,` using the conjugate form of the beta prior.

Step 1(a)(i) uses the fact that a normal-inverse-gamma distribution is a conjugate prior for

a linear regression. In particular, for a given i, we can compute the marginal likelihood for

equation (7) given a candidate draw {ιi,`}L`=1, integrating out λi,` and σDi . Given ιi,`, we

have a standard regression for Step 1(a)(ii). Conditional on (ιi,`, λi,`, σ
D
i ), we can draw δ
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using Metropolis-Hastings, since the likelihood is straightforward to compute. In Step 2,

it is straightforward to draw (µλ, υ) from a normal-inverse-gamma distribution, since λi,` is

distributed according to a generalized least squares regression on a constant, in which the

standard deviations of the shocks are known to be σDi . In Step 4, we utilize the fact that

the beta distribution is the conjugate prior for a binomial distribution. We pick L = 35,

allowing the number of deaths to depend on the number of new cases over a month ago. The

spike-and-slab structure allows the data to determine which lags are most important.

B.2 Prior

For the model for number of cases, we consider a relatively uninformative normal-inverse-

gamma conjugate prior for the hyperparameters (µθ, ω
2
θ) for θ ∈ {γ, α, ζ, η, σC , ρ}:

ω−2
θ ∼ Γ(1, 0.25)

µθ | ωθ ∼ N (0, ω2
θ).

In addition, we impose a Gaussian prior for κθ for θ ∈ {γ, α, ζ, η, σC , ρ}:

κθ ∼ N (0, 0.52V −1),

where V is a diagonal matrix with the sample variances of each corresponding predictor Xi,t.

The prior thus represents the belief that each predictor contributes equally to the variance

of the transformed parameters g(θi,t).

For the model of mortality, we similarly impose a Gaussian prior for δ:

δ ∼ N (0, 0.52V −1)

to match the prior on κθ. For the variance σDi of the shocks, we use the prior:

aσ ∼ Γ(2, 1)

bσ ∼ Γ(2, 3× 10−7),

which is calibrated to the scale of the number of deaths. In particular, scale parameter for bσ

of 3×10−7 is chosen so that the mode of the prior is approximately the average state-specific

variance of the number of new deaths divided by the square root of the number of new cases,
1
N

∑
i V̂i
[
∆Di,t/

√
∆Ci,t

]
. The shape parameters of 2 for aσ and bσ are chosen to make the
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prior relatively uninformative. For the distribution of λi,`, we use the prior

υ ∼ Γ(1, 10−3)

µλ | υ ∼ N (0, (0.052 × 10−3)/υ).

The prior for ν is chosen to be relatively flat and is scaled such that the standard deviation

of a state-lag-specific coefficient λi,` is of order 10−2. The conditional variance of µλ is scaled

by 10−3 to account for the scale of ν. Finally, we consider the prior

p` ∼ Uniform(0, 1)

for the probability of including a lag.
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