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Abstract

We study how fiscal and monetary policy shape the nominal yield curve and associated
term premia. Government spending affects the long end of the curve, while tax changes
and monetary policy influence the short end on impact. Within spending categories,
only government consumption shifts the short end, but these effects dissipate within a
year. While monetary policy and government consumption operate primarily through
expected short rates, other fiscal interventions affect yields mainly by altering term

premia.
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1 Introduction

How do policy actions influence the yield curve? We study this question using a unified and
flexible statistical framework, combined with standard identification strategies for fiscal and
monetary policy shocks. Understanding these effects matters for several reasons.

First, the yield curve plays a central role in the economy. Many interest rates that
shape macroeconomic outcomes—such as mortgage rates—track it closely. Second, recent
theoretical work identifies conditions under which fiscal and monetary policy can have similar
effects on the broader economy (Correia et al,, 2008; Wolf, 2021). We complement this
literature by showing that, historically, fiscal policy—especially government spending—has
affected the yield curve in ways that differ from monetary policy. Third, we examine how
fiscal and monetary decisions influence government borrowing costs. While governments
finance a large share of spending through debt issuance, surprisingly little work has studied
how fiscal actions shape the yield curve for nominal government liabilities. Existing research
focuses primarily on the macroeconomic effects of tax and spending changes (e.g., Romer
and Romer, 2010; Mertens and Ravn, 2013; Blanchard and Perotti, 2002; Auerbach and
Gorodnichenko, 2012; Ramey, 2011; Ramey and Zubairy, 2018), not on how those decisions
affect the government’s own financing terms.'

Our paper fills this gap by documenting how fiscal and monetary policy move the nominal
yield curve and, in turn, affect government borrowing costs. These effects are critical for
setting fiscal policy. In equilibrium models of optimal fiscal policy, governments must consider
how their decisions—and possibly those of the central bank—shift the yield curve (see, e.g.,
Lucas and Stokey, 1983; Barro, 1979; Buera and Nicolini, 2004; Angeletos, 2002).2 We
estimate the effects of both types of policy within a single empirical framework, avoiding the
comparability issues that arise when monetary and fiscal effects are studied separately (e.g.,
using results from Piazzesi, 2005; Ireland, 2015).

Beyond these theoretical motivations, there are empirical reasons to expect fiscal policy
to influence the yield curve. Ang and Piazzesi (2003) and Evans and Marshall (2007), for
example, show that macroeconomic factors are key drivers of the nominal yield curve. More-

over, a growing literature finds that fiscal policies can exert powerful effects on economic

'We focus on nominal U.S. government debt. The market for inflation-indexed bonds (TIPS) is smaller,
less liquid, and covers a shorter sample. Moreover, the nominal yield curve is already a central object of
study in economics and finance.

2Even without assuming rational expectations, understanding how fiscal actions affect prices remains
important for fiscal policy design; see Karantounias (2020).



activity. Whether and how those policies translate into changes in borrowing costs is the

central question we address.

Figure 1: Correlation Between Policy Shocks and Changes in the Yield Curve
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Note: Scatter-plots showing changes in yields Ay and instruments for policy shocks: monetary policy (Aruoba and Drechsel, 2022) and government
spending shock (Auerbach and Gorodnichenko, 2012). We report the estimated correlation in the legend of each panel, where the significance levels

are denoted by * : 10%,** : 5%, *** : 1%. Information on data sources can be found in Appendix B.

Figure 1 provides a first look at how government decisions move the yield curve. It
plots quarterly changes in yields at different maturities against instruments for monetary
policy shocks (Aruoba and Drechsel, 2022) and government spending shocks (Auerbach and
Gorodnichenko, 2012). Both sets of shocks are significantly correlated with changes in yields,
but they affect different segments of the curve: monetary policy moves short maturities, while
government spending shifts longer maturities.

These scatterplots are only suggestive. First, we do not directly observe structural shocks
but instead rely on noisy instruments, and the figures do not correct for this measurement
error. Second, they do not account for how the yield curve moves as a whole. Our empirical
framework addresses both issues and extends the analysis to include tax changes and dis-
aggregated components of government spending. Still, the broad pattern—different policy
shocks affecting different parts of the yield curve—remains one of our key findings.

To study the yield curve without imposing strong functional form assumptions, we adopt
recent tools from the theory of functional time series (Chang et al., 2016). We treat the
yield curve at each point in time as a realization of a random function. With minimal
assumptions, any such function can be expressed as a sum of basis functions weighted by

time-varying coefficients. A key insight from the functional data literature is that a small



number of basis functions often suffice to approximate the curve well. Our analysis focuses
on these time-varying weights, which summarize the dynamics of the yield curve. We show
that this representation admits a natural state-space formulation.

This framework allows us to use the full yield curve—rather than just a few points or
linear combinations of yields—to analyze how it evolves over time. In contrast to standard
principal components approaches, which reduce dimensionality by analyzing fixed-weight
combinations of yields, our method captures changes in the curve as a function. For further
discussion and comparisons of the functional and traditional approaches, see Chang, Durlauf,
Lee and Park (2023a) and Bjgrnland, Chang and Cross (2023).

Beyond tracking the evolution of the yield curve, our goal is to identify the causal effects
of government actions. To do so, we use standard instruments for fiscal and monetary shocks.
Specifically, we employ exogenous variation in total government spending, defense spending,
government consumption, and investment from Auerbach and Gorodnichenko (2012); tax
shocks identified by Romer and Romer (2010); and monetary policy shocks constructed by
Aruoba and Drechsel (2022). We estimate how these instruments relate to the dynamics of
the yield curve—captured by the weights on the basis functions—which allows us to compute
impulse responses of the entire curve to each type of policy shock.

Our paper builds on but is distinct from several related contributions. Berndt ef al.
(2012), for example, examine how defense spending shocks influence government financing
decisions, such as net surpluses and portfolio returns. Our focus, instead, is on how different
types of fiscal policy shift nominal borrowing costs across the maturity spectrum. Plosser
(1987) studies how fiscal forecast errors propagate to yields, while we estimate causal effects
using external instruments. Dai and Philippon (2005) analyze the yield-curve impact of fiscal
policy in a no-arbitrage framework with Blanchard and Perotti (2002)-style identification. We
adopt a more flexible statistical approach that incorporates both fiscal and monetary policy
shocks and emphasizes causal identification via instruments, arguably the most common
approach in empirical macroeconomics nowadays.

The closest applied paper using a functional approach is Inoue and Rossi (2021), who
apply a Nelson-Siegel specification within a VAR to estimate how unconventional monetary
policy affects the level, slope, and curvature of the yield curve. Chang et al. (2021) uses
functional data methods to study how cross-sectional micro distributions respond to macroe-
conomic shocks and relate to aggregate dynamics.

In the next section, we draw on economic theory to further motivate our study and to

provide potential mechanisms for how policy affects the yield curve. Section 3 outlines our



empirical methodology with an emphasis on accessibility for applied researchers. We then

present our main results.

2 Two Concepts from Economic Theory

We begin by illustrating one link between fiscal and monetary policy changes and the nominal
yield curve via the government budget constraint, and then introduce a yield decomposition
that defines a term premium.

Following Berndt et al. (2012), we analyze the government budget constraint but focus

on the nominal version to match our interest in nominal yields. Specifically,
Biy1 =Rl (Bt — St)> (1)

where B, is the nominal value of outstanding debt at the start of period ¢, S; is the nominal
primary surplus, and Rf? 1 is the nominal gross return on the government’s portfolio between
tand t+1.°

By log-linearizing, we can approximate this constraint (see also Berndt et al., 2012) as

hE

nst—bt:Et{
j=1

p (rllf)+j - A”Stﬂﬂ ; (2)

where ns; denotes the weighted log nominal primary surplus ratio (think of it as a measure
of nominal surpluses), b; = log By, ¥ = log R?, and p € (0,1). Intuitively, changes in ns; — b
must show up in either future returns on the government portfolio (7’? H) or future surpluses.

Berndt et al. (2012) focus on how defense spending affects this decomposition. Our
emphasis is broader: we study how changes in different components of government spending,
tax rates, and monetary policy alter the government’s borrowing costs. These costs, captured
by 7?, are encoded in the nominal yield curve (see Iall and Sargent, 2011). We therefore
examine the effects of policy actions across the entire yield curve.

We next use the expectations hypothesis to define a time-t term premium r(7) for a bond

of maturity 7. Let y;(7) be the yield of that maturity, and let 79 denote a shorter reference

3Hall and Sargent (2011) propose methods for computing theory-consistent measures of Rf 1. See also
Hilscher et al. (2014), Giannitsarou and Scott (2008), and Chung and Leeper (2007).



maturity. The expectations hypothesis implies

1 n—1
T)=—)> E i(10)| + (7 , 3
() = 3 Bilyesi(ro)] () (3)
term premium
expectation

where n is the number of periods between 79 and 7. Our modeling framework will produce
estimates of the expectation term, and we define the term premium r¢(7) as the difference

between the observed yield y;(7) and this expectation component.

3 A Hitchhiker’s Guide to Functional Time Series Meth-

ods

We now provide a high-level explanation of the functional time series methodology used
throughout this paper.” This approach is particularly effective when large amounts of data
describe economic variables that are theoretically linked via a functional relationship, such
as nominal yields along the yield curve. By treating these data as realizations of a random
function, we can leverage their inherent structure more efficiently than traditional methods.
In Appendix G5, we provide evidence that such a functional time series approach delivers
competitive and often superior forecasts for nominal yields relative to standard VAR and
principal components approaches.
We assume that observations of the nominal yield curve at time ¢ can be represented by a
function

yr I — R,

where [ is an interval of maturities (from three months to 30 years in our case). For a security
maturing in ¢+ 7, the yield at time ¢ is y;(7), with 7 € I. We treat the entire function y(7)
as a random variable in a functional space, acknowledging that it varies stochastically across
time. For brevity, we often write y; instead of y:(7).

The data for the yield curve we use here (Giirkaynak, Sack and Wright, 2007) allows us
to obtain a yield for all values of 7 between the aforementioned bounds of three months to
thirty years. In Appendix B we discuss their approach to computing yield curves and how

it relates to our functional principal components approach. We describe in Appendix D how

4See the Appendix or Chang et al. (2022, 2023Db) for further details.



we, in practice, use a fine grid of values to represent the interval I and their corresponding
images (yields) for each quarter ¢.

So far we have not restricted the yield curve in any way - the function y(7) can take on
arbitrary value for each maturity 7 at any point in time . We next describe the mild restric-
tion we impose on the function y(7) before turning to a description of a finite-dimensional

approximation of this function, which we can then exploit in our empirical analysis.

3.1 Restrictions on the Yield Curve

In order to econometrically exploit the fact that all yields are linked via the yield curve, we
will put one mild restriction on the yield curve. We only study yield curves that are in the
space H = L£2(I), the space of square integrable functions.” While this space of functions
is very general (it includes functions that are not continuous, for example), it still imposes
a surprising amount of regularity. In particular, we can now define a scalar product and a

norm in H: For f and g in the space H we obtain

(£.9) = [ f@g()de and ]| = /(.5 (@)

In addition to the inner product and the norm, we also can define a tensor product”

(f@g)v=_(v,9)f (5)

for all v in H. In Appendix E we show how to use these constructs (scalar and tensor
products) to define the expectation function and the covariance operator of random functions
in H.

Using results from functional analysis’ we find that the space H is a separable Hilbert
space. These are spaces that admit a scalar product, such as the one defined above, and

have countable bases. This means that every yield curve in H can be expressed as the linear

°The space of all (real) functions f; defined over I such that [;|f(z)|?dz < co.

61f H =R", we have f®g = f¢, i.e., f ® ¢ reduces to the outer product, in contrast to the inner product
(f,g)=f'g, where f’ and ¢’ are the transposes of f and g. Note that (f®g)v=(fg')v=(v'g)f for all v € R"
in this case.

"See for example Folland (1999).



combination of countable many functions {v;}i=1.23,. :"
(o)
Yt = Z QijtVj. (6)
i=1

Since the functions {v;} are independent of ¢, once they are determined, the yield curve
y¢ is fully characterized by the sequence of real numbers (aq¢,agt,...). In other words, the
yield curve can be analyzed through a sequence of real numbers, and every sequence of real
numbers can be traced back to a yield curve by combining the basis functions {vi,vs,...}
with the sequence (aqs, gy, .. .).

This approach is different from models of the yield curve that start with focusing on the
level, slope, and curvature of the yield curve (Diebold and Rudebusch, 2012): We are not
imposing a particular set of functions to describe the yield curve - instead, we choose basis

functions that jointly describe most of the fluctuations in the yield curve.

3.1.1 A Finite Dimensional Representation of the Yield Curve

The dimension of a space is given by the number of elements in its basis. By this logic, the
space H is infinite dimensional as the basis {v;}i=123... that we used in (6) has infinitely
many elements.

The next step in our approach is to define a finite-dimensional subspace of H. We do this
by considering only functions resulting from a linear combination of the first m elements of
the basis {v1,v,...,up}, these functions define the finite-dimensional space H,, (a subspace
of H).

The function y; is not an element of H,, given that we need more than just the first m
elements of the basis to represent it as we can see in (6). However, we can consider the

projection of y; on H,, given by
m
be =Y ;. (7)
i=1
This gives us an equation akin to an observation equation in a state space model

m
Yt = > v 4wy, (8)
i=1

8Note that we have omitted the argument 7 of the function, but v; (and y;) still refers to a function.



where wy = y; — 4 is the approximation error we make by restricting ourselves to H,,. Under
suitable conditions, this approximation error becomes asymptotically negligible. In what
follows, we assume that {v;} is an orthonormal basis, i.e. |lv;|| =1 for all ¢ and (v;,vj) =0

for all 7 # j. Under this assumption, we have

Ot = <Ui>yt>

for all 7 and ¢.

Let us now introduce a mapping from H,, to R™

ant
N Q¢ m
Hy,>p—a = ) e R™.

At

This mapping is one-to-one correspondence between H,, and R". Therefore, with the basis
{v1,v2,...,um} and oy = (a1¢, o, ..., ) we can recover ¢ through (7). The mapping is
an isometry between H,, and R, which preserves the norm.’As a result, we can study a
vector autoregression (VAR) for oy by least squares, rather than having to work directly in
a functional space.

Using functional principal components, whose properties we discuss in Appendix C, we
determine a basis of functions {v;};—1,23, .. such that its first m elements generate an approxi-
mation of y;. Note that we can thus effectively choose a very efficient set of basis functions for
our purposes rather than restrict ourselves to an a priori chosen basis function such as mono-
mials {1,7,72,...}. Comparing our approach to a standard principal components approach,
it might be useful to note that the basis function here serve the same role as the weights
on the principal components in standard finite dimensional principal component analysis.
Intuitively, the functional approach, because it uses infinite dimensional data, replaces the
sums present in standard finite dimensional principal component analysis with integrals, but

the underlying ideas remain the same.

9We can show that

m m
[15:]1* = Z<Uiayt>2 = Z%zt = [,
=1 =1
where we use the same notation || -|| to denote the norm of a function in H,, and the norm of a vector in

R™.



This principal components analysis also delivers a time series for the vector of weights

!/
o = (oqt a9 ... Oémt) . Figure 2 displays the «a;; values (left column), the v;’s (center

Figure 2: Description of the Functional Principal Components
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Note: The first column shows the time series of weights (a;4) for each component (one in each row). The shape of the component is described in
the second column. The last column shows the range of effects that each component has on the yield curve using the sample mean yield curve (black
line) as a benchmark. The blue (red) lines in the top/middle/bottom panel signify the yield curves obtained with positive (negative) realizations
of the weights (left panel) and the associated basis function (center panel).

column), and the range of yield curves generated by time series fluctuations in the a vector
(right column). This range is derived from the yield curve data described in Section 4.
Each plot (from top to bottom) shows how variations in a single element of a;¢ influence
the sample mean yield curve (in black). Note how the first three basis functions resemble
the level, slope, and curvature factors common in the the yield curve literature (Diebold and
Rudebusch, 2012). However, we did not impose these shapes ex ante. The vector «y is not
directly interpretable as yields; only in conjunction with the basis functions {v1,ve,..., 0}
does it reconstruct the yield curve. Nonetheless, a; serves as the state in our state-space
representation of the yield curve.'’

A crucial feature of this framework is that for each maturity 7, the yield y;(7) is a linear

function of a¢. This linearity simplifies the construction of impulse responses, given the linear

10Here, the analogy to state-space models is slightly loose because we first estimate oy via principal
components and then specify its law of motion. In contrast, standard state-space applications often use a
filtering algorithm (e.g., the Kalman Filter) that leverages the assumed law of motion to estimate the states.
Our approach instead resembles the two-step estimation in linear factor models (e.g., Stock and Watson,
2016), yet the resulting yield-curve model is still in state-space form.

10



dynamics we impose on oy (discussed in the next section).

3.2 The Dynamics of a; and the Identification of Impulse Re-

sponses

We specify a VAR law of motion for o; and the policy-shock instrument z;.'" In particular,
we use a VAR(p) model and later discuss how we select p jointly with the number of factors

m:

P
Vi =C+2Al%—l+ut7 (9)
=1
where v, = [z «]’. This equation can be seen as the state equation for a state-space model
for the yield curve at each time t.
We identify the shock of interest by assuming a linear relationship between the forecast

error u; and the vector of structural shocks of interest e; as
ur = Qey, (10)

and assume that §2 is computed via the lower triangular Cholesky decomposition of the co-
variance matrix of u; so that E(eze}) = I,'* as proposed by Plaghorg-Moller and Wolf (2021).
The policy shock of interest is related to the first element of e;, as we discuss below. This
approach has a number of advantages, even beyond its simplicity. First, it automatically cor-
rects for possible autocorrelation of the instrument and dependence of the instrument on past
yield curve movements (which are generally thought to encode macroeconomic outcomes).

To see this, it is useful to write the first equation of the set of Equations (9), using Equation
(10):

N P& 14 1

a=2 A aa+d Y A g+ e, (11)

=1 I=1j=1
where Af’j is the element of the matrix A; in row ¢ and column j. Following Plaghorg-
Moller and Wolf (2021), it is worthwhile to point out that this identification approach will
correctly identify normalized impulse responses even if the yield curve itself does not contain

enough information to identify the shock of interest ; (i.e., non-invertibility) and if there is

H'We estimate a separate VAR for each instrument because the sample sizes differ across instruments.
12T denotes the identity matrix.

11



measurement error w; present in e, so that e} = fe; +wy, where § # 0 is a parameter that

influences the strength of identification and wy is an i.i.d. measurement error. This comes
at a cost, as we can only identify normalized impulse responses if there is non-invertibility.
Throughout this paper, we plot impulse responses that increase the first element of e; by one
unit (which is equal to a one standard deviation change in the first element of the one-step
ahead forecast error u;). This has the advantage of giving us some sense of magnitude of the
effects if the shock is indeed invertible.

For statistical inference, we use a bootstrap procedure that is detailed in Appendix F. '

4 Yield Curve Data and Instruments

Our nominal yield-curve data come from Giirkaynak, Sack and Wright (2007), available on
the Board of Governors’ website.'" The sample begins in June 1961. We use quarterly data,
taking the yield curve observed on the last day of each quarter so that any shocks within the
quarter can affect that quarter’s yield curve. For each policy shock, we use the longest inter-
section between the yield-curve sample and the relevant shock series. We opt for quarterly
data because many of our fiscal shocks are available only at that frequency.

As instruments for government spending shocks, we rely on the VAR-identified shocks of
Auerbach and Gorodnichenko (2012).' Using VAR-identified shocks as instruments is com-
mon in applied work (e.g., Kanzig, 2021). For tax shocks, we use the exogenous series
documented by Romer and Romer (2010). We take our monetary policy shocks from Aruoba
and Drechsel (2022), who employ machine learning and natural language processing to aug-
ment FOMC staff forecasts with information from internal FOMC documents. The deviation
of actual FOMC decisions from these enriched forecasts serves as the monetary policy shock
measure. A key advantage of this series is its longer sample coverage compared to popu-
lar high-frequency instruments based on interest-rate futures (Kuttner, 2001; Gertler and
Karadi, 2015). In Appendix A.l, we show that our findings are robust to using the shock

measure in Miranda-Agrippino and Ricco (2021) instead.

13This bootstrap procedure is valid, as shown by Chang, Park and Pyun (2023b).

Mnttps://www.federalreserve.gov/data/nominal-yield-curve.htm

15We deviate slightly from Auerbach and Gorodnichenko (2012) by controlling for forecasts of overall
government spending in all VAR specifications to ensure our identified shocks are truly unforecastable. The
results are very similar if we follow Auerbach and Gorodnichenko (2012) exactly.

12
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5 Response of the Yield Curve to Policy Shocks

We begin by plotting impulse responses for the entire yield curve, illustrating how yields at
different maturities change h periods after a shock. Here, h is the horizon of the response,
distinct from the maturity 7 on the x-axis (in years). To estimate our model, we must choose
the number of factors m and the lag length p. We select these jointly by minimizing average
one-step-ahead forecast errors for yields with maturities between three months and 30 years.
As a benchmark, we pick m and p from a VAR containing only a4, allowing us to use one
specification for all results. This procedure yields m =4 and p = 1. These four factors explain
99.87% of the yield-curve variance. In Appendix A.3, we confirm that our findings are robust
to choosing m and p separately for each shock, allowing for differences in observables and
sample periods.

We first examine the impact response (h = 0) of various fiscal and monetary policy shocks.
Our yield data represent quarter-end yields, so these impact responses capture changes within
the same quarter as the shock. In all figures, the yield curve’s response to monetary policy
appears in light blue for ease of comparison.

Figure 3 (left panel) shows the response to a total government spending shock, identified
using the Auerbach and Gorodnichenko (2012) instrument. In contrast to the short-end
response triggered by monetary policy —significant out to maturities of about 10 years—
government spending does not significantly affect yields under 12 years, after which the
response becomes significant at longer maturities. The right panel shows the response to a
tax shock, identified via the exogenous tax changes in Romer and Romer (2010). Interestingly,
its impact response resembles the monetary policy response but in the opposite direction,
and remains significant up to maturities of 15 years, suggesting a more persistent yield-curve
impact than monetary policy.

We next investigate whether different components of government spending have the same
effect on the yield curve. This question is motivated by Boehm (2020), who shows that the
fiscal multiplier can vary significantly between government investment and consumption. To
measure shocks to defense spending, government consumption, and government investment,
we use instruments constructed as in Auerbach and Gorodnichenko (2012).

Figure 4 (left panel) shows that defense spending shocks generate a response similar to

13



Figure 3: Response at Impact of the Yield Curve to a Government Spending Shock (Auerbach and Gorod-
nichenko, 2012) and Exogenous Tax Change (Romer and Romer, 2010)
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Note: For reference the response to monetary policy (Aruoba and Drechsel, 2022) and its 90% confidence band is represented in blue. The lighter

(darker) shade signifies 90 % (68%) confidence bands. 90% and 68% confidence bands estimated using bootstrap methods (see Appendix ).

Figure 4: Response at Impact of the Yield Curve to a Government Defense Spending Shock (left), Govern-
ment Consumption Spending Shock (center), and, Government Investment Spending Shock (right) (Auerbach
and Gorodnichenko, 2012)
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Note: For reference the response to monetary policy (Aruoba and Drechsel, 2022) and its 90% confidence band is represented in blue.
lighter (darker) shade signifies 90 % (68%) confidence bands. 90% and 68% confidence bands estimated using bootstrap methods.

The

overall government spending, significantly affecting only the long end of the yield curve.'® The
same pattern emerges for government investment, as shown in the right panel. Government
consumption, however, moves only the very short end of the yield curve, and its effect is even
more concentrated at short maturities than that of monetary policy.

We now consider responses for up to five years after the shock. To visualize these, we
select certain maturities and plot their impulse responses over time. Figures 57 report these
results for overall government spending, tax shocks, and monetary policy shocks, respectively.

For government spending shocks, the immediate effect grows larger at longer maturities,
aligning with our previous analysis. After the shock, responses at all maturities quickly
return to zero, except for the 30-year maturity, which displays slightly more persistence.

Beyond that, the overall response shapes remain broadly similar across horizons. Tax shocks

160ne might wonder why we do not use the defense news shock of Ramey (2011). Our sample starts after
the Korean War, and as Ramey (2016) notes, that instrument has limited relevance in any sample beginning
after the Korean War.
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Figure 5: Response of yields of specific maturities (given in the title of each subplot) to a government
spending shock. The x-axis denotes periods after the shock occurred h. The lighter (darker) shade signifies
90 % (68%) confidence bands. 90% and 68% confidence bands estimated using bootstrap methods.

cause similar changes at all maturities, and these also revert to zero soon after the initial
negative impact on yields. In contrast, monetary policy shocks reveal notable differences
across maturities. At 20 years and longer, we observe a brief decline, possibly reflecting how
higher current short-term rates can dampen inflation expectations, allowing the central bank
to reduce short-term nominal rates in the future.

Finally, we decompose the impulse responses into average expected short rates up to each
maturity and the term premium. Recall the decomposition in Equation (3), and note how

the yield for a specific maturity 7 depends on «y:
m
Y (1) = Zoéitvz'(T) +wy(7),
i=1

where we now highlight 7. The expected future yield at horizon h is

m
Ey [yt—kh(T)] =Y Eilay pn]vi(T),
i=1
and we can compute Ey[a; 4] using the VAR in Equation (9). This lets us obtain impulse
responses for the expectations component of y(7), and from those we derive the term pre-
mium’s response as the difference between the total yield response and the response of the
expectations component.

Figure 8 reports the decomposition at impact (h = 0) for all maturities from three months
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confidence bands. 90% and 68% confidence bands estimated using bootstrap methods.
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to 30 years, comparing government spending, tax, and monetary policy shocks. Government
spending affects average expected short rates only for long maturities, but it also moves the
term premium significantly at the very low and very high ends of the yield curve. Tax shocks
influence the term premium only for short maturities. Monetary policy responses are driven
mainly by shifts in expected current and future short rates, except at the longest maturities.
Comparing the left and right panels of Figure & reveals that fiscal policy primarily affects
yields through term premia, while monetary policy, unsurprisingly, operates via changes in
expected short rates. This result suggests that monetary policymakers, insofar as they adjust
short-term rates, do not substantially respond to these fiscal shocks over the time horizons
we consider.

Finally, Figure 9 shows the same decomposition for various components of government
spending. Interestingly, government consumption shocks again stand out as inducing a similar
response qualitatively to monetary policy shocks - both move short rate expectations of short
horizons. Investment and defense spending shocks show patterns that are qualitatively similar

to those of overall government spending shocks.
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Figure 9: Decomposition of the responses on impact for the average short-term rate expectation (left) and
the term-premium (right) for total government spending consumption (top),investment (middle) and defense

(bottom).
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6 Conclusion

We study the effects of monetary and fiscal policies on the yield curve and find that they have
qualitatively very different consequences for the yield curve. These findings are useful for
both policymakers, who often view the yield curve as a major aspect of policy transmission,
in addition to directly encoding a government’s borrowing costs. Furthermore, our results
can be useful as calibration targets for macroeconomists who want to develop quantitative

equilibrium models that take the yield curve seriously.
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A Additional Figures

A.1 Response of the Yield Curve to Monetary Policy Shocks Iden-
tified Using High Frequency Variation

When comparing the responses of the yield curve to monetary policy shocks, two different
studies provide valuable insights. Aruoba and Drechsel (2022) and Miranda-Agrippino and
Ricco (2021) utilize different shocks to analyze the transmission of monetary policy to the
yield curve. The shock identified by Aruoba and Drechsel (2022) focuses on a natural language
analysis, while the shock from Miranda-Agrippino and Ricco (2021) represents a different
perspective, based on high frequency estimation.

Figure A-1: Response at Impact of the Yield Curve to a Monetary Policy Shock (Miranda-Agrippino and
Ricco, 2021)

At Impact One Year After the Shock
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Note: For reference the response to monetary policy (Aruoba and Drechsel, 2022) and its 90% confidence band is represented in light blue. The
lighter (darker) blue shade signifies the 90% (68%) confidence band for the response to high frequency monetary policy shock (Miranda-Agrippino
and Ricco, 2021). The confidence bands are estimated using bootstrap methods.

A.2 Additional Results

The following figure shows the response of the yield curve to shocks to components of govern-
ment spending one year after the shock. These plots confirm that the effects of fiscal policy

become very weak or even negligible after just one year.



Figure A-2: Response after one year of the yield curve to a Government Defense Spending Shock (left),
Government Consumption Spending Shock (center), and, Government Investment Spending Shock (right)
(Auerbach and Gorodnichenko, 2012)
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Note: For reference the response to monetary policy (Aruoba and Drechsel, 2022) and its 90% confidence band is represented in light blue.
The lighter (darker) blue shade signifies the 90% (68%) confidence band for the response to different government spending shocks(Auerbach and
Gorodnichenko, 2012). The confidence bands are estimated using bootstrap methods.

A.3 Comparison of different choices of m and p

In this section, we compare impulse responses (on impact) when choosing m and p optimally
for each shock separately rather than using the benchmark values m =4 and p =1 that
were obtained using the entire sample of the yield curve data without using a specific shock
measure in the VAR.



Government Spending
T T

0.3 T

0.25 - i

0.2

0.15

0.1

0.05

=008 /‘/ s ——Proxy VAR optimal m and p (4,1)
4 A — — Proxy VAR optimal m and p (3,2)
0.1F 7 i
%4
-0.15 ! - ! ! !
5 10 15 20 25 30

Figure A-3: Response (at Impact) of the Yield Curve to a Government Spending Shock. Comparison
different general and specific values of m and p.
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Figure A-4: Response (at Impact) of the Yield Curve to a Tax Change Shock. Comparison different general
and specific values of m and p.
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Figure A-5: Response (at Impact) of the Yield Curve to a Government Defense Spending Shock. Compar-
ison different general and specific values of m and p.
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Figure A-6: Response (at Impact) of the Yield Curve to a Government Investment Spending Shock.
Comparison different general and specific values of m and p.
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B Data

In this section, we provide a comprehensive overview of the various data sources utilized in

this paper.

B.1 Yield Curve Data

The yield curve data we use as a starting point are taken from the Federal Reserve Board',
based on the model by Giirkaynak, Sack and Wright (2007). From this source, we obtain
daily estimates of six parameters: SBo, 51¢, B2t, B3¢, 1, and 1o;. These parameters are used to

construct the following yield curve function:

_M 1 M ) M

l—e ™1t —e Tt _ M —e T2 M

yt(M):ﬁﬂt‘i‘ﬁlt M —0—5215 —7 ¢ Tit ‘|’ﬁ3t —— —¢ Tot
T1t T1t Tot

Conditional on 71 and 79, these specifications represent a linear combination of three basis
functions. However, since these parameters vary over time—unlike our approach in the main
text—the basis functions are not time-invariant. This means that our approach still involves
a substantial dimensionality reduction relative to the original data. The daily sample of the

yield curve starts on June 14, 1961, and is updated weekly.

B.2 External Shocks

Throughout the paper, we use several external shocks borrowed from the literature. We con-
sider three main groups of shocks: monetary policy, government spending, and tax changes.
In the following sections, we describe the data sources used to construct each of these external

shocks.

B.2.1 Monetary Policy
The primary references for measuring changes in monetary policy are Aruoba and Drechsel

(2022) and Miranda-Agrippino and Ricco (2021).

Aruoba and Drechsel (2022) This paper applies natural language processing techniques

to analyze documents prepared by economists for FOMC meetings, aiming to capture the

Thttps://www.federalreserve.gov /data/nominal-yield-curve.htm
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information available to the committee at the time of policy decisions. Using machine learn-
ing methods, the authors predict changes in the target interest rate based on this infor-
mation and identify monetary policy shocks as the residuals. Their identified shock, cov-
ering the period from 1982Q3 to 2008Q4, is available at: http://cconweb.umd.edu/ drech-
sel/files/Aruoba_ Drechsel Data.xlsx.

Miranda-Agrippino and Ricco (2021) This study constructs a high-frequency instru-
ment for monetary policy shocks that accounts for informational rigidities. The series
of shocks is available at: http://silviamirandaagrippino.com/s/Instruments_ web-x8wr.xlsx.
The sample period for this shock spans from 1991Q1 to 2009Q4.

B.2.2 Government Spending

Auerbach and Gorodnichenko (2012)  We use the linear (non-regime-switching) version
of the VAR model described in Auerbach and Gorodnichenko (2012) to obtain government
spending shocks. The identification strategy (variable ordering), decomposition of the gov-
ernment spending variable, and treatment of predictable components of fiscal shocks remain
consistent with the original study.

The variables included in the model are as follows: government spending, representing the
log of real government (federal, state, and local) purchases (consumption and investment);
government revenue, representing the log of real government receipts from direct and indirect
taxes net of transfers to businesses and individuals; and output, representing the log of real
gross domestic product (GDP) in chained 2000 dollars.

To account for anticipated shocks, we incorporate quarterly forecasts of fiscal and aggre-
gate variables (government purchases, output, and taxes) from the University of Michigan’s
Research Seminar in Quantitative Economics (RSQE) macroeconometric model, the Survey
of Professional Forecasters (SPF), and the forecasts prepared by the Federal Reserve Board
(FRB) staff for FOMC meetings. These forecasts are included in the SVAR to eliminate the
effects of "innovations' in fiscal variables that were predicted by professional forecasters.

The resulting shocks are obtained using the inverse of the Cholesky decomposition of the
estimated covariance matrix and the estimated residuals. The sample period for these shocks
spans from 1967Q3 to 2008Q4. Replication files are available at: http://doi.org/10.3886/E114783V 1.



B.2.3 Tax Changes

We estimate the response of the yield curve to changes in tax legislation as described in
Romer and Romer (2010).

Tax Changes The authors use narrative records, such as presidential speeches and con-
gressional reports, to identify the size, timing, and principal motivation for all major postwar
tax policy actions. Their analysis distinguishes between legislated changes motivated by
prospective economic conditions and those driven by more exogenous factors. The sam-
ple period for this shock spans from 1961Q3 to 2007Q4. The shock series is available at:
https://www.aeaweb.org/aer/data/june2010/20080421_app.zip.

C Functional Principal Components

The eigenvalues of a compact operator are defined as the non-zero scalars A for which there
exists a non-zero function v in the underlying vector space such that the operator S applied
to v is a scalar multiple of v. More formally, for a compact operator S defined on a Banach

space or a Hilbert space, the eigenvalue-eigenvector equation is given by:

Sv = \v

Here, v is the eigenfunction associated with the eigenvalue A\, and A is a scalar. Compact
operators are typically defined on infinite-dimensional spaces, and their eigenvalues may
include accumulation points or have a discrete or continuous spectrum depending on the
properties of the operator and the underlying space. The eigenvalues of a compact operator
provide important information about its spectral properties and behavior. In the case of a
bounded compact operator on a Hilbert spaces, the eigenvalues are a sequence of numbers

with 0 as only accumulation point.

For a time series of functions y1,%2,v3,...,yr with sample mean y we define the operator
' T
S=T"'> (4i-9)©yi—7)
=1

the operator S is the sample covariance operator of y;.



Let A\ > Ao > A3 > --- the eigenvalues of S we call the eigenfunctions vy, v9,v3,... the
functional principal components of ;.

There are multiple norms we can use for S. We use the trace norm ||.S|| to measure the
variability of y;. The trace norm equals the summation of all eigenvalues of the compact

operator
[T = A1+ A2+ A3+

A screeplot measures the amount of the total variability explained by a subset of principal

components:

- AM+HXo+ Ay,
M+ + A3+

s(m)

In the Appendix D we show how to computationally obtain the functional principal

components of a functional time series.

D How to Model the Yield Curve Computationally?

In the main text, we use the interval I = [0.25,30] representing maturities from three months
to 30 years. We use a grid of 1024 equidistant points, from x1 = 0.25 to z1924 = 30.

Computationally, the sample of the yield curve is a matrix Y of dimensions T x 1024,
where each row contains the values y;; for : =1,...,1024 and ¢t =1,2,3,...,T, representing
the yield in period ¢t and maturity ;.

The main operation using the data are described as follows:

1. Sample mean yield curve: y = (4.1,9.2,...,¥.1024). This represents the mean yield curve

in the sample.

2. The scalar product between two functions, is the inner product of their vector repre-

sentation.
3. The tensor product is the outter product of their vector representation.

4. The sample variance matrix S with dimensions 1024 x 1024, calculated as:



5. The estimated functional principal components are obtained from the eigenvalue de-
composition of the matrix S. The principal components are given by the eigenvectors
of S, and the portion of the variance explained by each component is given by the

eigenvalues \{ > \g > A3 > ---

E Random Functions

In this section, we describe some of the main concepts of random functions. Similar to random
variables and random vectors, we define a random function on a probability space (2,4, P),

which consists of a sample space, an event space, and a probability measure, respectively.

Expected function Given a random function f and an arbitrary element v of H, the scalar
product (f,v) becomes a scalar random variable. This random variable has an expected value

denoted as E(f,v). The mapping
v E(f,v)

is proven to be a linear functional from H to R. By Riesz’ representation theorem, there

exists a non-random element in H referred to as "Ef", such that
v E(f,0) = (Ef,v)

In other words, we use the representation of a linear functional as the scalar product with a

fixed element of H to characterize the expected function of the random function f.

Covariance operator If f and ¢ are random functions taking values in H, then their

covariance operator E(f ® ¢g) is generally defined as a linear operator satisfying

(u,[B(f @ 9)Jv) =E(u, [)(v,9)

for all uw and v in H.

The combination of these two concepts allows us to define, for example, a functional white
noise (g¢) as follows: We set Ee; =0 for all t > 1, and (¢¢) to be serially uncorrelated with
E(et®e) =3 for all t > 1.
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F Bootstrapping

We use the bootstrap to determine confidence intervals for the statistics we estimate regarding
the yield curve and its reactions to external shocks.

In our investigation of the yield curve’s response to an external shock, we consider a
sample of the yield curve that corresponds to the sample of the external shock. The majority
of the external shocks examined in this study occur at a quarterly frequency, so we utilize
the most recent daily observation of the yield curve from the corresponding quarter. This
ensures that we have two identical samples, in terms of size and frequency, for both the yield
curve and the external shock.

For simplicity, the bootstrap method discussed here is illustrated using a VAR of order p =
1. However, this approach can be readily extended to cases with multiple lags, as suggested
in the main text.

In the following, we outline the procedure for generating copies of functional time series

and the external shock, each of size n:
1. Obtain the residuals from estimating model (9): 4 = v — Avi_y.

2. Randomly select, with replacement, a sample of n residuals from the set {a1,dg, ..., Uy},

and center (demean) it to obtain a new set of residuals (u;}).

3. Generate a new time series 7} using the equation v/ = /Al%;"_l +uf with the (uj) gener-
ated in the previous step and the initial value 75 = 9. Note that A is the same as in
the first step.

With the new copy of the time series {7/ }i=0.12,..n, estimate model (9) and obtain
Uy = — fl*'y;‘_l. With the new estimation, obtain impulse response functions of +* as
discussed in the main text. Then, use the basis functions vy, ve,v3,...,v,, to recover a yield
curve from the components of the response that belong to the a vector. Repeat the steps
2-3 a large number B of times (e.g., B =1000). Calculate the desired confidence bands as

the quantiles of the B saved estimates.

G Models of Yield Curve Dynamics

This appendix evaluates how our functional time-series (FTS) specification compares with

established approaches to modeling yield-curve dynamics. Because the FTS framework is
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used to trace responses to external monetary—and especially fiscal—shocks, it is important
to verify that it also delivers competitive predictive accuracy. We assess out-of-sample per-
formance using mean squared forecast errors (MSFE) over multiple maturities and forecast
horizons.

For two models—the F'TS specification and an alternative—fix a maturity m and forecast
i
period ¢ from model i € {1,2}. The corresponding forecast error is

horizon h. For each forecast origin t — h, let § (m) denote the h-step-ahead forecast for

FE{ (m,h) = yo(m) =33}, (m).

Forecasts are produced with a rolling window of W = 120 months. To ensure compara-
bility, we align the set of forecast origins across models (using the maximal lag order when
relevant), so that both generate the same number N (h) of h-step errors. For each (m,h), the
MSFE of model 7 is )

MSFE® (m,h) = — -~ 3" [FE (m,n)]

2
N(h) 5 ’

and we report
AMSFE(m, h) = MSFEA!") (m, ) — MSFEF ™) (m, h),

where positive values favor the F'TS model. To assess statistical significance, we use Diebold-
Mariano tests (Diebold and Mariano, 2002) with HAC standard errors suitable for overlapping
h-step forecasts.

We employ the zero-coupon Treasury yield data of Giirkaynak et al. (2007), which provide
a long monthly sample (over 700 observations). With a rolling 120-month scheme, this yields

several hundred forecast origins for each horizon.

June 1961 — 00000000000000 000000 000000000 - - - 00000000000 0000000000000 — June 2025
# lags 120 months

G.1 A Vector Autoregression with Multiple Maturities

A straightforward benchmark is to stack a set of maturities into a vector. Let k maturities

mp <mg < --- <my and define

Vi = (n(m), go(ma), ..., ye(my))
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The main limitation of this approach is that it only models the chosen maturities, whereas the
FTS specification naturally delivers forecasts for the entire curve. Nonetheless, we evaluate
out-of-sample accuracy of the FTS and the VAR on equal footing, selecting the number of

lags and components to minimize MSFE for each specification.

Figure A-8: Mean Square Forecast Error Comparison
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Note: Each panel shows the difference in MSFE between the FTS model and the VAR (blue squares). We consider eight maturities: three months,
one, two, five, ten, fifteen, twenty, and thirty years. The shaded area represents the one-standard deviation non-rejection region based on the
Diebold and Mariano (2002) statistic. Positive values indicate larger MSFE for the VAR relative to the FTS model.

Figure A-8 reports the MSFE difference between the FTS and VAR across eight maturities
and forecast horizons h (quarters ahead). A positive value implies an advantage for our FTS
approach. The FTS gains are modest at short horizons (h = 1-3) but widen beyond h =5,
becoming both larger and statistically significant at several maturities. At long horizons
(h=9-12), the FTS framework consistently outperforms the VAR, underscoring its efficiency
when forecasting further into the future.

Figure A-9 considers a smaller set of maturities. Results mirror the earlier figure: lit-
tle difference at short horizons (note that the y-axis is different for shorter horizons), but
consistent and statistically significant gains for the F'T'S model at longer horizons.

Figure A-10 restricts attention further, to four maturities. Again, the FTS model de-
livers smaller forecast errors at medium- and long-term horizons, with some improvements
statistically significant, showing robustness to narrower maturity choices.

Figures A-11 and A-12 extend the robustness analysis. With just four maturities or

with a richer nine-maturity grid, the findings remain consistent: modest differences at short
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Figure A-9: Mean Square Forecast Error Difference: FTS versus VAR
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Figure A-10: Mean Square Forecast Error Difference: FTS versus VAR
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Note: Four maturities: three months, one, five, and ten years.

horizons, but clear F'TS gains at medium and long horizons, with significance in many cases.
The broader grid in Figure A-12 makes the advantage of the functional approach especially

visible, as it scales more effectively with the dimensionality of the maturity space.

Summary. Across Figures A-8 to A-12, the FTS model systematically outperforms the

VAR approach, except for very short horizons, where the difference in MSFEs is, however,
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Figure A-11: Mean Square Forecast Error Difference: FTS versus VAR
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Figure A-12: Mean Square Forecast Error Difference: FTS versus VAR
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Note: Nine maturities: three and six months, one, three, five, ten, fifteen, twenty, and thirty years.
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not large. The superiority is not driven by the particular choice of maturities but reflects
the inherent advantage of modeling the entire yield curve as a functional object. Gains are
modest at short horizons but become substantial and statistically significant at medium and

long horizons, confirming the efficiency of the functional specification.

G.2 Principal Components Vector

A second benchmark is principal component analysis (PCA), which summarizes a set of yields
with a small number of common factors. If implemented on a dense grid of maturities (e.g.,
1024 points between 0.25 and 30 years), PCA and the FTS approach would coincide. In
practice, however, PCA is typically applied to coarser sets of yields, often on a monthly grid.
To provide a fair comparison, we construct a PCA-based benchmark using yields at monthly

maturities from 3 to 360 months.

Figure A-13: Mean Square Forecast Error Difference: FTS versus PCA
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Note: Each panel shows the difference in MSFE between the FTS model and the PCA approach (blue line). We consider monthly maturities
from 3 months to 30 years. The shaded area represents the one—standard deviation non-rejection region based on the Diebold and Mariano (2002)
statistic. Positive values indicate larger MSFE for PCA relative to FTS.

Figure A-13 reports the MSFE differences between the FT'S model and this PCA bench-
mark. At short horizons, both approaches perform similarly, with differences generally inside
the confidence bands. At longer horizons, however, the FTS model consistently delivers
smaller forecast errors, with improvements that grow in size and significance across several

maturities. While PCA is a useful dimension-reduction tool, these results show that the
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functional framework better captures the smooth dynamics of the yield curve, yielding more

accurate forecasts at medium and long horizons.

These results confirm that the F'TS specification provides forecasts that are, at the very
least, competitive with these competitors and often superior, especially once we move past
very forecast horizons. Its strength lies in treating the yield curve as a continuous func-
tional object, rather than a finite set of yields or factors, allowing it to exploit more of the

information embedded in the term structure.
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