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1 Introduction

Over the last 20 years dynamic stochastic general equilibrium (DSGE) models have become more

detailed and complex, and numerous features have been added to the original real business cy-

cle core. Still, even the best practice DSGE model is likely to be misspecified either because

features such as heterogeneities in expectations are missing, or because researchers leave out as-

pects deemed tangential to the analysis. While specifying an incomplete model is acceptable,

for example, when qualitatively highlighting a mechanism which could be present in the data,

misspecification becomes an issue when one wants to quantify the importance of certain shocks

or estimate the magnitude of crucial policy trade-offs.

In theory, misspecification can be reduced by making structural models more comprehensive in

their description of the economic relationships and of the interactions among agents. In practice,

this is difficult because it is not clear which missing feature is relevant and jointly including several

of them quickly makes the computations intractable and the interpretation difficult. Moreover,

large scale models are hard to estimate with limited data and parameter identification problems

are likely to be important (see e.g. Canova and Sala, 2009). The standard short cut to deal

with misspecification is to use a structural model with ad-hoc reduced form features. However,

in hybrid models it is often hard to distinguish the relative importance of structural vs. ad-hoc

features in matching the data, making policy counterfactuals whimsical.

Structural vector autoregressive (VAR) models or limited information moment-based estima-

tion approaches can deal with model incompleteness or partially specified dynamic relationships,

when, e.g., characterizing the dynamics in response to shocks (see e.g. Kim, 2002; or Cogley and

Sbordone, 2010). Full information likelihood-based methods, however, have a hard time deal-

ing with misspecification other than that of the distribution of the error term, and are justified

asymptotically only under the assumption that the estimated model correctly characterizes the

data generating process (DGP) up to a set of serially and cross sectionally uncorrelated distur-

bances. To avoid this problem the recent econometric literature dealing with misspecification

does not employ the likelihood in the estimation process (see e.g. Cheng and Liao, 2015; Thry-

phonides, 2016) and robustness approaches modify posterior inference to reduce the chance of

incorrect decisions (see Hansen and Sargent, 2008; Giacomini and Kitigawa, 2017). The tension

between theoretical developments and empirical practice becomes clear when one notices that

the vast majority of the applied literature employs full information likelihood-based (classical or

Bayesian) procedures to estimate structural parameters and policy prescriptions are often formu-

lated on the basis of potentially misspecified models.

This paper proposes a new approach to reduce the inherent misspecification of DSGE models.

Rather than enriching a particular model with structural or ad-hoc features, as it is common in the
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literature, we jointly consider a finite set of potentially misspecified models, geometrically combine

their likelihood functions, and estimate the parameters using the composite likelihood. With such

an objective function, parameters common across models are estimated using the cross equation

restrictions present in all specifications; model specific parameters are instead estimated using

the cross-equation restrictions appearing only in that specification. When no parameter can be

safely assumed to be common across models, composite and likelihood estimators coincide. Thus,

the composite likelihood guards against misspecification by requiring estimates of the common

parameters to be consistent with the structure of all models.

Although the composite likelihood approach is well established in the statistical literature (see

e.g. Varin, et al. 2011), economic applications are limited to Engle et al. (2008), Qu (2018), and

Chan et al. (2018). Nevertheless, in all the literature we are aware of the DGP is known; the

composite likelihood combines marginals or conditionals of the DGP; and the composite weights

are fixed. In our setup, instead, the DGP is unknown; the models entering the composite likelihood

are assumed to be misspecified; and the composite weights are random variables. Whereas this

paper focuses on misspecification, Canova and Matthes (2019) use the methodology to address a

number of inferential and computational problems in structural estimation.

The Bayesian setup we work with is grounded in the Bayesian literature on misspecified models

(see Walker, 2012, Bissiri et al. 2016) and related to the quasi-Bayesian estimation literature (see

e.g. Kim, 2002, Marin et al. 2012, Scalone, 2018), to Bayesian shrinkage (see e.g. Del Negro and

Schorfheide, 2004; Batthacharya et al. 2012) and to smoothness priors (see e.g. Barnichon and

Brownlees, 2016). As in quasi-Bayesian approaches, we substitute the likelihood function with

an alternative loss function and perform Bayesian inference with the resulting quasi-posterior;

and as in the shrinkage and smoothness prior literature, we employ additional information to

regularize parameter estimates. The posterior weight of a model plays a role in the inferential

process, as in the Bayesian model averaging (BMA) literature (see Claeskens and Hjort, 2008).

We differ in three aspects: BMA can be employed only when models share the same observables

while our approach works even when models feature different observables. In BMA, each model is

estimated separately and posterior weights are used to combine their predictions. Here estimates

of the common parameters are jointly obtained and posterior weights can be used to combine

models’ predictions, if that is of interest. Our setup quantifies the uncertainty in the weight

estimates. To the best of our knowledge, this can not be done in BMA exercises.

Our approach shares similarities with the methods of Del Negro and Schorfheide (2004) and

Waggoner and Zha (2012), but three important differences need to be emphasized. We consider

combinations of structural models; they combine a structural and a VAR model. Waggoner and

Zha assume that the DGP is the mixture of the models; we leave open the possibility that the
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composite model is still misspecified. Finally, while our approach allows for models with different

observables, in the other approaches the models must share the same observable variables.

We describe a Monte Carlo Markov Chain (MCMC) approach to draw sequences from the

quasi-posterior distribution of the parameters, show how to adjust the percentiles to ensure the

right asymptotic coverage, discuss the computational costs of the approach, and explain how pos-

terior weights inform us about the relative misspecification of the models entering the composite

pool. We also show how to combine models and composite estimates for inference. While some

researcher may use the posterior weights to select a model to conduct inference, we prefer to

robustify the analysis using composite predictions.

Using a simple Monte Carlo design, we demonstrate that composite estimators are preferable

to likelihood-based estimators when misspecification is present in a mean-squared error (MSE)

sense, that composite models are closer to the true DGP in a Kullback-Leibner (KL) sense, and

that BMA and the posterior mode of the weights provide similar information when the models

share the same observables.

We apply the methodology to estimate the marginal propensity to consume (MPC) out of

transitory income and to evaluate the role of technology shocks for output fluctuations. The MPC

is generally low when models are separately estimated because transitory income has insufficient

persistence, except when one allows for precautionary savings. When a composite estimate of the

persistence parameter is used, the MPC generally increases. We show that problematic features

of the basic specification such as quadratic preferences, separability of durable and non-durable

consumption, exogenous real rate, lack of production, and consumers homogeneity are irrelevant

for the estimation of the MPC and that composite and BMA estimates of the MPC are similar.

We also show that a standard ad-hoc model is inferior to the composite model in a KL sense.

Consistent with the existing literature, we find that technology shocks account for about one-

third of output fluctuations 20-30 quarters ahead in a standard medium scale New Keynesian

model. We pair the model with a smaller scale New Keynesian model without capital, and jointly

estimate the slope of the Phillips curve and the persistence of technology shocks. We find that

the share of output fluctuations explained by technology shocks substantially increases because

the smaller model receives a high posterior weight and forces estimation to move to a region of

the parameter space where nominal rigidities are smaller, real rigidities are larger, and demand

shocks are less autocorrelated, all of which make technology shocks more important.

The paper is organized as follows. The next section presents the problems one faces when a

misspecified model is used for economic analyses and describes the approaches used to make the

estimation results more credible. Section 3 presents our method. Section 4 describes a MCMC

procedure to draw sequences from the quasi-posterior of the parameters and the weights; and
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explains how to construct impulse responses, counterfactuals, and predictions using the pool of

models. Section 5 applies the composite approach to two problems. Section 6 concludes. A

number of on-line appendices contain relevant technical material.

2 Estimating misspecified structural models

Suppose a researcher is interested in measuring the MPC out of transitory income. Interest in the

MPC may arise because the fiscal authority is planning to boost aggregate demand via a temporary

tax cut, or because a researcher wants to design optimal policies to enhance aggregate savings

and investments. Typically, one solves an off-the-shelf permanent-income, life-cycle model, and

derives implications for the MPC. For example, in a representative agent model with quadratic

preferences, constant real rate, when β(1+r) = 1, and the exogenous labor income has permanent

and transitory components, the decision rules are (see Inoue et al. 2017):

ct =
r

r + 1
at + (yPt +

r

1− ρ+ r
yTt ) (1)

at+1 = (1 + r)(at + (yTt + yPt )− ct) (2)

yTt = ρyTt−1 + e1t (3)

yPt = yPt−1 + e2t (4)

where yTt is real transitory income, yPt is real permanent income, ct is real non-durable consump-

tion, at are real asset holdings, all in per-capita terms, eit ∼ iidN(0, σ2
i ), i = 1, 2, r is the constant

real rate of interest, and ρ the persistence of the transitory income process.

(1)-(4) provide three important restrictions on the data. First, r and ρ are the only deep

parameters mattering for the MPC; preference parameters are not identifiable from the decision

rules. Second, the relationship between consumption and income is static. Third, the MPC out

of transitory income, MPCyT = r
1−ρ+r

, is intermediate between the MPC out of asset holdings,

MPCa = r
r+1

, and the MPC out of permanent income, MPCY P = 1.

Given this model, one could estimate MPCyT in a number of ways. If some unexpected

temporary tax cut occurred in the past and individual consumer data is available, one can use

this natural experiment to see how much of the transitory income the tax rebate has generated is

spent. For example, in the US, Johnson et al. (2006) find that after the 2001 tax rebate, agents

spent about 20-40 percent of the additional income in first quarter and about 60 percent of the

cumulative income over two quarters. Parker et al. (2013) report that after the 2008 tax rebate,

agents spent about 20 percent of the additional income on non-durable consumption goods and

30-40 percent on durable consumption goods.

Natural experiments are effective tools to understand how agents behave. However, they are

not often available and, even if they were, individual consumer data is hard to get. One approach
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to estimate MPCT
y that uses theory as a guideline for the investigation but does not condition

on the restrictions it provides in estimation, is to identify a permanent and a transitory shock in

a VAR with (yt, at, ct) and then measure the effects on consumption of a transitory income shock,

scaling the measurement by the income responses. Estimates obtained this way vary between 0.4

and 0.6, depending on the model specification and the sample employed.

To derive estimates of MPCT
y , one could also partially condition on the restrictions of the

model. For example, one could use moment conditions to estimate r and ρ. Since in industrialized

countries the average real rate is about 1% per quarter and the persistence of the growth rate of

aggregate income is around 0.5-0.7, MPC estimates obtained this way are in the range (0.05-0.10).

Clearly, refinements are possible. One could group data according to characteristics of consumer

i and report a (weighted) average of the resulting MPCyTi . Estimates constructed this way are

also low and in the range (0.10-0.15), see e.g. Carroll et al. (2017).

A final approach would be to take the implications of the model seriously, write down the

likelihood function for (ct, at, yt) and impose the cross equation restrictions the decision rules

imply (in particular, the fact that r and ρ appear in different equations) to estimate MPCyT .

The evidence we present in section 5.1 suggests that likelihood-based estimates of MPCyT are

in the range of 0.10-0.15 for the first quarter and 0.2-0.25 for the first year, roughly the same as

when moments conditions are used.

In sum, MPCyT estimates obtained conditioning on the model’s implications tend to be lower

than estimates obtained otherwise. One reason for the difference is that the model employed in

formal estimation is likely to be misspecified: the real rate is not constant; labor income is not

exogenous; preferences may feature non-separable consumption-labor supply decisions. Moreover,

the model leaves out aspects that could matter for understanding consumption decisions: income

uncertainty does not play any role; home production and goods durability are disregarded; agents

are homogeneous but, in the real world, some have zero assets; and others may be rich, but liquidity

constrained. Finally, measurement errors in the real value of assets are probably important.

While moment-based and VAR-based estimates are robust to some form of misspecification

(e.g. lack of dynamics in the decision rules) and to the omission of certain features from the model,

likelihood-based estimates are not. Thus, if misspecification is suspected, estimates obtained

relaxing the restrictions the model imposes may be preferable. However, if a researcher insists on

using likelihood methods, how can she guard herself against misspecification?

An obvious way is to estimate a more complex model which includes potentially missing

features, allows for general equilibrium effects on income and the real rate, uses flexible functional

forms for preferences and technologies, and permits relevant heterogeneities. While feasible, it is

generally computationally demanding to estimate large scale models, identification issues linger in
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the background, and it is often difficult to interpret the dynamics one obtains. Alternatively, one

could enrich the model with ad-hoc features. For example, it is nowadays popular to use models

with external habit in consumption, even if the micro foundations of such a mechanism are still

debatable (one exception is Ravn et al., 2006). With habit, the decision rules of our workhorse

model are (see Alessie and Lusardi, 1997):

ct =
h

1 + h
ct−1 + (1− h

1 + h
)wt (5)

wt =
r

1 + r
((1 + r)at−1 +

∞∑
t=τ

(1 + r)t−τEt(y
P
τ + yTτ ) (6)

yTt = ρyTt−1 + e1t (7)

yPt = yPt−1 + e2t (8)

where h is the habit parameter. Thus, habit helps to account for serial correlation in consumption

and for the predictability of current consumption, given permanent wealth wt; it also makes the

serial correlation properties of consumption and income disconnected. Adding ad-hoc features is

convenient but makes the model less structurally interpretable and may produce overfitting. In

addition, some ad-hoc additions may not lead to better models. For example, adding a preference

shock (to capture demand driven changes) to the baseline model would not alter MPCyT .

Adding these types of features may not be appealing to certain researchers. For this reason, a

portion of the literature has instead preferred to alter the statistical properties of shocks, making

the stochastic processes more flexible (see e.g. Del Negro and Schorfheide, 2009; Smets and

Wouters, 2007) or allowing cross-shock correlation (Curdia and Reis, 2010).

A final approach has been to complete the probability space of the model by adding measure-

ment errors to the decision rules (Ireland, 2004), wedges to optimality conditions (Chari et al.,

2007), margins to preferences and technologies (Inoue et al., 2017), or agnostic structural shocks

to the decision rules (Den Haan and Drechsel, 2018). Rather than tinkering with the inputs or the

specification of the model, all these approaches take the structure as given and add non-structural

features for estimation purposes only. Typically, the relevance of the add-ons is measured by the

marginal likelihood. Kocherlakota (2007) has examples where using fit to select a model among

potentially misspecified candidates may lead researchers astray.

While all these approaches acknowledge model misspecification and may be useful in specific

situations of interest, they have at least three drawbacks. First, they condition on one model but

there are many potential models a researcher could entertain - specifications could be indexed,

e.g., by the economic frictions models impose. Second, they neglect the fact that different models

may be more or less misspecified in different periods (see e.g. Del Negro et al., 2016). Third,

the interpretation of the model’s internal dynamics becomes difficult if the add-ons are serially
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correlated and statistically important and no respecification of the structure is attempted.

3 A composite likelihood approach to misspecification

Rather than taking an off-the-shelf model and enriching it with non-structural features or shocks,

or completing its probability space with measurement errors, wedges, or margins we take an

alternative viewpoint because even with additions, the enlarged models may be far from the DGP.

Our basic assumption is that, to investigate a question of interest, a researcher may employ a

number of misspecified structural models. These models may differ in the assumptions they make,

in the frictions they feature, in the aspects they leave out, or in the transmission mechanism they

emphasize. We assume they are theoretically relevant, in the sense that they have implications for

the phenomenon under investigation, that are sufficiently heterogeneous so that the information

they provide does not entirely overlap, and that share some common parameters. We construct

the likelihood function of each model and geometrically combine them. The resulting composite

likelihood is either maximized with respect to the unknown parameters or used as an input for

quasi-posterior analysis.

Our approach is not designed to eliminate misspecification. This is a titanic task, given our

focus on structural models and can be achieved only if the set of models spans the DGP, a very

strong requirement given the structures available in macroeconomics, or if we complement the set

of misspecified structural models with an unrestricted VAR as in Waggoner and Zha (2012). More

modestly, we propose an approach that has the potential to reduce misspecification, has useful

economic interpretations, and sound econometric foundations.

Why would noticing that there are common parameters across models help to reduce misspec-

ification when measuring the MPC? When likelihood methods are used, estimated parameters

adjust to reduce the misspecification in the direction that it is largest. If different models are

estimated separately, biases will tend to be heterogeneous and likely to reflect the worst misspec-

ification ‘’direction” each model displays. When models are jointly estimated, however, common

parameters are not as free to adjust, because they are constrained by the cross equations restric-

tions present in all models. Thus, if models which are misspecified in different directions are

combined in estimation, biases in the common parameters may be reduced and the quality of

inference may improve. We show in section 3.4 that this intuition works in a Monte Carlo setting.

Let the DGP for a vector of variables yt be represented by a density F (yt|ψ), where ψ is a

parameter vector. The available models are indexed by i = 1, . . . , K and each produces a density

fi(yit|φi) for the observables yit, which we assume it is of length Ti. yit need not be the same

for each i: there may be common and model specific variables. The sample size Ti could also be

different and the frequency of the observations may vary with i. Let φi = [θ′, η′i]
′, where θ are
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common across specifications and ηi are model specific. Investigators are typically free to choose

what goes in θ and ηi. Even though a parameter may appear in all models, a researcher may decide

to treat it as model specific because, for example, models are too incompatible with each other. We

assume that the K models are misspecified, i.e. there is no φi such that f(yit|φi) = F (yt, ψ), ∀i.
Given a vector of weights, 0 < ωi < 1,

∑
i ωi = 1, the composite likelihood is

CL(θ, η1, . . . , ηK , y1t, . . . , yKT ) = ΠK
i=1 f(yit|θ, ηi)ωi ≡ ΠK

i=1L(θ, ηi|yit)ωi (9)

3.1 A Taxonomy of Misspecified DSGE Models

Let the data be generated by a (linear) Gaussian state space model:

xt = A(ψ)xt−1 +B(ψ)et (10)

zt = C(ψ)xt−1 +D(ψ)et (11)

where xt is a k× 1 vector of endogenous and exogenous states, zt is a m× 1 vector of endogenous

controls, et ∼ N(0,Σ(ψ)) is a q×1 vector of disturbances, Σ(ψ) a diagonal matrix and ψ a vector

of structural parameters; A(ψ) is k × k, B(ψ) is k × q, C(ψ) is m × k, D(ψ) is m × q. For

convenience, let the eigenvalues of A(ψ) all be less than one in absolute value. We assume that

a researcher observes yt = [x′t, z
′
t]
′. If there are latent variables and only a subset of variables

y1t ⊂ yt is observed, the equations below apply replacing yt with y1t. There are three possible

types of misspecification a DSGE model may display: it may feature the wrong disturbances, the

wrong structure, or the wrong observable variables.

Misspecifying the disturbances. Assume that a researcher has the correctA(ψ), B(ψ), C(ψ), D(ψ)

matrices and the correct yt but specifies only a subset of the disturbances present in the DGP,

say e1t. Thus, the researcher uses

xt = A(ψ)xt−1 + B̄1(ψ)e1t (12)

zt = C(ψ)xt−1 + D̄1(ψ)e1t (13)

to estimate the parameters ψ. The log-likelihood of (10)-(11) is proportional to (yt−M(ψ)yt−1)N(ψ)

ΣeN(ψ)′(yt−M(ψ)yt−1)′, where M(ψ) =

[
A(ψ) 0
C(ψ) 0

]
, N(ψ) = [B(ψ), D(ψ)]′. The log-likelihood

of (12)-(13) is proportional to (yt−M(ψ)yt−1)N̄(θ, η)Σe1N̄(θ, η)′(yt−M(ψ)yt−1)′, where N̄(ψ) =

[B̄1(ψ), D̄1(ψ)]′ and Σe1 = Σ(θ, η), where θ and η are parameter vectors such that θ belongs to ψ,

while η may not. While M(ψ) could be consistently estimated as long as the omitted shocks are

uncorrelated with yt−1, the fact that N̄(ψ) is forced to capture the effect of omitted disturbances

implies that ψ can not be consistently estimated from (12)-(13).
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Misspecifying the structure. Assume that the researcher has the correct endogenous vari-

ables yt, the correct number and the right sources of disturbances et, i.e. if there is a monetary

disturbances in the data-generating process the misspecified structure also features a monetary

shock, but employs the wrong model for the analysis, meaning either that the mapping between

A(ψ), B(ψ), C(ψ), D(ψ) and ψ is incorrect or that (θ, η) are used in place of ψ as structural

parameters. Suppose, the researcher uses:

xt = Ã(θ, η)xt−1 + B̃(θ, η)et (14)

zt = C̃(θ, η)xt−1 + D̃(θ, η)et (15)

The log-likelihood of the estimated model is proportional to (yt − M̃(θ, η)yt−1)Ñ(θ, η)Σe

Ñ(θ, η)′(yt − M̃(θ, η)yt−1)′ where M̃(θ, η) and Ñ(θ, η) have the same format as M(ψ) and N(ψ).

Estimates of M̃(θ, η) and Ñ(θ, η) will not asymptotically converge to M(ψ) and N(ψ), making

it impossible to consistently estimate the structural parameters. Note that the first type of

misspecification could be nested in the second type if shocks are specific to the structure used,

but we keep them separated for the sake of clarity.

Misspecifying the observable variables. Here a researcher has the correct model, and

the correct disturbances et, but uses a subvector of the endogenous variables yt for estima-

tion. Partition xt = [x1t, x2t], zt = [z1t, z2t]; partition A(ψ), B(ψ), C(ψ), D(ψ) accordingly and

let wt = [x1t, z1t] be the observables. In terms of wt, the DGP is 1:

x1t = (A11(ψ) + A22(ψ))x1t−1 + (A11(ψ)A22(ψ)− A12(ψ)A21(ψ))x1t−2

+ B1(ψ)et − (A22(ψ)B1(ψ)− A21(ψ)B2(ψ))et−1 (16)

z1t = A22(ψ)z1t−1 + C11(ψ)x1t−1 + (A22(ψ)C11(ψ) + C12(ψ)A21(ψ))x1t−2

+ D1(ψ)et + A22D1(ψ)et−1 (17)

or

x̀t = G(ψ)x̀t−1 + F (ψ)èt (18)

z̀t = H(ψ)x̀t−1 + L(ψ)èt (19)

where x̀t = [x1t, x1t−1]′, èt = [et, et−1]′, z̀t = [z1t, z
′
1t−1]. Letting ẁt = [x̀t, z̀t], the log likelihood of

the correct model is proportional to (ẁt−R(ψ)ẁt−1)S(ψ)ΣèS(ψ)′(ẁt−R(ψ)ẁt−1)′ where R(ψ) =[
G(ψ) 0
H(ψ) 0

]
, S(ψ) = [F (ψ,L(ψ)]′.

1To derive this expression we assume that x1t and x2t have the same dimension. If not the formulas are more
complicated but the essence of the argument holds.
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Misspecification may appear, for example, because the model used in the analysis features an

insufficient number of lags of wt to be able to capture the AR and the MA components present

in (18)-(19). Let a researcher erroneously use

x1t = A1(θ, η)x1t−1 +B1(θ, η)et (20)

z1t = C1(θ, η)x1t−1 +D1(θ, η)et (21)

The log likelihood of the estimated model is proportional to (wt−R1(θ, η)wt−1)S1(θ, η)ΣeS1(θ, η)′

(wt − R1(θ, η)wt−1)′ where R1(θ, η) =

[
A1(θ, η) 0
C1(θ, η) 0

]
, S1(θ, η) = [B1(θ, η), D1(θ, η)]′. Clearly,

R1(θ, η), S1(θ, η) are generally inconsistent estimators of the relevant elements of R(ψ), S(ψ) and

thus ψ can not be consistently estimated even when ψ = (θ, η).

The paper focuses on the second type of misspecification, which is the most severe and the

most common when estimating structural models. However, other types of misspecification can be

analyzed with composite methods; Qu (2018), for example, focuses on the first form of misspec-

ification; and Canova and Matthes (2019) on situations where different types of misspecification

may be simultaneously present.

3.2 Why are composite estimators preferable under misspecification? An
example

In this example we employ partial equilibrium dynamic models as it is possible to derive a simple,

closed form representation for the optimality conditions that allows the reader to understand

the properties of our composite estimator. The intuition we discuss also applies, although with

considerable complications, to numerical solutions obtained from general equilibrium models.

The first model is an asset pricing model which gives the following Euler equation:

1 +Rt,t+1 = βEt

(
ct+1

ct

)γ
(22)

where Rt,t+1 is the exogenous, and known at t, one period real rate on safe bonds, β is the discount

factor and γ is the risk aversion coefficient of the investor’ utility. The second is a labor market

model which gives the following labor supply equation:

Nη
t = c−γt

Yt
Nt

(1− α)vt (23)

where η is the inverse of the Frisch elasticity, 1 − α the labor share, (1 − α) Yt
Nt
vt = wt is the

competitive real wage and vt is a log-normal iid shock to the real wage, which we assume is

realized at each t after production and hiring decisions are made. We assume that output and

hours are exogenous with respect to the consumption process.
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Suppose one want to estimate the risk aversion γ. Log linearizing (22)-(23) we have

0 = − ln β + ln(1 +Rt−1,t)− γ∆ct + u1t (24)

0 = ln(1− α)− γct − (1 + η) lnNt + lnYt + u2t (25)

where u1t captures the expectational consumption growth error and u2t ≡ vt.

Equation (24)-(25) can be compactly written as

y1t = A+ ρx1t + v1t (26)

y2t = B + ρx2t + δx3t + v2t (27)

where y1t = ∆ ln ct A = − lnβ
γ
B = ln(1−α) x1t = ln(1 +Rt−1,t), ρ = 1

γ
, y2t = ct, x2t = lnYt, x3t =

− lnNt, δ = 1+η
γ

v1t = u1t
γ

, v2t = u2t
γ

Here θ = ρ = 1
γ

is common to the two models; while

η1 = (A, σ2
1), η2 = (B, δ, σ2

2) are (nuisance) parameters specific to each model.

Suppose we have T1 observations pertaining to the first model and T2 observations to the

second model. The (normal) log-likelihood functions, conditional on xt, are:

logL1 ∝ −T1 log σ1 −
1

2σ2
1

T1∑
t=1

(y1t − A− ρx1t)
2 (28)

logL2 ∝ −T2 log σ2 −
1

2σ2
2

T2∑
t=1

(y2t − ρx1t − δx2t)
2 (29)

and for a given 0 < ω < 1, the log composite likelihood is

logCL = ω logLA + (1− ω) logLB (30)

For simplicity, let β = 1. The maximizers of (30) are:

ρCL = (

T1∑
t=1

x2
1t + ζ1,CL

T1∑
t=1

x2
2t)
−1(

T1∑
t=1

y1tx1t + ζ1,CL

T1∑
t=1

(y2t − δCLx3t)x2t) (31)

σ2
1,CL =

1

T1

(

T1∑
t=1

(y1t − ρCLx1t)
2 (32)

σ2
2,CL =

1

T2

(

T2∑
t=1

(y2t − ρCLx2t − δCLx3t)
2 (33)

δCL = = (

T2∑
t=1

x2
3t)
−1(

T2∑
t=1

(y2t − ρCLx2t)x3t) (34)

where ζ1,CL = 1−ω
ω

σ2
1,CL

σ2
2,CL

measures the relative importance of the two types of information for
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composite estimation. Instead, the Maximum Likelihood (ML) estimates are:

ρ1,ML = (

T1∑
t=1

x2
1t)
−1(

T1∑
t=1

y1tx1t) (35)

ρ2,ML = (

T2∑
t=1

x2
2t)
−1(

T2∑
t=1

(y2t − δMLx3t)x2t) (36)

σ2
1,ML =

1

T1

(

T1∑
t=1

(y1t − ρ1,MLx1t)
2 (37)

σ2
2,CL =

1

T2

(

T2∑
t=1

(y2t − ρ2,MLx2t − δMLx3t)
2 (38)

δML = = (

T2∑
t=1

x2
3t)
−1(

T2∑
t=1

(y2t − ρ2,MLx2t)x3t) (39)

The formula in (31) is similar to those i) obtained in least square problems with uncertain

linear restrictions (Canova, 2007, Ch.10); ii) derived using a prior-likelihood approach, see e.g.

Lee and Griffith (1979); and iii) implicitly produced by a DSGE-VAR setup (see Del Negro

and Schorfheide, 2004), where T2 observations are added to the original T1 data points. As

(31) indicates, the composite estimator shrinks the information present in (y1t, x1t) towards the

information present in (y2t, x2t, x3t) and the amount of shrinkage depends on (σ2
1, σ

2
2, ω), all of

which enter ζ1. The higher ω and σ2
2 are, the less important (y2t, x2t, x3t) information is. Thus,

when estimating common parameters, the composite likelihood gives more importance to data

generated by a model with a larger weight and lower relative standard deviation. As (32)-(33)-

(34) indicate, model specific parameters are estimated using the information that only that model

provides. Although the formulas are similar, these estimates differ from those computed with

the likelihood function of each model, see equations (37)-(39), because ρCL 6= ρi,ML, i = 1, 2.

When θ = ∅, that is, there are no common parameters, composite estimates are simply likelihood

estimates, model by model.

When an array of models is available, composite likelihood estimates of ρ will be constrained

by the structure present in all models. For example, when an additional K-1 models have two

regressors, equation (31) becomes

ρCL = (

T1∑
t=1

x2
1t +

K∑
i=2

ζi,CL

Ti∑
t=1

x2
i2t)
−1(

T1∑
t=1

y1tx1t +
K∑
i=2

ζi,CL

Ti∑
t=1

((yit − δi,CLxi3t)xi2t) (40)

where ζi,CL = ωi
ω1

σ2
1,CL

σ2
i,CL

. Hence, the composite likelihood robustifies estimation, because ρ = 1
γ

estimates are required to be consistent with the cross-equation restrictions present in all models.

As the example indicates, y1t and y2t could be different series. The setup we use is also

consistent with the possibility that there a single model and (y1t, x1t) (y2t, x2t) are the same series
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but with different levels of aggregation (say, aggregate vs. individual consumption). Furthermore,

since T1 and T2 may be different, the procedure can be used to combine data of various length

or the information available at different frequencies (e.g., a quarterly and an annual model). T1

and T2 may also represent two samples for the same vector of observables (e.g., before and after a

financial crisis). Baumeister and Hamilton (2019) downweight older information when conducting

posterior inference. Their procedure mimics a composite estimator where data for the earlier part

of the sample, say (y1t, x1t), is more noisy and thus given less weight than more recent data.

Given the shrinkage nature of composite estimators, we expect them to do well in mean square

error (MSE) relative to maximum likelihood estimators. Algebraic manipulations of (31) gives

ρA,CL = χρ1,ML + (1 − χ)ρ2,ML = χρ1 + (1 − χ)ρ2 + χB1 + (1 − χ)B2 where χ = 1

1+
ω2var(ρ1,ML)

ω1var(ρ2,ML)

,

var(ρi,ML) are the variances of the ML estimators, i=1,2; ρ1 = E(ρ1,ML) and ρ2 = E(ρ2,ML);

B1 =
∑
t x1t(y1t−ρ1,MLx1t)∑

t x
2
1t

and B2 =
∑
t x2t[(y2t−δMLx3t−ρ2,MLx2t)∑

t x
2
2t

.

Let ρ∗ be the expected value of the CL estimator and assume that ρ∗ = χρ1 + (1− χ)ρ2
2. To

insure that MSECL is less, say, of MSE1,ML, we need (1− χ2)E(B2
1)− (1− χ)2E(B2

2)− 2χ(1−
χ)EB1B2 > 0, where E denotes the expectation operator. Suppose EB1B2 = 0, i.e. the biases in

ρ1,ML, ρ2,ML are independent. Then, the composite estimator is preferable if

1 >
EB2

2

EB2
1

− 2
ω

(1− ω)

var(ρ2,ML)

var(ρ1,ML)
(41)

(41) links the relative weights, the relative biases, and the relative variances of the maximum like-

lihood estimators of two models. Other things being equal, the higher is the bias of the maximum

likelihood estimator obtained with (y2t, x2t, x3t), the higher should ω be for the CL estimator to

be MSE superior. Similarly, the higher is the variability of the ML estimator constructed with

(y1t, x1t), the lower needs to be 1−ω for the CL estimator to dominate. When the ML estimators

have similar biases, 1−ω
ω

> 1− 2
var(ρ2,ML)

var(ρ1,ML)
is sufficient for the CL estimator to be MSE superior, a

condition easy to check in practice.

When the biases are negatively correlated, as in the experimental design of section 3.4, MSE

improvements can be obtained under milder restrictions. For example, a CL estimator is preferable

as long as the bias of the second ML estimator is not too large:

EB2
2 <

1− χ
1 + χ

EB2
1 −

χ

1 + χ
EB1B2 (42)

Thus, as intuition would suggest, whenever individual estimators have negatively correlated biases,

we expect the CL estimator to produce MSE improvements.

When yt has been generated by a density F (yt, ψ) but a researcher uses the density fi(yt, φi), i =

2This is a valid assumption in our setup because the models have no common equations.
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1, . . . , K for the analysis, one can define the Kullback-Leibler (KL) divergence as:

KLi(y, ψ, φi) =
N∑
j=1

F (yj, ψ) ∗ log(
fi(yj, φi)

F (yj, ψ)
) (43)

which it is interpreted as the bits of information lost in characterizing yt using fi rather than

F . The KL divergence has appealing decision theory foundations and can be used to rank mis-

specified models. In fact, if f1 and f2 are available and KL1(y, φ1, ψ) > KL2(y, φ2, ψ), then f2 is

less misspecified than f1. Because the composite model averages different misspecified structural

models, we expect it to reduce the misspecification of the original models. To examine if this

is the case, one could compute K̃Li =
∫
KLi(y, φi, ψ)p(φi|y)dφi where KLi(y, φi, ψ) is the KL

divergence of model i and p(φi|y) is the (asymptotic or posterior) distribution of φi computed in

model i and compare it with K̃Lg =
∫
KLg(y, χ, ψ)p(χ|y)dχ, where g(y, χ, ψ) =

∑
i fi(y, φi)

ωi

is the density of the composite model, and p(χ|y) the composite (asymptotic or posterior) dis-

tribution of χ = (φ1, . . . , φK , ω1, . . . , ωK). Section 3.4 provides evidence on the performance of

composite estimators and composite models for some DGPs. To approximate F (yt, ψ) one can

use the histogram of the data or a VAR as long as standard regularity conditions are met.

In a traditional composite likelihood approach, ωi are fixed quantities, chosen by the inves-

tigator. When ωi is a random variable, its quasi-posterior mode informs us about the relative

misspecification of the models entering the composite likelihood. To illustrate this property,

let p(ω) ∝ ωα1−1(1 − ω)α2−1, where α1, α2 are known, and let the prior for (ρ, σ2
1, δ, σ

2) be dif-

fuse. The composite posterior kernel of ω, conditional on (ρ, σ2
1, δ, σ

2) is CP (ω|ρ, σ2
1, δ, σ

2) =

(Lω1L
1−ω
2 )ωα1−1(1− ω)α2−1. Taking logs and maximizing we have

logL1 − logL2 +
(α1 − 1)

ω
− (α1 − 1)

1− ω
= 0 (44)

This is a quadratic equation in ω and the relevant solution is 0 < ω1 < 1. Totally differentiating

(44) one finds that ω1 is increasing in logL1 − logL2. Completing the square terms of the

likelihoods, and conditioning on the mode estimators of (ρ, σ2
1, δ, σ

2
2), one obtains

logL1 − logL2 ∝ −
1

2σ2
1

T1∑
t=1

(y1t|t−1 − ρx1t)
2 +

1

2σ2
2

T2∑
t=1

(y2t|t−1 − ρx2t − δx3t)
2| (45)

where yit|t−1 is the optimal predictor of yit. Thus, logL1− logL2 reflects relative misspecification

(how far the predictions of each model are from the optimal predictor for each yit) and the mode

of ω is higher when model 1 is less misspecified 3. In finite samples, 0 < ω < 1. The same will

hold in large samples, if y1t 6= y2t, and the models are equally poor in characterizing y1t and y2t.

3When (y1t, X1t) and (y2t, X2t) are vectors the equations should be adjusted accordingly. When y1t is a m× 1
vector and y2t is, e.g., a scalar or when y1t is different from y2t, logL1 − logL2 reflects, apart from differences in
the variances, the average misspecification in all the equations of model 1 relative to the misspecification of the
single equation of model 2. Thus, if model 1 has some very poorly specified equations, it may have low a-posteriori
ω, even though certain equations are correctly specified (and ρ appears in those equations).
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While we work under the assumption that all models are misspecified, one may like to know

what happens to our estimation approach when one model is close to best in a KL sense. When

y1t 6= y2t, no general conclusions can be drawn, even though we expect the model close to the

best to receive larger weight. When y1t = y2t and as sample size grows to infinity, ωi → 1 for

the model closest to the best in a KL sense. Thus, our composite estimates will be close to those

obtained by minimizing the KL distance. We provide some evidence on these issues in samples of

moderate size in subsection 3.4.

3.3 Relationship with the literature

Researchers often use Bayes factors to rank models and Bayesian model averaging (BMA) to

combine their predictions. Asymptotically, when models are misspecified the Bayes factor selects

the model closest to the data in a KL sense, regardless of the prior, and BMA puts all weight

on that model (see e.g. Fernandez Villaverde and Rubio Ramirez, 2004). Because the quasi-

posterior mode of ω measures the relative misspecification of the available models, we expect it

to provide similar ranking information when the data used by each model is the same. However,

Bayes factors and BMA weights can only be computed when y1t = y2t and T1 = T2; the posterior

of ω can be computed even without these restrictions. Also, our analysis provides a measure of

uncertainty for ω. No such measure is generally available for BMA weights. Finally, BMA only

gives an ex-post combination of individual model estimates. Some experimental evidence on the

performance of the two ranking devices is in section 3.4.

It is useful to highlight how a composite setup relates to the mixture procedure of Waggoner

and Zha (2012) and to robustness approaches (Hansen and Sargent, 2008, Giacomini and Kita-

gawa, 2017). In Waggoner and Zha, the estimated model linearly (rather than geometrically)

combines the likelihoods of a structural model and a VAR (rather than K structural models), but

the weights have a Markov switching structure. Their objective function is:

logL =

min{T1,T2}∑
t=1

log(wtL(ρ, σ2
1|y1t, x1t) + (1− wt)L(ρ, σ2

2, δ|y2t, x2t, x3t)) (46)

Simple manipulations reveal that (46) and the log of (9) differ by Jensen’s inequality terms.

While a-priori both composite and finite mixture devices are appealing, a composite likelihood

has three advantages. From a computational point of view, when the model’ decision rules have

a linear structure, estimators for θ have a closed form expression in the composite likelihood

case, but not in the finite mixture case. In addition, in a finite mixture it must be the case that

y1t = y2t, and T1 = T2, since the models represent alternatives that could have generated the

same data. These restrictions are unnecessary in the composite likelihood formulation. Finally,
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in Waggoner and Zha the composite model is the DGP; here the composite model could still be

misspecified, hopefully less than the individual models.

Hansen and Sargent (2008) robustify decisions and counterfactuals using a density for the

parameters which is a tilted version of the posterior distribution. Let p(φi) ≡ p(φi|yt) be the

posterior of φi, computed using the information in yt. Hansen and Sargent’s density is π(φi) =
exp{λL(φi)}p(φi)∫

exp{λL(φi)}p(φi)dφi , where L(φi) is a loss function and λ is the ray of a ball around p(φi) in which we

seek robustness. Two differences between Hansen and Sargent’s and our approach are immediately

evident. In the latter, robustness is sought for all parameters within a model; we seek robust

estimators of a subset of the parameters across models. Moreover, Hansen and Sargent’s approach

protects a researcher from the worst possible outcome but it is not suited to deal with instabilities

or time variations in the DGP, if the ball is small. In our approach, the weights are endogenously

adaptable to the features of the sample.

Giacomini and Kitagawa (2017) propose a method to conduct posterior inference on the im-

pulse responses of partially identified SVARs that is robust to prior choices for the rotation

matrices. They summarize the class of posteriors generated by alternative priors by reporting a

posterior mean bounds interval, interpreted as an estimator of the identified set, and a robustified

credible region, measuring the uncertainty about the identified set. Once again, two differences

with our approach are evident. First, they seek robustness with respect to prior rotations; we

are looking for estimators which are robust across structural models. Second, they care about

impulse responses in SVARs; we care about (common) parameters in structural models.

It is also useful to relate composite and GMM estimators. A composite likelihood estimator

with fixed model weights solves moment conditions of the form
∑

i ωi
∂L(φi|y)
∂φi

= 0. Thus, composite

likelihood estimators are over-identified GMM estimators, where the orthogonality conditions are

a weighted average of the scores of each structural model with fixed weights. The larger is the

set of models considered, the more over-identified the estimators are. When ωi are optimized, the

moment conditions are similar to those of generalized empirical likelihood (GEL) methods (see

Newey and Smith, 2004) and of minimum distance estimators (see Ragusa, 2011).

3.4 Some experimental evidence

To understand the kind of gains one should expect from composite estimators and the situations

when these are more likely to materialize, we perform an experiment where the DGP is a univari-

ate ARMA(1,1): log yt = ρ log yt−1 + θ log et−1 + log et, log et ∼ (0, σ2), and the models used in

estimation are an AR(1): log yt = ρ1 log yt−1 + log ut and an MA(1): log yt = log εt + β1 log εt−1.

Thus, the example fits case 2 of section 3.1: both models use the incorrect decision rules. We

present results for four different combinations of (ρ, θ): two generating proper ARMA processes
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(DGP1:β = 0.6, θ = 0.5 and DPG2: β = 0.6, θ = 0.8, which produces larger first order autocor-

relation in log yt); one close to an AR(1) (DGP3: β = 0.9, θ = 0.2); and one close to an MA(1)

(DGP4:, β = 0.3, θ=0.8). For DGP1 we present results varying σ = 0.2, 0.5, 0.8, 1.0, 1.5 and for

DGP3 and DGP4 results varying T = 50, 100, 250. Since DGP3 and DGP4 are close to one of the

estimated models, one should expect the sample size to be more important for the conclusions

one draws about composite estimators in these cases.

We focus attention on the relationship between the true and the estimated σ, which is common

across models 4. Because both models disregard part of the serial correlation of the DGP, σu, σε

are upward biased. Would geometrically combining the likelihoods give a better estimate of σ?

Would a composite model be less misspecified than both the AR(1) and the MA(1)? Do the

conclusions depend on the DGP or the sample size? How do the posterior mode of ω and a BMA

weight relate?

We set ω2 = 1 − ω1 and treat ω = ω1 either as fixed or as random. When it is fixed, we

construct composite estimates equally weighting the two models (ω = 0.50) or using weights that

reflect the relative mean square error (MSE) in a training sample with 100 observations. In the

baseline specifications T=50. Since there are only two parameters in the AR(1) and MA(1), and

three in the composite models, this is actually a medium sized sample.

We estimate the three composite specifications, the AR(1), and the MA(1) models with

Bayesian methods. The prior for the AR (MA) parameter is truncated normal with mean zero

and variance 0.2 and the prior for σ is flat in the positive orthant. The prior for ω is Beta(1,1).

We draw sequences with 50000 elements and keep 1 out of every 5 of the last 25000 draws for

inference. The scale parameter of the Metropolis random walk is optimized using an adaptive

scheme and the Hessian at the mode is used for the proposal density.

Table 1 presents the mean square error of σ, computed using posterior (composite posterior)

draws (MSEj) and the KL divergence (KLj), computed averaging over posterior (composite

posterior) draws of the parameters, j=1,. . . ,5.

Composite specifications produce better estimates of σ and at least one of the composite models

has lower MSE than both the AR(1) and the MA(1). The magnitude of the gains depends on the

DGP and the persistence of the data, but not on the true σ or the sample size T . Furthermore,

there is a composite model which reduces the misspecification of both the AR(1) and the MA(1)

models - the equally weighted specification for DGP1 and DGP2 and the random ω specification

for DGP3 and DGP4 - and for many of the cases examined more than one composite model has

smaller KL divergence. The superiority of composite models is unaffected by T. The random

4σ may not be the most natural parameter one would focus attention on to perform joint estimation. We have
decided to measure the improvements of composite approaches looking just at σ to keep the design as simple as
possible.
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Table 1: Monte Carlo results
log yt = ρ log yt−1 + β log et−1 + log et, log et ∼ N(0, σ2)

DGP Sample Statistic CL, random CL, equal CL, MSE AR(1) MA(1)
Size weigths weights weights

σ2 = 0.2, ρ = 0.6, β = 0.5 T=50 MSE 0.173 0.202 0.167 0.176 0.253
KL 14.99 8.13 13.26 13.94 4.70

σ2 = 0.5, ρ = 0.6, β = 0.5 T=50 MSE 0.061 0.075 0.058 0.066 0.107
KL 13.91 7.89 13.22 13.77 6.06

σ2 = 0.8, ρ = 0.6, β = 0.5 T=50 MSE 0.021 0.027 0.019 0.026 0.050
KL 12.55 5.87 11.46 12.17 5.98

σ2 = 1.0, ρ = 0.6, β = 0.5 T=50 MSE 0.008 0.011 0.007 0.012 0.030
KL 11.83 5.32 10.63 11.70 7.77

σ2 = 1.2, ρ = 0.6, β = 0.5 T=50 MSE 0.006 0.007 0.005 0.007 0.017
KL 9.34 4.49 8.03 9.07 9.10

σ2 = 0.5, ρ = 0.6, β = 0.8 T=50 MSE 0.148 0.168 0.205 0.204 0.292
KL 11.00 5.02 10.53 11.41 4.93

σ2 = 1.0, ρ = 0.6, β = 0.8 T=50 MSE 0.009 0.011 0.036 0.035 0.060
KL 8.90 5.33 9.54 10.41 9.07

σ2 = 0.5, ρ = 0.9, β = 0.2 T=50 MSE 0.028 0.169 0.020 0.021 0.429
KL 11.25 16.93 13.21 12.40 7.78

σ2 = 1.0, ρ = 0.9, β = 0.2 T=50 MSE 0.008 0.077 0.005 0.008 0.368
KL 9.90 19.27 11.32 10.93 14.61

σ2 = 1.0, ρ = 0.9, β = 0.2 T=100 MSE 0.006 0.152 0.005 0.007 0.173
KL 17.07 29.60 22.83 20.91 36.75

σ2 = 1.0, ρ = 0.9, β = 0.2 T= 250 MSE 0.002 0.136 0.002 0.002 0.414
KL 5.93 16.66 9.48 9.07 21.33

σ2 = 0.5, ρ = 0.3, β = 0.8 T=50 MSE 0.131 0.152 0.171 0.189 0.179
KL 4.73 5.91 7.11 11.74 3.74

σ2 = 1.0, ρ = 0.3, β = 0.8 T=50 MSE 0.006 0.009 0.017 0.027 0.009
KL 4.88 5.32 6.11 9.62 5.94

σ2 = 1.0, ρ = 0.3, β = 0.8 T=100 MSE 0.007 0.011 0.023 0.033 0.011
KL 4.45 4.14 7.02 7.73 5.06

σ2 = 1.0, ρ = 0.3, β = 0.8 T= 250 MSE 0.003 0.012 0.024 0.032 0.004
KL 6.20 8.11 9.25 10.89 6.06

The MSE weights for the AR(1) and the MA(1) are computed in a pre-sample with T=100. MSE is the mean

square error of the estimated σ; KL measures the divergence with respect to the DGP on average using

the posterior (composite posterior) distribution of the parameters.
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ω specification performs well in the KL metric for several parameter configurations and seems

preferable for highly persistent data or when the DGP is ”close” to one of the two basic models.

Table 2: Posterior of ω and BMA weight

log yt = ρ log yt−1 + β log et−1 + log et, log et ∼ N(0, σ2)
DGP Sample sizeω estimate (s.d) BMA weight
σ2 = 0.2, ρ = 0.6, β = 0.5 T=50 0.984 (0.03) 1.00
σ2 = 0.5, ρ = 0.6, β = 0.5 T=50 0.984 (0.03) 1.00
σ2 = 0.8, ρ = 0.6, β = 0.5 T=50 0.992 (0.03) 1.00
σ2 = 1.0, ρ = 0.6, β = 0.5 T=50 0.992 (0.03) 1.00
σ2 = 1.2, ρ = 0.6, β = 0.5 T=50 0.994 (0.03) 1.00

σ2 = 0.5, ρ = 0.6, β = 0.8 T=50 0.984 (0.03) 1.00
σ2 = 1.0, ρ = 0.6, β = 0.8 T=50 0.990 (0.03) 1.00

σ2 = 0.5, ρ = 0.9, β = 0.2 T=50 0.999 (0.004) 1.00
σ2 = 1.0, ρ = 0.9, β = 0.2 T=50 0.999 (0.008) 1.00
σ2 = 1.0, ρ = 0.9, β = 0.2 T=100 1.000 (0.007) 1.00
σ2 = 1.0, ρ = 0.9, β = 0.2 T=250 0.999 (0.004) 1.00

σ2 = 0.5, ρ = 0.3, β = 0.8 T=50 0.014 (0.103) 0.994
σ2 = 1.0, ρ = 0.3, β = 0.8 T=50 0.012 (0.057) 0.946
σ2 = 1.0, ρ = 0.3, β = 0.8 T=100 0.008 (0.044) 0.105
σ2 = 1.0, ρ = 0.3, β = 0.8 T=250 0.002 (0.02) 0.002

The table reports the posterior mode and the standard deviation of ω and the BMA weight on the AR(1).

Table 2 has the posterior mode of ω (which is our estimated weight on the AR(1) model), the

posterior standard deviation of ω, and the BMA weight on the AR(1) model. Because the two

models share the same observable, a comparison between BMA and the posterior mode of ω is

possible. The mode of ω and a BMA weight have similar information in the majority of cases

we consider. However, when the DGP is close to an MA(1) and T is short, the two measures

disagree regarding the likelihood of the AR(1) model. This divergence disappears when T ≥ 100

and both models put smaller weight on such a model. Note that the posterior of ω is updated in

the direction of the model with smaller KL divergence, even when T = 50.

Although our approach is not designed for situations where one of the models in the pool is the

DGP, it works well also in these cases. Table 3, which presents the evolution of the posterior of

the weights as sample size increases, shows that the posterior of ω asymptotically concentrates at

the corner solution corresponding to the correct model, although at a somewhat slower rate than

a BMA weight. Furthermore, when T is small our approach gives more conservative estimates of

the weights than BMA.

In sum, our simulations show that estimation outcomes can be improved and misspecification

reduced with composite methods. Furthermore, the posterior mode of ω gives a model ranking

device with useful properties: its modal value agrees with a BMA weight in many specifications
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Table 3: Posterior estimates of ω
Mode Mean Median Std deviation BMA weight

DGP=yt = 0.8yt−1 + et, et ∼ N(0, 1)
Prior 0.5 0.5 0.288
T=50 0.994 0.978 0.985 0.023 0.991
T=100 0.997 0.983 0.986 0.018 1.000
T=250 0.998 0.990 0.993 0.010 1.000
T=500 0.999 0.993 0.995 0.006 1.000

DGP=yt = 0.7et−1 + et, et ∼ N(0, 1)
Prior 0.5 0.5 0.288
T=50 0.356 0.468 0.432 0.187 0.024
T=100 0.007 0.220 0.147 0.177 0.015
T=250 0.003 0.048 0.030 0.050 0.006
T=500 0.002 0.034 0.021 0.030 0.002

and it is superior when T is small and MA components dominate. Finally, the quasi-posterior

standard deviation of ω gives us a way measure the credibility of the rankings - no uncertainty

can be generally attached to a BMA weight.

4 Estimation and inference

In a traditional setting, where the models entering the composite likelihood are marginal or

conditional versions of the true DGP, composite likelihood estimators are consistent and asymp-

totically normal (see e.g. Varin, 2011) but are inefficient, because information about the DGP is

disregarded, and ωi can be selected to minimize their inefficiency.

Our setup differs from the traditional one in four respects. First, F (yt, ψ) is unavailable -

the process generating the data is unknown. Second, f(yit ∈ Ai, φi) are neither marginal nor

conditional densities, but misspecified approximations of the unknown DGP. Thus, for all (φi),

the KL divergence between F (yt, ψ) and f(yit ∈ Ai, φi) is positive, ∀i. Third, f(yit ∈ Ai, φi) need

not be independent (models may share equations) nor compatible, in the sense that the likelihood

estimator φi,ML asymptotically converges to the same value. Finally, we treat ωi as a random

variable and wish to construct estimators for the common parameters θ, the nuisance parameters

ηi, and the weights ωi, i = 1, 2, . . . , K.

Because all available models are misspecified, maximum likelihood estimators obtained from

each f(yit ∈ Ai, φi) are inconsistent and, as a consequence, the composite likelihood estimator

obtained for given ωi is also inconsistent. As earlier work by White (1982) and Domowitz and

White (1982) shows, as the sample size grows and under regularity conditions, φi,ML converges

to φ0, the pseudo-parameter vector minimizing the KL divergence from the DGP. Moreover,
√
T (φi,ML−φ0) ∼ N(0, G−1

i ), where Gi = HiJ
−1
i Hi is the Godambe information matrix for model
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i, Ji the variability matrix and Hi the sensitivity matrix. Thus, with model misspecification the

pivot of the asymptotic distribution is the minimizer of the KL divergence, rather than the true

parameter vector; and the Godambe (sandwich) information matrix is evaluated at the minimizer

of the KL divergence, rather than the true parameter vector.

The composite pool defines a density for a different misspecified model (a weighted average of

the K models). When wi are fixed, φCL asymptotically approaches the pseudo-parameter value,

say φ0,CL, minimizing the KL divergence between the density of the composite pool and the DGP.

φ0,CL is not, in general, a weighted average of φ0,i because models are not necessarily independent.

Furthermore,
√
T (φCL − φ0,CL) ∼ N(0, G−1), where G = HJ−1H and H and J evaluated at the

composite likelihood estimator (see Appendix A for details).

We work in a Bayesian framework rather than a classical likelihood setup. There is a growing

literature examining the properties of Bayesian estimator under model misspecification. For exam-

ple, Fernandez Villaverde and Rubio Ramirez (2004) show, that under mild regularity conditions

- the most important ones being that the support of the prior includes the KL optimizer and that

the likelihood function can be computed - the prior asymptotically vanishes; the posterior mode

convergences in probability to the KL optimizer; and that Bayes factor of any model over the

best model under KL distance approaches zero asymptotically. These results have been refined in

a number of papers using weaker or alternative assumptions (see e.g. Clydec and Iversen, 2013).

Furthermore, Klein and Van der Vaart (2012) have shown that the Bernstein-Von Mises theorem

holds under misspecification; and Bissiri et al. (2016) provide a general framework for updating

prior beliefs when the data is represented with a general loss function. Thus, valid posterior

inference can be performed, even when the model is misspecified.

Our analysis treats ω as a random variable and thus seeks to construct the quasi-posterior

distributions for the structural parameters and for the ω vector. As long as 0 < ω < 1, standard

asymptotic results derived in the literature hold. When this is not the case, we conjecture that

results similar to those of Andrews (1998) could be established.

4.1 Bayesian quasi-posteriors

In this paper, we do not rely on asymptotic results. We combine the composite likelihood (9)

with a prior for χ = (θ, η1, ....ηK , ω1, . . . , ωK), compute the joint quasi-posterior, which we then

integrate with respect to the nuisance parameters to obtain the marginals of θ and ω. We employ

a multiple block Metropolis-Hastings approach to numerically compute sequences from this joint

quasi-posterior distribution.

Given (yit, Ti), we assume that sup{φi} f(yit ∈ Ai, φi) < bi ≤ B < ∞, a condition generally

satisfied for structural macroeconometric models, that L(θ, ηi|yi,Ti) can be constructed for each i,
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and that the composite likelihood CL(χ|y1,T1 , . . . , yK,Tk) exists for 0 < ωi < 1,
∑

i ωi = 1. Let the

priors for φi be of the form:

p(θ, ηi) = p(θ)p(ηi|θ, yi0) (47)

where yi0 is a training sample. In (47) we allow for a data-based prior specification for ηi, as in

Del Negro and Schorfheide (2008), which is advisable to put models on the same ground as far

as matching certain statistics of the data. Making the prior of ηi data-based also helps to avoid

identification problems when ωi is close to zero and to make it more likely that the minimizer of

the KL divergence belongs to the support of the prior , see e.g. Walker (2012).

The composite posterior kernel is:

p̌(χ|y1,T1 , . . . , yk,Tk) = ΠiL(θ, ηi|yi,Ti)ωip(ηi|θ, yi0)ωip(θ)p(ωi) (48)

which can be used to estimate χ as described, e.g. in Chernozukov and Hong (2003). For

computational and efficiency reasons, we employ a K + 1 block Metropolis-Hastings algorithm.

Herbst and Schorfheide (2015) also suggested drawing parameters in blocks. While they randomly

split the parameter vector in blocks at each iteration, the blocks here are predetermined by the

K models of interest. In the applications of section 5, the prior for ω we employ is subjective.

However, one can also consider using a training sample to calibrate it, i.e. use p(ω|yio). This could

help to obtain faster convergence of the algorithm described below under standard stationarity

assumptions.

When K is large, the parameter space will also be large and computations may be demanding.

Hence, one may want to preliminarily obtain the posterior of ηi using (yi, Ti), condition on these

posterior distributions when estimating (θ, ω), and iterate. Since only the information contained

in model i is used to estimate ηi, the approach seems sensible and practical.

4.2 MCMC Algorithm

The algorithm consists of four steps:

1. Start with some χ0 = [η0
1 . . . η

0
K , θ

0, ω0
1 . . . ω

0
K ]. For iter = 1 : draws do steps 2.-4.

2. For i = 1 : K, draw η∗i from a symmetric proposal Pηi . Set ηiter = η∗i with probability

min

(
1,

L([η∗i , θ
iter−1] |yi,Ti)ω

iter−1
i p(η∗i |θiter−1, yi0)ω

iter−1
i

L(
[
ηiter−1
i , θiter−1

]
|yi,Ti)ω

iter−1
i p(ηiter−1

i |θiter−1, yi0)ω
iter−1
i

)
(49)

3. Draw θ∗ from a symmetric proposal P θ. Set θiter = θ∗ with probability

min

(
1,

L(
[
ηiter1 , θ∗

]
|y1,T1

)ω
iter−1
1 . . .L(

[
ηiterK θ∗

]
|yK,TK

)ω
iter−1
K p(θ∗)

L(
[
ηiter1 , θiter−1

]
|y1,T1)ω

iter−1
1 . . .L(

[
ηiterK , θiter−1

]
|yK,TK

)ω
iter−1
K p(θiter−1)

)
(50)
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4. Draw ω∗i from a symmetric proposal P ω. Set ωiter = ω∗ = (ω∗1... ω
∗
k) with probability

min

(
1,

L(
[
ηiter1 , θiter

]
|y1,T1)ω

∗
1 . . .L(

[
ηiterK θiter

]
|yK,TK

)ω
∗
Kp(ω∗)

L(
[
ηiter1 , θiter

]
y1,T1

)ω
iter−1
1 . . .L(

[
ηiteri , θiter

]
|yK,TK

)ω
iter−1
K p(ωiter−1)

)
(51)

When the proposals are asymmetric, the acceptance probability should be adjusted appropriately.

Note that in (49) only the likelihood of model i matters. When the K models feature no nuisance

parameters, steps 2.-3. can be combined in a single step. Similarly, when θ = ∅ steps 3 and 4 can

be eliminated. Also, when ωi’s are fixed, step 4 disappears. Finally, when ωi = 0, i 6= k, ωk = 1,

the algorithm collapses into a standard Block Metropolis MCMC. A random walk proposal for

(θ, ηi) works well in practice; a multivariate logistic proposal or an independent Dirichlet proposal

are natural choices for ωi if K is small. For large K, a ”random walk Dirichlet” proposal seems

appropriate (see Appendix B).

Although ω’s are time independent, adjusting the MCMC algorithm to allow for time varying

ω’s is easy. For example, one can accommodate time-varying weights non-parametrically, repeat-

ing the computations using a rolling window of fixed-size data. Alternatively, one could consider

a parametric specification for the time variations and add a MCMC step which draws the innova-

tions from a Dirichlet distribution. With time varying weights, one could look at their evolution

to understand how the data is filtered. Thus, as in Waggoner and Zha (2012), the cross equation

restrictions of different models could receive different weights in different portions of the sample.

4.3 Computational costs

It might be useful to highlight the computational costs of our approach. Given the structure of our

algorithm, we can derive some bounds on the computation time needed in each loop. Suppose that

in a standard MCMC setup, generating a draw from the proposal for the parameters, evaluating

the associated priors, solving the model, and evaluating the likelihood takes x seconds for the

”slowest” model. Then, if we study K models, K ∗ x seconds is the upper bound for the time it

takes to go through one loop of the MCMC for the K models. How does this number compare

with the time needed to go through one loop in our MCMC algorithm?

In our sampler, we first need to generate a draw for the proposals for the common parameters,

evaluate the associated priors, solve each model and compute the model-specific likelihood func-

tions.This will also take roughly K ∗x seconds. 5 We also need to draw model-specific parameters,

5Since we only need to generate the common parameters, the proposal might be slightly faster than in the case
of generating a draw for each model separately. In practice this difference is negligible. In this calculation we also
do not explicitly consider the cost of computing the acceptance probability in each Metropolis step which is very
fast.
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for which we have to generate a draw from the proposal, evaluate the associated priors, solve each

model and compute the likelihood functions. In a brute force implementation this would take

K ∗x seconds as well. But, conditional on the common parameters, these steps can be carried out

in parallel. If we have access to K cores, this block of commands takes approximately x seconds.

The final step of our algorithm is the updating of the weights. Here we do not need to solve

the models or compute likelihood values because neither model-specific nor common parameters

are updated, which are the main costs in terms of time. Because the cost of this final step is

negligible, the computational cost of one loop in our algorithm is roughly (K + 1) ∗ x seconds.

4.4 Adjusting percentiles of the MCMC distribution

Our estimation problem is non-standard since yit are not necessarily mutually exclusive across

i. Thus, for example, if all models feature a nominal interest rate, that series may be used K

times. Naive implementations of a MCMC approach produce marginal posterior percentiles for

θ which are too concentrated, because the procedure treats yit as if it was independent across

i (see Mueller, 2013). In Appendix B we show that, under regularity conditions, the composite

posterior has an asymptotically normal shape, but the covariance matrix is the sensitivity matrix

H, rather than the Godambe matrix G.

To obtain the correct asymptotic coverage one could use a normal posterior with sandwich

covariance matrix. Following Ribatet et al. (2012) and Qu (2018), we directly add two steps

to the MCMC algorithm to take care of the problem. In the first we compute the ”sandwich”

matrix, H(χ)J(χ)−1H(χ), where H(χ) = −E(O2p(χ|Y )) and J(χ) = V ar[Op(χ|Y )] are obtained

maximizing the composite posterior p(χ|Y ). In the second, we adjust draws as

χ̃j = χ̂+ V −1(χj − χ̂) (52)

where χ̂ is the posterior mode, V = CTHC and C = M−1MA is a semi-definite square matrix;

MT
AMA = HJ−1H,MTM = H; MA and M are obtained via a singular value decomposition 6.

The adjustment works well when the composite posterior has a unique maximizer and χ is

well identified from the composite likelihood. As Canova and Sala (2009) have shown, uniqueness

and identificability may fail in a number of structural models. Although identification problems

may be eased with a composite approach, see e.g. Canova and Matthes, 2019, multiple composite

posterior modes can not be ruled out. Thus, we recommend users to report both standard and

adjusted percentiles.

6Rather than findingH and J once, prior to running the algorithm, one could perform the adjustment adaptively,
using C(φj |φj−1, y)C(φ|y) (see Ribatet et al, 2012, p. 826). Because MCMC draws are recursively centered, faster
convergence is likely to occur, but at the costs of needing a numerical optimization at each iteration.
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4.5 Composite posterior statistics

Once composite estimates of the common parameters are available, one can proceed with standard

analysis using the ”best” model as selected by the posterior of ω. Since ωi measures the relative

misspecification of model i and since the experimental evidence suggests that ωi has properties

similar to BMA when yit = yjt, for all i,j, such an approach is equivalent to comparing the marginal

data densities, when one of the models is the minimizer KL divergence.

Because of the instabilities present in economic data and our Bayesian philosophy, we prefer to

average the information contained in various models using posterior estimates and the posterior

weights. Thus, rather than choosing one model, we pool them for inference. However, instead of

using the posterior estimates based on each model being estimated individually, we use composite

posterior estimates in the exercise.

Let ỹt+l be future values of the variables appearing in all models. Let f(ỹt+l|yit, φi) be the pre-

diction of ỹt+l, l = 1, 2, . . . in model i, given φi and let f cl(ỹt+l|y1t, . . . , yKt, χ) =
∏K

i=1 f(ỹt+l|yit, φi)ωi

be a geometric pool of predictions, given yt, the K models, and the parameters φi. Then

p(ỹt+l|y1t, . . . , yKt, ω1, . . . ωK) ∝
∫
. . .

∫
f cl(ỹt+l|y1t, . . . , yKt, χ)

p(θ, η1, . . . , ηK |y1t, . . . , yKt, ω1, . . . , ωK)dθdη1 . . . dηK

=

∫
. . .

∫ ∏
i

p(ỹt+l, φi|yit)ωidθdη1 . . . dηK (53)

is the composite predictive density of ỹt+l, given the data and the weights, and p(ỹt+l, θ, ηi|yit)ωi ≡
(f(ỹt+l|yit, θ, ηi)p(θ, η1, . . . ηK |ω, y1t, . . . , yKt))

ωi is an ”opinion” pool. In words, the composite pre-

diction density is obtained by taking the joint density of future observations and of the parameters

for each model, geometrically weighting them, and integrating the resulting expression with re-

spect to the nuisance parameters’ composite posterior. Note that the composite predictive density

is not the true predictive density because the prediction function uses the composite prediction

pool density rather than the true prediction density; and because the composite prediction density

is integrated with respect to the composite posterior rather than the true posterior.

Depending on the investigator’s loss function, one could compute (53) using the mode or the

posterior mean of ωi. One could also integrate (53) with respect to the marginal of ω, but given

that in many applications it makes sense to condition on estimated ω’s (which represent the

posterior probability associated with each model), we believe (53) has stronger appeal.

f(ỹt+l|yit, φi) is straightforward to compute for each i since the models we consider have a

linear (Gaussian) state space representation. Thus, (53) can be approximated by first generating

draws from the composite posterior, computing the predictive density for each draw in each i, ge-

ometrically combining the predictions and, finally, averaging across draws of (θ, η1, . . . , ηK). The
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problem of combining prediction densities is well studied in the literature (see e.g. Geweke and

Amisano, 2011 or Del Negro et al., 2016). Two approaches are typically suggested: linear pooling,

which leads to finite mixtures predictive densities such as BMA or static pools, and logarithmic

pooling, which is what a composite predictive density produces. Logarithmic pooling generates

predictive densities which are generally unimodal and less dispersed than linear pooling; and

satisfy external Bayesianity, the property of being invariant to the arrival of new information (up-

dating the components of the composite likelihood commutes with the pooling operator). Relative

to standard pools of predictive densities, the composite predictive density uses the information

in all models for estimation and to compute weights 7. This may lead to differences, especially

when models are misspecified in different ways and when the models feature different observables.

There is an expanding literature dealing with nonlinear model combinations (see e.g. Gneiting

and Rajan (2010) or Billio et al. (2013)). While such an approach is preferable if nonlinearities

are suspected to exist, the logarithmic pooling implicit in (53) generally suffices for the purposes

of reducing the misspecification of linear macroeconometric models.

In analogy with the prediction problem, one can compute statistics of interest by geometrically

weighting the densities of outcomes and the composite posterior for the parameters. Take, for

illustration, the computation of the responses for the subset of variables present in all models to

a shock also present in all models. Given φi, responses to shock j for model i can be computed

setting all other structural shocks to zero - which is reasonable given that the models considered

are linear and shocks are uncorrelated. The density of outcome paths, computed randomizing φi

from their posterior, is the impulse response of interest. The kernel of the composite posterior

responses can then be computed analogously to (53), with the density of outcome paths replacing

the predictive densities.

Counterfactuals are also easy to compute. Let ȳkt+l be a selected path for the future values in

the k-th element of ỹt+l. Using f(ȳkt+l|yit, εjit+l, φi) for submodel i, one can find the path of εjit+l

consistent with the assumed ȳkt+l. With this path one can then compute f(ȳk′t+l|yit, εjit+l, φi), for

k′ 6= k. Composite counterfactuals can be computed as in (53).

4.6 Interpretations

One can think of composite posterior analysis in at least three different ways. One is the se-

quential learning interpretation provided in Canova and Matthes (2019): the composite posterior

kernel can be obtained in K stages via an adaptive sequential learning process, where the in-

formation contained in models whose density poorly relates to the observables is appropriately

7Note that the logarithmic combination formula we present can be obtained as the solution to a well known
constrained optimization problem in information theory (see Cover and Thomas, 2006) which leads to exponential
tilting. Appendix C provides the link between the two approaches.
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downweighted.The prior for θ at each stage of the learning process depends on the relative weights

assigned to the current and to all previous models and on their relative fit for θ. Thus, by exam-

ining the posterior distribution at each stage, one can identify the inferential contribution of each

model for the posterior of the common parameters, reduce the set of relevant models, if that is

of interest. Furthermore, one robustifies estimates and inference since, at each stage, a change in

estimates reflect the contribution the cross-equations restrictions present in that model.

An alternative interpretation comes from noting that since the composite likelihood describes

an ”opinion” pool, where agents/models construct their likelihood using different pieces of infor-

mation and different structures. Hence, the composite quasi-posterior distribution we construct

and the composite statistics we consider can be interpreted as Bayesian pools of opinions, where

each agent/model acts as a local Bayesian statistician expressing an opinion in the form of a poste-

rior distribution on the unknown parameters, given a specific piece of information. The Bayesian

pool weighs the posterior of each agents/models, based on their posterior weights. One can also

show that the composite posterior is a ”message” approximator, that is, it minimizes the KL di-

vergence to the probabilistic opinions: pCL = argminp
∑K

i=1 ωiD(p||pi) where pi ∝ π(ψi)L(yi|ψi)
is the posterior of the parameters of model i. In words, it provides the best possible way to extract

consensus among differing agents/models, see Roche (2016).

A final interpretation of our composite posterior estimators comes from noticing that they

are special cases of quasi-Bayesian estimators. In this literature (see e.g., Marin, 2012; Bissiri

et al., 2016; Scalone, 2018), one updates prior beliefs using a loss function which downplays

some undesirable features of the likelihood. Different loss functions can be used for different

purposes. A moment-based or a zero-one loss function are typical, because they provide estimators

which reduce the inconsistencies of likelihood-based methods when misspecification is present.

Seen through these lenses, the composite likelihood is a moment-based loss function, weighting

the average of each model’s scores. As Grunwald and van Ommen, 2017 or Baumeister and

Hamilton, 2019 have noticed, a similar outcome can also be obtained by properly weighting

different observations entering the likelihood. Rather than downweighting the likelihood of certain

observations, our approach downweights the likelihood of models, while maintaining convexity of

the composite objective function.

5 Two applications

We evaluate our framework of analysis in two applications. In the first we show how to robustify

inference about the marginal propensity to consume (MPC) out of transitory income. In the

second, we show how to shed light on the role of technology shocks as drivers of output fluctuations.
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Table 4: Posterior distribution of ρ

Model 16th 50th 84th
BASIC 0.44 0.57 0.66
PRECAUTIONARY 0.90 0.91 0.91
RBC 0.41 0.52 0.63
ROT 0.46 0.56 0.65
LIQUIDITY 0.70 0.77 0.84
Unadjusted Composite 0.85 0.90 0.96
Adjusted Composite 0.80 0.87 0.95
Composite (without RBC) 0.80 0.85 0.91

5.1 Measuring the marginal propensity to consume

We consider five models commonly used in the literature to explain the dynamics of the MPC:

the first is a standard permanent income specification; the others add aspects left out of the

workhorse model. In the baseline model there is a representative agent with quadratic prefer-

ences, the real rate of interest is assumed to be constant, (1 + r)β = 1, income is exogeneous

and features permanent and transitory components. The second model has similar features but

preferences are exponential (in the spirit of Caballero, 1990). Because the variance of income

shocks affects consumption decisions, precautionary savings matter and consumption is no longer

a random walk. To make the model empirically interesting we allow the volatility of the two in-

come components to be time dependent and assume a simple AR(1) for the log of the variance. In

the third model, we make the real rate endogenous by considering a real business cycle structure

featuring consumption-leisure choices, production requiring capital and labor, and a technological

disturbance with transitory and permanent components. The representative agent has separa-

ble CRRA preferences. The fourth specification introduces agent heterogeneity: a fourth of the

agents consume all of their current income, as in Gali et al., (2004). Preferences and constraints

for the optimizing agents are as in the basic specification. The last model also has two types of

agents, but one is liquidity constrained (in the spirit of Chah et al., 2006). This model retains

exogenous income, a constant real rate equal to the inverse of the rate of time preference of the

non-liquidity constrained agent but features a non-separable utility in non-durable and durable

consumption goods (depreciating at the rate δ). Furthermore, constrained agents must finance a

fraction of non-durable expenditure with accumulated assets. We make the liquidity constraint

binding in the steady state by assuming that constrained agents are more impatient. We name the

models: BASIC, PRECAUTIONARY, RBC, ROT, LIQUIDITY, respectively; their log-linearized

conditions are in appendix D.

Although models feature different endogenous variables, we use aggregate real per-capita non-

durable consumption (FRED name: A796RX0Q048SBEA), real per-capita income, (FRED name:
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A067RO1Q156NBEA) and real per-capita value of assets (Household and non-profit organization

total financial assets, FRED name: TFAABSHNO) as observables in estimation for all spec-

ifications - in the RBC model we equate real per-capita assets with per-capita capital of the

representative agent. This choice of observables allows us to compare composite and BMA rank-

ing of models and predictions. The sample size is 1980:1-2017:2 and all variables are quadratically

detrended. Estimation is performed with MCMC techniques using the likelihood of each model

or the composite likelihood. In the latter case, we restrict the persistence of the transitory income

process ρ, which as seen in section 2, matters for the MPCyT , to be common across specifications.

The prior for ωi, i=1...5, is Dirichlet with mean equal to 0.20. The priors for all other parameters

are proper but loose and truncated, when needed, to the region with economic interpretation.

Table 4 summarizes of the posterior features of ρ. The first five rows display single model

percentiles; the sixth and seventh rows composite percentiles (unadjusted and adjusted). Although

Cogley and Nason (1995) showed that income persistence in a RBC model is largely driven by

TFP persistence, one may argue that TFP and exogenous income persistence are parameters with

different economic interpretations. Thus, the eight row of table 4 presents composite percentiles

when ρ is restricted to be common only across models featuring exogenous income.

For BASIC, ROT and RBC models the median estimate is around 0.55 and the envelope of

the 68 percent posterior ranges is [0.40-0.65]; for the model with liquidity constraint the median

estimate is 0.77 and significantly different from those of the first three models. Finally, in a model

with precautionary motive, transitory income is highly persistent and very precisely estimated.

The composite posterior estimate is also high: its median value (0.90) is close to the one obtain

in the precautionary model (0.91), but the posterior range is larger, reflecting the heterogeneity

of single model estimates. Eliminating the RBC model from the composite estimation leaves the

posterior percentiles of ρ practically unchanged.

Why is the composite posterior median of ρ high? Figure 1, which presents the prior and the

posterior of ωi, shows that the precautionary model receives the highest weight in the composite

pool. Thus, the fact that real rate is constant, that labor supply decision and heterogeneities are

disregarded are less crucial when characterizing the MPC than leaving precautionary motives out.

Since the weights are stable over time (estimates available on request), income uncertainty is not

a dominant factor only in the post 2008 part of the sample.

Figure 2 presents dynamic estimates of MPCyT , computed cumulating over horizons con-

sumption and output responses to transitory shocks, i.e., MPCT
y (l) =

∑l
j=1 ct+j |eTt∑l
j=1 yt+j |eTt

, l = 1, 2, ....,

where ct+j(yt+j) is the response of real per-capita consumption (transitory income) at t + j, eTt

is a transitory income shock, and l the horizon. In individual models, when ρ is estimated to

be low, the profile of MPCyT is also low and, consistent with the discussion of section 2, the in-
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Figure 1: Prior and posterior for ω

stantaneous posterior estimates of MPCyT obtained with BASIC, RBC, and LIQUIDITY models

are only around 0.05. Estimates increase somewhat at longer horizons but after two years the 68

percent range is still below 0.10. The instantaneous MPC is slightly higher in the ROT model

(the median value is 0.25). Still, after two years the representative agent cumulatively consumes

only 30 percent of the cumulative transitory income. With the PRECAUTIONARY model, the

instantaneous posterior estimate of MPCT
y is also higher. However, also with this specification,

less than 25 percent of cumulatively transitory income is cumulatively consumed after two years.

Hence, no matter what model one employs, MPC estimates suggest that at most 30 percent of

cumulative income is cumulatively consumed at the two years horizon.

When the composite posterior estimate of ρ is employed, the instantaneous value of MPCT
y

generally increases but, with the exception of the ROT model, MPCyT estimates are still below

30 percent at the two years horizon. Thus, even when income is relatively persistent, rational

consumers save the majority of their transitory income. Perhaps more interesting from our point

of view is the fact that, when composite estimates of ρ are used, cross model differences in MPCyT

estimates decrease considerably. For example, the time profile of MPC estimates in PRECAU-

TIONARY and RBC models (the models with the highest and the lowest median estimate of ω)

are very similar and differences previously noted decrease substantially.

Rather than plugging composite posterior estimates in a model, one may choose to robustify

inference by computing a composite MPCT
y estimate, weighting the MPCyT of each model by the

posterior ωi. Figure 3 presents such a measure together with two other standard combinations:

one constructed using BMA weights and one using naive, equal weights.

Composite and BMA estimates of MPCyT are similar, given that BMA puts all posterior

weight on the PRECAUTIONARY model. Since posterior standard errors are also similar, the
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Figure 2: Likelihood and composite likelihood estimates of MPCyT
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Figure 3: Composite, BMA and naive posterior estimates of the MPC

two measures give similar conclusions about the propensity to consume of US agents. The naive

combination, instead, produces MPCT
y estimates which are almost twice as large for the first two

years, because the ROT model gets a much larger weight than in the other two combinations.

It is instructive to compute the average Kullback-Leibler (KL) divergence for detrended real

per-capita output to have a further sense of the misspecification of the various models we entertain.

Recall that while ω median estimates provide a small sample measure of relative misspecification,

KL estimates are absolute measures and valid only in large samples. The PRECAUTIONARY

model turns out to be the closest to the DGP (KL Divergence=0.0041) also according to this

metric, and the other four models all feature KL divergence exceed 0.030. The composite model’s

KL divergence is larger than for the PRECAUTIONARY model (0.009), but substantially smaller

than standard ad-hoc specifications. To illustrate we consider introduces habits in consumption
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and a random disturbance to the budget constraint of consumers. In addition, measurement errors

are added to all observables in estimation as this error drives a wedge between model implications

and the dynamics of observable variables. The log-linearized conditions of this ad-hoc model are

in appendix D. The KL divergence of the this habit persistence model is 0.323.

One may wonder whether the PRECAUTIONARY or the composite model should be employed

for inference, given that the former is best in the KL metric. Our results indicate that once

composite posterior estimates of ρ are used, MPC differences across models wash out. Thus, a

good estimate of ρ is more important for thinking about MPC than the exact features a model

displays. Nevertheless, one may worry about robustness to potential model switches and structural

breaks. When this is a concern, composite posterior estimates of the MPC should be preferred.

In sum, our approach seems successful in many dimensions: it gives high posterior weight to the

model with the lowest KL divergence; it reduces differences in MPC estimates across potentially

misspecified models, making policy decisions less uncertain. Furthermore, composite inferences

is close to BMA inference, despite the fact that the latter assumes that one of the models in the

pool is the true one, and features lower KL divergence than an alternative ad-hoc specification.

5.2 The role of technology shocks for output fluctuations

The importance of technology shocks in accounting output fluctuations has been discussed for

over 35 years with contrasting conclusions (see e.g. Kydland and Prescott, 1982 or Gali, 1999).

Differences in the conclusions are due, in part, to specification choices and, in part, to the sample

used. In general, larger models featuring dynamic evolution for the capital stock find a smaller

role than smaller models featuring no or constant capital.

To show how a composite approach can shed light on the role of technology shocks we first es-

timate the medium scale New Keynesian (NK) model of Justiniano et al. (2010) (JPT henceforth)

using post-1984 US data. We then pair it with the small NK model without capital of Herbst

and Schorfheide (2015) (HS henceforth) and jointly estimate two models by composite methods,

restricting the slope of the New Keynesian Phillips curve κ and the persistence of the stationary

TFP shock ρz to be common. Clearly, there are other parameters which are common and could

be restricted (e.g. Taylor rule coefficients). We chose to constrain only a few parameters to be

common to highlight the stark differences obtained when estimating the JPT model in isolation

or jointly with the HS model. The optimality conditions of the two models are in appendix E.

Note that both models feature permanent and transitory technological disturbances; and we can

approximate a RBC framework through prior parameter restrictions in the HS model. Thus, one

can also think of our exercise as combining NK and RBC frameworks without having to worry

about the poor fit that RBC models have for nominal variables.
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We estimate the weights assuming that the two models are a-priori equally likely. Since we

use different observable variables in estimation (output, inflation and the nominal rate for the

HS model; output, inflation, the nominal rate, consumption, investment, hours and real wages

for the JPT model), no comparison with BMA is possible. When the JPT model is estimated

in isolation, estimates of κ and ρz are low (posterior means 0.02 and 0.14, standard deviations

0.0001 and 0.0041, respectively). The mean estimates are close to the point estimates reported

by JPT (0.10 and 0.24)8. The quantitative differences are due to a different estimation sample.

The posterior estimates obtained imply that technology shocks explain 30-40 percent of output

fluctuations at typical business cycle horizons of 8-32 quarters (see figure 4). Mean estimates

increase to κ = 0.22 and ρz = 0.93 when composite methods are used (standard deviations are

0.0023 and 0.0002, respectively). With composite posterior estimates technology shocks become

the major source of output fluctuations at horizons greater than one year.
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Figure 4: Fraction of output fluctuations due to TFP shocks, JPT model

How does one interpret these findings? First, notice that the HS model receives a-posteriori

higher weight (mean estimate for ω is 0.63 and standard deviation 0.0003). Second, in the HS

model technology shocks enter only the Euler equation, while in the JPT model they affect several

equations. Thus, when the latter is estimated in isolation, technology shocks must propagate in

a way that helps to fit well the dynamics of a number of endogenous variables. If the JPT model

is misspecified, in particular, in equations other than the Euler equation, pairing it with the HS

model relaxes incorrect cross equations restrictions the model imposes. Because the JPT model

has been designed to give monetary shocks their best chance to explain output and inflation

fluctuations, it is likely that the mechanics of transmission of other shocks are misspecified. The

fact that the HS model has a higher ω estimate and that potentially incorrect cross equation

8The value of κ is obtained using estimates of the parameters they report.
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restrictions are relaxed imply that posterior estimation in the JPT model moves to a region

of the parameter space where nominal rigidities are smaller (the price stickiness mean estimate

drops from 0.66 to 0.47), real rigidities are larger (the investment adjustment cost parameter

mean estimate increases from 1.54 to 2.57) and demand shocks less persistent (the mean value

of the persistence of preference shocks drops from 0.76 to 0.23), all of which make technology

disturbances more important for output fluctuations. These conclusions remain valid when HS is

restricted to mimic a RBC model.

To know whether composite inference should be trusted, we compute the KL divergence for

output and inflation for the JPT model (using posterior estimates) and the composite pool.

Because misspecification is roughly the same (average KL is 0.025 for the composite model and

0.021 for the JPT model), our results indicate the JPT model possesses multiple posterior modes

featuring different mechanics of structural transmission but similar KL divergence.

Clearly, additional work is needed to more comprehensively explore the posterior of the JPT

model but our evidence warns about dismissing technology shocks as major sources of output

fluctuations in medium scale New Keynesian models.

6 Conclusions and implications for practice

This paper proposes a new approach to deal with the inherent misspecification of the current

generation of DSGE models. We consider a set of potentially misspecified models, geometrically

combine their likelihood functions, and perform posterior estimation using the composite likeli-

hood. The composite likelihood shrinks individual likelihood estimates of the common parameters

toward a weighted average of all other models’ estimates, while leaving untouched estimates of

idiosyncratic parameters. Thus, composite estimation guards against misspecification by requir-

ing estimates of the common parameters to be consistent with the structure present in all models.

We highlight the properties of our approach and relate it to existing methodologies.

We describe a MCMC approach to draw sequences from the composite posterior distribution,

show how to adjust the MCMC percentiles to produce posterior credible sets with the right

asymptotic coverage, highlight how to construct composite posterior statistics, such as impulse

responses or counterfactuals, and discuss how posterior weights inform us about the relative

misspecification of the models entering the pool.

We use the methodology to estimate the marginal propensity to consume out of transitory

income, and to evaluate of the role of technology shocks for output fluctuations. MPC estimates

are generally low when models are estimated separately but significantly increase when models

are jointly estimated. Composite posterior and BMA MPC estimates are similar and lower than

a naive combination of individual MPC estimates. Furthermore, the composite model is closer
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to the process generating the data than a standard ad-hoc model with habit in consumption.

Technology shocks explain about one-third of output fluctuations in a standard medium scale

NK model but their importance increases when such a model is paired with a less restricted and

smaller scale model without capital.

We conclude with some practical suggestions to potential users and highlight a few issues

which need be developed in future research. First, to make the approach meaningful the models

entering the composite likelihood should capture different aspects disregarded (or mis-represented)

in the baseline specification. Gains from composite estimators depend on a careful selection of

models entering the pool. Second, when a researcher perceives that the models are economically

incompatible, making parameters with the same name different economic objects, the composite

likelihood can still be employed since if θ = ∅, the approach produces likelihood estimates, model

by model. Third, while the methodology has the potential to reduce misspecification and to

improve inference, given existing models, it is not a substitute for having better models. Section

5 shows how it can be used to gauge which missing features should be included in a benchmark

model, and how conclusions could be altered when estimation is restricted in a meaningful way.

Fourth, apart from misspecification issues, the approach has a number of other benefits relative

to likelihood-based estimation of the structural parameters (see Canova and Matthes, 2019).

For example, when a large scale model is available, the composite likelihood constructed using

blocks of equations has shape and properties which are similar to those of the likelihood of the

full model, without the numerical difficulties. Thus, the approach is not only useful to examine

in which direction a model should be improved. It also provides a way to estimate the larger

scale models one is likely to build after the initial experimentation. Fifth, although we focus on

linearized models, one can also combine the likelihoods of models perturbed at higher order. We

expect the gains to remain also in these more complicated frameworks. Finally, by treating data

subsamples as different models that are combined for inference via the composite likelihood, the

approach is suited to deal with structural time varying coefficients models, which are complicated

to interpret with standard likelihood-based technology, see e.g. Canova et al. (2020).

One question that needs careful attention is one of overfitting. Standard models with ad-hoc

additions may lead to overfitting, making their out-of-sample performance poor. One relevant

question is whether our approach faces a similar problem. While we have not performed out-

of-sample checks, the literature on model combination suggests that it is unlikely to be the case

because shrinkage estimates give superior performance to standard estimates; and model com-

binations dominate single model forecasts in the presence of even mild instabilities in the data

generating process, see e.g. Aiolfi et al. (2010). We plan to investigate the issue in future work.
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