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Abstract
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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models feature optimal decision rules

that are singular. This occurs because the number of endogenous variables generally

exceeds the number of exogenous shocks. For example, a basic RBC structure generates

implications for consumption, investment, output, hours, real wages, the real interest

rate, etc. Since both the short run dynamics and the long run properties of the en-

dogenous variables are driven by a one dimensional exogenous technological process,

the covariance matrix of the data is implicitly assumed to be singular.

The problem can be mitigated if some endogenous variables are non-observables

- for example, data on hours is at times unavailable - since the number of variables

potentially usable to construct the likelihood function is smaller. In other cases, the

data may be of poor quality and one may be justiÖed in adding measurement errors

to some equations. This lessens the singularity problem since the number of shocks

driving a given number of observable variables is now larger. However, neither non-

observability of some endogenous variables nor the addition of justiÖed measurement

error is generally su¢cient to completely eliminate the problem. While singularity

is not troublesome for limited information structural estimation approaches, such as

impulse response matching, it creates important headaches to researchers using full

information likelihood methods, both of classical or Bayesian inclinations.

Two approaches are generally followed in this situation. The Örst involves enriching

the model with additional shocks (see e.g. Smets and Wouters, 2007). In many cases,

however, shocks with dubious structural interpretation are used with the only purpose

to avoid singularity and this complicates inference when they turn out to matter, say,

for output or ináation áuctuations (see Chari et al., 2009, Sala et al., 2010, Chang et

al., 2013). The second is to solve out variables from the optimality conditions until

the number of endogenous variables equals the number of shocks. This approach is

also problematic: the convenient state space structure of the decision rules is lost, the

likelihood is an even more nonlinear function of the structural parameters and can

not necessarily be computed with standard Kalman Ölter recursions. In addition, with

k endogenous variables and m < k shocks, one can form many non-singular systems

with only m endogenous variables and, apart from computational convenience, solid

principles to choose which combination should be used in estimation are lacking.
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Guerron Quintana (2010), who estimated a standard DSGE model adding enough

measurement errors to avoid singularity, shows that estimates of the structural para-

meters may depend on the observable variables and suggests to use economic hindsight

and an out-of-sample MSE criteria to decide the combination to be employed in es-

timation. Del Negro and Schorfheide (forthcoming) indicate that the information set

available to the econometrician matters for forecasting in the recent recession. Eco-

nomic hindsight may be dangerous, since prior falsiÖcation becomes impossible. On

the other hand, a MSE criteria is not ideal as variable selection procedure since biases

(which we would like to avoid in estimation) and variance reduction (which are a much

less of a concern in DSGE estimation) are equally weighted.

This paper proposes two complementary criteria to choose the vector of variables to

be used in the estimation of the parameters of a singular DSGE model. Since Canova

and Sala (2009) have shown that DSGE models feature important identiÖcation prob-

lems that are typically exacerbated when a subset of the variables or of the shocks is

used in estimation 1, our Örst criterion selects the variables to be used in likelihood

based estimation keeping parameter identiÖcation in mind. We use two measures to

evaluate the local identiÖcation properties of di§erent combinations of observable vari-

ables. First, following Komunjer and Ng (2011), we examine the rank of the matrix of

derivatives of the ABCD representation of the solution with respect to the parameters

for di§erent combinations of observables. Given an ideal rank, the selected vector of

observables minimizes the discrepancy between the ideal and the actual rank of this

matrix. Since a subset of parameters is typically calibrated, we show what additional

restrictions allow the identiÖcation of the remaining structural parameters.

The Komunjer and Ng approach does not necessarily deliver a unique candidate

and it is silent about the subtle issues of weak and partial identiÖcation 2. Thus, we

complement the rank analysis by evaluating the di§erence in the local curvature of the

convoluted likelihood function of the singular system and of a number of non-singular

alternatives which fare well in the rank analysis. The combination of variables we

select makes the average curvature of the convoluted likelihoods of the non-singular

and singular systems close in the dimensions of interest.

1Earlier work discussing identiÖcation issues in single equations of DSGE models include Mavroedis
(2005), Kleibergen and Mavroedis (2009), and Cochrane (2011).

2Recent work describing how to construct conÖdence regions which are robust to weak identiÖcation
problems include Guerron Quintana, et al. (2012), Andrews and Mikusheva (2011) and Dufour et al. (2009).
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The second criterion employs the informational content of the densities of the sin-

gular and the non-singular systems and selects the variables to be used in estimation

to make the information loss minimal. We follow recent advances by Bierens (2007)

to construct the density of singular and non-singular systems and to compare the

informational content of vectors of observables, taking the structural parameters as

given. Since the measure of informational distance depends on nuisance parameters,

we integrate them out prior to choosing the optimal vector of observables.

We apply the methods to select observables in a singular version of the Smets and

Wouters (2007) (henceforth SW) model. We retain the full structure of nominal and

real frictions but allow only a technology, an investment speciÖc, a monetary and a

Öscal shock to drive the seven observable variables of the model. In this economy,

parameter identiÖcation and variable informativeness are optimized including output,

consumption and investment and either real wages of hours worked among the observ-

ables. These variables help to identify the intertemporal and the intratemporal links

in the model and thus are useful to correctly measure income and substitution e§ects,

which crucially determine the dynamics of the model in response to the shocks. Inter-

estingly, using interest rate and ináation jointly in the estimation makes identiÖcation

worse and the loss of information due to variable reduction larger. When one takes

the curvature of the likelihood into consideration, the nominal interest rate is weakly

preferable to the ináation rate.

We also show that, in terms of likelihood curvature, there are important trade-

o§s when deciding to use hours or labor productivity together with output among the

observables and demonstrate that changes in the setup of the experiment do not alter

the main conclusions of the exercise.

Our ranking criteria would be irrelevant if the conditional dynamics obtained with

di§erent vectors of observables were similar. We show that di§erent combinations

of variables produce di§erent responses to shocks and that approaches that tag on

measurement errors or non-existent structural shocks in order to use a larger number

of observables in estimation, may distort parameter estimates and jeopardize inference.

The paper is organized as follows. The next section describes the methodologies.

Section 3 applies the approaches to a singular version of a standard model. Section

4 estimates models with di§erent variables and compares the dynamic responses to

interesting shocks. Section 5 concludes.
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2 The selection procedures

The log-linearized decision rules of a DSGE model have the state space format

xt = A()xt1 +B()et (1)

yt = C()xt1 +D()et (2)

et  N(0;())

where xt is a nx1 vector of predetermined and exogenous states, yt is a ny1 vector

of endogenous controls, et is a ne  1 vector of exogenous innovations and, typically

ne < ny. Here A(); B(); C(); D();() are matrices, which are functions of the

vector of structural parameters . Assuming left invertibility of A(), one can solve

out the xtís and obtain a MA representation for the vector of endogenous controls:

yt =

C() (I A()L)1B()L+D()


et  H(L; )et (3)

where L is the lag operator. Thus, the time series representation of the log-linearized

solution for yt is a singular MA(1) since D()ete0tD()0 has rank ne < ny
3.

From (3) one can generate a number of non-singular structures, using a subset j

of endogenous controls, yjt  yt; simply making sure the dimensions of the vector of

observable variables and of the shocks coincide. Given (3), one can construct J =
ny
ne


=

ny !
(nyne)!ne! non-singular models, di§ering in at least one observable variable.

Let the MA representation for the non-singular model j = 1; : : : ; J be

yjt =

Cj() (I A()L)1B()L+Dj()


et  Hj(L; )et (4)

where Cj() and Dj() are obtained from the rows corresponding to yjt. The non-

singular model j has also a MA(1) representation, but the rank of Dj()ete
0
tDj()

0 is

ne = ny. Our criteria compare the properties of yt and those of yjt for di§erent j.

Komunjer and Ng (2011) derived necessary and su¢cient conditions that guar-

antee local identiÖcation of the parameters of a log-linearized solution of a DSGE

model. Their approach requires calculating the rank of the matrix of the derivatives

of A(), B(), Cj(), Dj() and () with respect to the parameters  and of the

3Equation (3) does not require assumptions about the dimensions of nx; ny and ne which would be needed
to compute, for example, the VARMA representation used in e.g. Kascha and Mertens (2008).
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derivatives of the linear transformations, T and U , that deliver the same spectral den-

sity for the observables. Under regularity conditions, they show that two systems are

observationally equivalent if there exist triples (0; Inx ; Ine) and (1; T; U) such that

A(1) = TA(0)T
1, B(1) = TB(0)U , Cj(1) = Cj(0)T

1, Dj(1) = Dj(0)U ,

(1) = U1(0)U
1; with T and U being full rank matrices4.

For each combination of observables yjt , deÖne the mapping

j(; T; U) =

vec(TA()T1); vec(TB()U); vec(Cj()T

1); vec(Dj()U); vech(U
1()U1)

0

We study the rank of the matrix of the derivatives of j(; T; U) with respect to

(, T , U) evaluated at (0; Inx ; Ine), i.e. for j = 1; :::; J we compute the rank of

j(0)  j(0; Inx ; Ine) =


@j(0; Inx ; Ine)

@
;
@j(0; Inx ; Ine)

@T
;
@j(0; Inx ; Ine)

@U



 (j;(0); j;T (0); j;U (0))

j;(0) deÖnes the local mapping between  and () = [A(); B(); Cj(); Dj();()],

the matrices of the decision rule. When rank(j;(0)) = n, the mapping is locally

invertible. The second block contains the partial derivatives with respect to T : when

rank(j;T (0)) = n2x, the only permissible transformation is the identity. The last

block corresponds to the derivatives with respect to U : when rank(j;U (0)) = n2e; the

spectral factorization uniquely determines the duple (Hj(L; );()). A necessary and

su¢cient condition for local identiÖcation at 0 is that

rank(j(0)) = n + n
2
x + n

2
e (5)

Thus, given a 0, we compute the rank of j(0) for each yjt vector. The vector of

variables j minimizing the discrepancy between rank (j(0)) and n + n2x + n2e; the

theoretical rank needed to achieve identiÖcation of all parameters, is the one selected

for full information estimation of the parameters.

The rank comparison should single out combinations of endogenous variables with

di§erent identiÖcation content. However, ties may result. Furthermore, the setup is

not suited to deal with weak and partial identiÖcation problems, which often plague

likelihood based estimation of DSGE models (see e.g. An and Schorfheide, 2007 or

4We use slightly di§erent deÖnitions than Komunjer and Ng (2011). They deÖne a system to be singular
if the number of observables is larger or equal to the number of shocks, i.e. ne  ny. Here a system is
singular if ne < ny and non-singular if ne = ny.
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Canova and Sala, 2009). For this reason, we also compare measures of the elasticity of

the convoluted likelihood function with respect to the parameters in the singular system

and in the non-singular systems which are best according to the rank analysis - see next

paragraph on how to construct the convoluted likelihood. We seek the combination of

variables which makes the average curvature of the convoluted likelihood around 0 in

the singular and non-singular systems close. We considered two distance criteria:

D1 =

qX

i=1

j
@logL(i)

@i

@logL(i)

@i
j (6)

D2 =

qX

i=1

(

@logL(i)
@i

 @logL(i)
@iPq

i=1(
@logL(i)

@i
 @logL(i0)

@i
)2

L(i0)

H(i0)
)2 (7)

where L(i) is the value of the convoluted likelihood of the original singular system

and H(i0) the curvature at the true parameter value i. In the Örst case, absolute

elasticity deviations are summed over the parameters of interest. In the second, a

weighted sum of the square deviations is considered, where the weights depend on the

sharpness of the likelihood of the singular system at 0.

The other statistic we consider measures the relative informational content of the

original singular system and of a number of non-singular counterparts. To measure the

informational content, we follow Bierens (2007) and convolute yjt and yt with a ny  1

random iid vector. Thus, the vectors of observables are now

Zt = yt + ut (8)

Wjt = Syjt + ut (9)

where ut  N(0;u) and S is a matrix of zeros, except for some elements on the main

diagonal, which are equal to 1. S insures that Zt and Wjt have the same dimension

ny. For each non-singular structure j, we construct

pjt (0; e
t1; ut) =

L(Wjtj0; et1; ut)
L(Ztj0; et1; ut)

(10)

where L(mj0; et1; ut) is the density of m = (Zt;Wjt), given the parameters , the

history of the structural shock et1; and the convolution error ut. (10) can be easily

computed, if we assume that et are normally distributed, since the Örst and second

conditional moments of Wjt and Zt are w;t1 = SCj(0)(I  A(0) L)
1B()et1,
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wj = SDj(0)(0)Dj(0)
0S0 + u, z;t1 = C(0)(I  A(0) L)

1B(0)et1 and

z = D(0)(0)D(0)
0 +u.

Bierens imposes mild conditions that make the matrix 1wj 
1
z negative deÖnite

for each j, and pjt well deÖned and Önite, for the worst possible selection of yt. Since

these conditions do not necessarily hold in our framework, we integrate both the history

et1 and the ut out of (10), and choose the combination of observables j that minimize

the average information ratio pjt (0), i.e.

inf
j
pjt (0) = inf

j

Z

et1

Z

ut

pjt (0; e
t1
t ; ut)de

t1dut (11)

pjt (0) identiÖes the observables producing a minimum amount of information loss when

moving from a singular to a non-singular structure, once we eliminate the ináuence due

to the history of structural shocks and the convolution error.

2.1 Discussion

The rank analysis is straightforward to undertake. However, the computation of the

rank of j(0) may be problematic when the matrix is of large dimension and po-

tentially ill-conditioned. Thus, care needs to be used. We recommend users to try

to measure the rank of j(0) in di§erent ways (for example, compute the condition

numbers or the ratio of the sum of the smallest h roots to the sum of all the roots

of the matrix) to make sure that results are not spurious. Also, one needs to make

sure that the combination j satisÖes the regularity conditions of Kommunjer and Ng,

otherwise the ranking of vectors may not be appropriate.

(11) is related to standard entropy measures. In fact, if we take the log of pjt (; e
t1; ut);

our information measure resembles the Kullback-Leibler information criteria (KLIC).

Hence, our criterion implicitly takes into account the fact that the density of the ap-

proximating system is misspeciÖed relative to the one of the singular system.

Both criteria are valid only locally around some 0. While it is far from clear how to

render the identiÖcation criteria global, it is relatively simple to make our information

measure global. Suppose we have a prior P() on the structural parameters. One can

then construct

qjt (e
t1; ut) =

R
L(Wjtj; et1; ut)P()dR
L(Ztj; et1; ut)P()d

(12)

that is, one can average the densities of the singular and the non-singular model with
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respect to the parameters using P() as weight. The combination j that achieves

infj
R
et1

R
ut
qjt (e

t1
t ; ut)de

t1dut can be found using Monte Carlo methods. We have

decided to stick to our local criteria because the ranking of various combination of

observables does not depend on the choice of ; except in some knife-edge cases. The

example in the next subsection highlights what these situations may be.

Since our criteria only require the ABCD representation of the (log)-linearized so-

lution of the model, they are implementable prior to the estimation of the model and

do not require the use of any vector of actual data. Given the decision rule, the proce-

dures ask what combination of observables makes identiÖcation and information losses

minimal, locally around some prespeciÖed parameter vector. Thus, our analysis is ex-

ploratory in scope and similar in spirit to prior predictive exercises, sometimes used to

study the properties of models (see e.g. Faust and Gupta, 2011).

Our scope is to identify observables with particular characteristics since this helps us

to understand better the role these variables play in the model. As an alternative, one

could also think of choosing linear combinations of observables that optimize certain

statistical criteria. For example, one could choose the Örst m principal components of

the observables (see Andrle, 2012), or optimize the linear weights to obtain the best

identiÖcation and information properties. Such an approach has the advantage of using

all the information the model provides. The disadvantage is that the variables used

for estimation have no economic interpretation. For comparison, in the application

section we also present results obtained using the Örst m static and dynamic principal

components of the vector of observables. Since dynamic principal components are two

sided moving averages of the observables, we maintain comparability with our original

analysis by projecting them on the available information at each t.

2.2 An example

To illustrate what our criteria deliver in a situation where we can explicitly derive

the decision rules, consider the simpliÖed version of a simple three equations New

Keynesian model used in Canova and Sala (2009):

xt = a1Etxt+1 + a2(it  Ett+1) + e1t (13)

t = a3Ett+1 + a4xt + e2t (14)

it = a5Ett+1 + e3t (15)
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where xt is the output gap, t the ináation rate, it the nominal interest rate, eit is

an iid demand shock, e2t is an iid supply shock, and e3t an iid monetary policy shock

and Et represents expectation, conditional on the information at time t. To make the

model singular, let e2t = 0;8t; so that ne = 2 < ny = 3.

Since there are no endogenous states, A = B = C = 0, so that the decision rules

for (xt; t; it) are just functions of the shocks and

2

4
xt
t
it

3

5 =

2

4
1 a2
a4 a2a4
0 1

3

5

e1t
e3t


 Det (16)

The forward looking parameters (a1; a3; a5) disappear from the decision rules since the

shocks are iid and there are no endogenous states. Thus, the rank of (0) in (16) is

6 and it is deÖcient by 3 (the ideal rank is n + 0 + n2e = 9).

Depending on which observables we select, the rank of j(0) could also be deÖ-

cient by 3 if (xt; t) or (t; it) are used, or by 4, if (xt; it) are used, whenever a4 is

di§erent from one. In this situation, our rank analysis would prefer (xt; t) or (t; it)

as observables. When a4 = 1; all combinations are equivalent because, trivially, output

and ináation have exactly the same information for the parameters.

Whenever a4  1, the likelihood function of (xt; t) has weak information about

a4, since the two observables have similar MA structure, but a system with (t; it) is

una§ected. Hence, our elasticity analysis would lead us to prefer (t; it) as observables

whenever inference about the slope of the Phillips curve parameter a4 is important.

It is also easy to see what the informational analysis will give us. The convoluted

(singular) system is
2

4
xt
t
it

3

5 =

2

4
1 a2 1
a4 a2a4 1
0 1 1

3

5

2

4
e1t
e3t
ut

3

5  D1vt (17)

The convoluted non-singular system including (xt; t) is
2

4
xt
t
it

3

5 =

2

4
1 a2 1
a4 a2a4 1
0 0 1

3

5

2

4
e1t
e3t
ut

3

5  D2vt (18)

The convoluted non-singular system including (t; it) is
2

4
xt
t
it

3

5 =

2

4
0 0 1
a4 a2a4 1
0 1 1

3

5

2

4
e1t
e3t
ut

3

5  D3vt (19)
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Assuming normality and unit variance for the structural and the convoluted shocks,

the population log likelihood of (17) will be proportional to DT
1D1 and the population

log likelihoods of (18) and (19) will be proportional to DT
2D2 and D

T
3D3: Thus, when-

ever a2 > 0, the loss of information is minimized selecting (xt; t). When a2 = 0, the

vectors (xt; t), (t; it) produce the same information loss.

In sum, this example shows two important points: the variables one may want to

choose in estimation depend on the focus of the investigation - if two studies focus

on di§erent parameters of the same model, the optimal vector of observables may be

di§erent; the ranking of observable vectors our criteria deliver may depend on the true

parameter values, but in a step-wise, discontinuous fashion.

3 An application

We apply our procedures to a singular version of Smets and Woutersí (2007) model.

This model is selected because of its widespread use for policy analyses in academics

and policy institutions, and because it is frequently adopted to study cyclical dynamics

and the sources of variations in developed economies.

We retain the nominal and real frictions originally present in the model, but we

make a number of simpliÖcations, which reduce the computational burden of the ex-

periment, but have no consequences on the conclusions we reach. First, we assume

that all exogenous shocks are stationary. Since we are working with the decision rules

of the model, such a simpliÖcation involves no loss of generality. The sensitivity of our

conclusions to the inclusion of trends in the disturbances is discussed in the on-line

appendix. Second, we assume that all the shocks have an autoregressive representation

of order one. Third, we compute the solution of the model around the steady state.

The model features a large number of shocks and this makes the number of observ-

able variables equal to the number of exogenous disturbances. Several researchers (for

example, Chari, et al., 2009, or Sala, et al., 2010) have noticed than some of these shocks

have dubious economic interpretations - rather than being structural they are likely

to capture potentially misspeciÖed aspects of the model. Relative to the SW model,

we turn o§ the price markup, the wage markup and the preference shocks, which are

the disturbances more likely to capture these misspeciÖcations (see e.g., Chang et al.,

2013), and we consider a model driven by technology, investment speciÖc, government
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and monetary policy shocks, i.e. (at ; 
i
t; 

g
t ; 

m
t ). The sensitivity of the results to changes

in the type of shocks we include in the model is described in the on-line appendix. The

vector of endogenous controls coincides with the SW choice of measurable quantities;

thus, we need to select four observables among output yt, consumption ct, investment

it, wages, wt, ináation t, interest rate rt and hours worked ht.

The log-linearized optimality conditions are in table 1 and our choices for the 0

vector are in table 2. Basically, the parameters used are the posterior estimates reported

by SW, but any value would do it and the statistics of interest can be computed, for

example, conditioning on prior mean values. Since there are parameters which are

auxiliary, e.g. those describing the dynamics of the exogenous processes, while others

have economic interpretations, e.g. price indexation or the inverse of Frisch elasticity,

we focus on a subset of the latter ones when computing elasticity measures.

To construct the convoluted likelihood we need to choose the variance of the con-

volution error. We set u =   I, where  is the maximum of the diagonal elements

of (), thus insuring that ut and et have similar scale. When constructing the ratio

pjt () we simulate 500 samples and average the resulting p
j
t (; e

t1
t ; ut). We also need

to select a sample size when computing pjt (; e
t1
t ; ut). We set T = 150; so as to have

a data set comparable to those available in empirical work. We comment on what

happens when a di§erent  is used and when T = 1500 in the on-line appendix.

We also need to set the size of the step when we compute the numerical derivatives

of the objective function with respect to the parameters - this deÖnes the radius of the

neighborhood around which we measure parameter identiÖability. Following Komunjer

and Ng (2011), we set g=0.01. When computing the rank of the spectral density, we

also need to select the îtolerance levelî for computing the rank of a matrix, which we

set equal to the step of the numerical derivatives, r=g= 0.01. The on-line appendix

examines the sensitivity of the results with respect to the choice of g and r. While we

treat g and r as parameters, one could also select them using a data driven procedure,

as suggested, e.g. in Ward and Jones (1995).

3.1 The results of the rank analysis

The model features 29 parameters, 12 predetermined states and four structural shocks.

Thus, the condition for identiÖcation of all structural parameters is that the rank of

(0) is 189. We start with an unrestricted speciÖcation and ask whether there exists
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four dimensional vectors that ensure full identiÖability and, if not, what combination

gets íclosestí to meet the rank condition. The number of combinations of four observ-

ables out of a pool of seven endogenous controls is

7
4


= 7!

4!(74)! = 35.

The Örst column of table 3 presents a subset of the 35 combinations and the second

column the rank of j(0). Clearly, no combination guarantees full parameter identi-

Öcation. Hence, our rank analysis conÖrms a well known result (see e.g. Iskrev, 2010,

Komunjer and Ng, 2011, Tkachenko and Qu, 2012) that the parameter vector of the

SW model is not fully identiÖable. Interestingly, the combination containing (y; c; i; w),

has the largest rank, 186. Moreover, among the 15 combinations with largest rank,

investment appears in 13 of them. Thus, the dynamics of investment are well identiÖed

and this variable contains useful identiÖcation information for the structural parame-

ters. Conversely, real wages appear often in low rank combinations suggesting that this

variable has relatively low identiÖcation power. Among the large rank combinations

the nominal interest rate appears more often than ináation (7 vs. 4). More striking

is the result that identiÖcation is poor when both ináation and the interest rate are

among the observables; indeed, all combinations featuring these two variables are in

the low rank region and four have the lowest rank.

The third column of table 3 repeats the exercise calibrating some of the struc-

tural parameters. It is well known that certain parameters cannot be identiÖed from

the dynamics of the model (e.g. average government expenditure to output ratio)

and others are implicitly selected by statistical agencies (e.g. the depreciation rate of

capital). Thus, we Öx the depreciation rate,  = 0:025, the good markets and labor

market aggregators, "p = "w = 10, the elasticity of labor supply, w = 1:5; and gov-

ernment consumption share in output cg = 0:18, as in SW (2007). Even with these

Öve restrictions, the remaining 24 parameters of the model fail to be identiÖed for any

combination of the observable variables. While these Öve restrictions are necessary

to make the mapping from the deep parameters to the reduced form parameters in-

vertible, i.e. rank((0)) = n  5 = 24, they are not su¢cient to guarantee local

identiÖcation. Note that the ordering obtained in the unrestricted case is preserved,

but di§erent combinations of variables now have more similar ranks.

Finally, we examine whether there are parameter restrictions that allow some non-

singular system to identify the remaining vector of parameters. We proceed in two

steps. First, we consider adding one parameter restriction to the Öve restrictions used
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in column 3. We report in column 4 the restriction that generates identiÖcation for

each combination of observables. A blank space means that there is no parameter

restriction able to generate full parameter identiÖcation for that combination of ob-

servables. Second, we consider whether îanyî set of parameter restrictions generate

full identiÖcation; that is, we search for an íe¢cientí set of restrictions, where by e¢-

cient we mean a combination of four observables that generates identiÖcation with a

minimum number of restrictions. The Öfth column of table 3 reports the parameters

restrictions that achieve identiÖcation for each combination of observables.

From column 4 one can see that an extra restriction is not enough to achieve full

parameter identiÖcation in all cases. In addition, the combinations of variables which

were best in the unrestricted calculation are still those with the largest rank in this

case. Thus, when the SW restrictions are used and an extra restriction is added,

large rank combinations generate identiÖcation, while for low rank combinations one

extra restriction is insu¢cient. Interestingly, for most combinations of observables,

the parameter that has to be Öxed is the elasticity of capital utilization adjustment

costs. Column 5 indicates that at least four restrictions are needed to identify the

vector of structural parameters and that the goods and labor market aggregators,

"p and "w, cannot be estimated either individually or jointly for any combination of

observables. Thus, the largest (unrestricted) rank combinations are more likely to

produce identiÖcation with a tailored use of parameter restrictions.

The Örst four static principal components of the seven variables track very closely

the (y; c; i; w) combination and e¢cient identiÖcation requires the same restrictions.

Dynamic principal components appear to be poorer and they seem to span the space

of lower rank combinations. Thus, for this system, there seems to be little gain in using

principal components rather than observable variables in estimation.

3.2 The results of the elasticity analysis

As mentioned, the rank analysis is unsuited to detect weak and partial identiÖcation

problems that often plague the estimation of the structural parameters of the DSGE

model. To investigate potential weak and partial identiÖcation issues we compute

the curvature of the convoluted likelihood function of the singular and non-singular

systems and examine whether there are combinations of observables which have good

rank properties and also avoid áatness and ridges in the likelihood function.
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Table 4 presents the four best combinations minimizing the elasticity distance. We

focus attention on six parameters, which are often the object of discussion among

macroeconomists: the habit persistence, the inverse of the Frisch elasticity of labor

supply, the price stickiness and the price indexation parameters, the ináation and

output coe¢cients in the Taylor rule. Notice Örst, that the format of the objective

function is irrelevant: the top combinations are also the best according to the second

criterion. Also, by comparing tables 3 and table 4, it is clear that maximizing the

rank of j(0) does not necessarily make the curvature of the convoluted likelihood

in the singular and non-singular system close in these six dimensions. The vector of

variables which is best according to the elasticity criterion (consumption, investment,

hours and the nominal interest rate) was in the second group in table 3 but the top

combination in that table ranks second. In general, the presence of the nominal in-

terest rate helps to identify the habit persistence and the price stickiness parameters;

excluding the nominal rate and hours in favor of output and the real wage (the second

best combination) helps to better identify the price indexation parameter at the cost

of making the identiÖability of the Frisch elasticity worse. Interestingly even the best

combination of variables makes the curvature of the likelihood quite áat, for example,

in the dimension represented by the ináation coe¢cient in the Taylor rule. Thus, while

there does not exist a combination which simultaneously avoids weak identiÖcation in

all six parameters, di§erent combinations of observables may reduce the extent of the

problem in certain parameters. Hence, depending on the focus of the investigation,

researchers may be justiÖed in using di§erent vectors of the observables to estimate

the structural parameters.

It is also worth mentioning that while there are no theoretical reasons to prefer any

two variables among output, hours and labor productivity, and the ordering of the best

models is una§ected in the rank analysis, there are important weak identiÖcation trade-

o§s in selecting a variable or the other. For example, comparing Ögures 1 and 2, one

can see that if labor productivity is used in place of hours, the áatness of the likelihood

function in the dimensions represented by the ináation and the output coe¢cients in

the Taylor rule is reduced, at the cost of worsening the identiÖcation properties of the

habit persistence and the price stickiness parameters.
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3.3 The results of the information analysis

Table 5 gives the best combinations of observables according to the information statistic

(11). As in table 4, we also provide the value of the average objective function for that

combination relative to the best.

An econometrician interested in estimating the structural parameters of this model

should deÖnitely use output, consumption and investment as observables - they appear

in all four top combinations. The fourth observable seems to be either hours or real

wages, while combinations which include interest rates or ináation fare quite poorly in

terms of relative informativeness. In general, the performance of alternative combina-

tions deteriorates substantially as we move down in the ordering, suggesting that the

information measure can sharply distinguish various options.

Interestingly, the identiÖcation and the informational analyses broadly coincide in

the ordering of vectors of observables: the top combination obtained with the rank

analysis (y; c; i; w) fares second in the information analysis and either second or third

in the elasticity analysis. Moreover, three of the four top combinations in table 5 are

also among the top combinations in table 3. Finally, note that also in this case the

performance of the Örst four static principal components is very similar to the one of

the (y; c; i; w) vector and that dynamic principal components appear to be inferior to

their static counterparts.

3.4 Summary

To estimate the structural parameters of this model one should include at least three

real variables and output, consumption and investment seem the best for this purpose.

The fourth variable varies according to the criteria. Despite the monetary nature of

this model, jointly including ináation and the nominal rate among the observables

makes things worse. We can think of two reasons for this outcome. First, because the

model features a Taylor rule for monetary policy, ináation and the nominal rate tend

to comove quite a lot. Second, since the parameters entering the Phillips curve are

di¢cult to identify no matter what variables are employed, the use of real variables

at least allows us to pin down intertemporal and intratemporal links, which crucially

determine income and substitution e§ects present in the economy.

As the on-line appendix shows, changes in nuisance parameters present in the two
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procedures, in the sample size, in the choice of shocks of entering the model and in the

speciÖcations of the informational distance do not a§ect these results.

4 How di§erent are the speciÖcations?

To study how di§erent the îbestîand the îworstîspeciÖcations are in practice, we

generate 150 data points for output (y), consumption (c), investment (i), wages (w),

hours worked (h), ináation () and interest rate (r) using the SW model driven by

four structural shocks (at ; 
i
t; 

g
t ; 

m
t ) and parameters as in table 2. We then estimate

the structural parameters of the following Öve models:

 Model A: Four structural shocks and (y; c; i; w) as observables (this is the best

combination of variables according to the rank analysis).

 Model B: Four structural shocks and (y; c; i; h) as observables (this is the best

combination of variables according to the information analysis).

 Model Z: Four structural shocks and (c; i; ; r) as observables (this the worst

combination of variables according to the rank analysis).

 Model C: Four structural shocks, three measurement errors, attached to output,

interest rates and hours and all seven observable variables.

 Model D: Seven structural shocks - the four basic ones plus price markup, wage

markup and preference shocks, all assumed to be iid - and all seven observable

variables

and compute responses to interesting shocks. We want to see i) how the best

models (A and B) fare relative to the DGP and to the worst model (Z); ii) how standard

alternatives augmenting the true set of shocks with either artiÖcial measurement errors

(C) or with artiÖcial structural errors (D), fare in comparison to the best models and

the DGP. In ii) we are particularly interested in whether the presence of three artiÖcial

shocks distorts the responses to true disturbances and in whether responses to these

artiÖcial shocks display patterns that could lead investigators to confuse them with the

structural disturbances.

The likelihood of the simulated sample is combined with the prior distribution of the

parameters to obtain the posterior distribution in each case. The choice of priors closely
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follows SW(2007) and posterior distributions are obtained using two independent chains

of 100,000 draws using the MH algorithm. Table 6 presents the true parameter values

and the vector of highest posterior 90 % credible sets for the common parameters of the

Öve models. For model A,B and Z 23 structural parameters are estimated. For model

C; we estimate 22 structural parameters (the wage stickiness parameters is kept Öxed)

and the standard deviation of the three measurement errors; for model D we estimate

20 structural parameters (i.e. the monetary policy coe¢cients are set to their true

values) and the standard deviation of the artiÖcial preference, price and wage markups

shocks 5.

The table conÖrms that models A and B are di§erent from model Z. Even if the

three models are all correctly speciÖed in terms of structure, there are sizable di§erences

in the magnitude and the precision of credible sets. In models where the observables

feature large ranks or high information, estimates of the structural parameters are

typically more accurate. For example, in Models A and B there are four credible sets

that do not include the true parameter values, while in model Z nine credible sets fail

to include the true parameter values. In addition, in model Z important objects, such

as the price stickiness and the price indexation parameters, which crucially determine

the slope of the price Phillips curve, are poorly estimated.

It is worth mentioning that in model Z, which uses (c; i; ; r) as observables in

estimation, the government process is very poorly estimated: both the autoregressive

coe¢cient and the standard deviation of the process are underestimated. One reason

for this outcome is that, in the DGP, gt enters only in the feasibility constraint. In

model Z we only have information about ct and it, which is insu¢cient to disentangle

gt from yt. This misspeciÖcation has important consequences for the transmission of

government expenditure shocks. Figure 3 displays the responses of the seven variables

to a positive spending impulse. Lines with stars represent the 90 percent credible sets

in Model A, lines with red circles the 90 percent credible sets of Model Z and the

black solid line the true responses. While Model A correctly identiÖes the propagation

mechanism of a spending shock, in the model Z the shock has almost no impact on

the variables and the true response is never contained in the credible sets we present.

5We Öx some of the parameters at the true values in models C and D since they turned out to be poorly
identiÖed and the MCMC routine encountered numerical di¢culties.
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Estimates of the parameters of models C and D are characterized by di§erent

degrees of misspeciÖcation. In model C, we have added (non-existent) measurement

error to output, hours worked and the nominal interest rate. Since measurement error

is iid and the structural model is correctly speciÖed, one would expect this addition not

to make a huge di§erence in terms of parameter estimates. In model D, we have added

white noise structural shocks to the dynamics of the original data generating process.

While the shocks that perturb the price Phillips curve, the wage Phillips curve and the

Euler equation are iid, the structure we estimate is misspeciÖed, making estimates of

the structural parameters potentially biased.

Table 6 suggests that distortions are present in both setups but larger in model

D. For example, the posterior sets do not include the true parameters in 13 out of

22 cases for model C; and in 14 out of 20 cases in model D. Furthermore, posterior

credible sets are tight thus incorrectly attributing large informational content to the

likelihood. Hence, augmenting the original model with measurement or structural

shocks to employ more variables in estimation, does not seem to help to produce more

accurate estimates of the structural parameters.

Why are there distortions? First, while the estimated standard deviation of the

three additional shocks is low compared to the standard deviation of the original shocks,

it is a-posteriori di§erent from zero. Thus, while the estimation procedure recognizes

that these shocks have small importance relative to the four original shocks, it wants

to give them a role because the prior heavily penalizes their non-existence. Second,

signiÖcance of artiÖcial shocks implies that the properties of other shocks are misspec-

iÖed. For example, in model C, the standard deviation of the technology disturbance

is underestimated. Figure 4, which presents the responses to a technology shock in

the true model (black line) and the highest 90 percent credible sets in Model B (blue

stars) and C (red circles), shows that also the transmission mechanism is altered.

The situation is worse when the estimated model features structural shocks that are

absent from the true model. Figure 5 gives a glimpse of what may happen in this case.

First, notice that the responses of the variables of the system to a (non-existent) price

markup shock are small but a-posteriori signiÖcant. Second, the responses have the

same shape (but di§erent magnitude) as those that would be estimated in case price

markup shocks were truly a part of the DGP. Thus, it is possible to obtain perfectly

reasonable patterns of responses even though the shocks which are supposed to drive
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them are not present in the DGP and the patterns look very much like those one would

obtain if the shocks where present. This conclusion holds also for the other two shocks,

which we have erroneously added in Model D.

We would like to mention that despite the fact that neither Model A nor Model B

uses any nominal variables in estimation, the responses to a monetary shock produced

by these models match very well those of the DGP (see on-line appendix). Hence, we

conÖrm that capturing the intertemporal and the intratemporal links present in the

model is enough to have the dynamics of the endogenous variables in response to all

the shocks are also well captured.

Also, it is important to stress that the results obtained in this section are conditional

on one particular vector of time series generated by the model. To check whether the

conclusions hold when sampling uncertainty is taken into account, we have conducted

also a small Monte Carlo exercise where for each model estimation is repeated on 50

di§erent samples and credible sets are constructed using 90 percent of the posterior

median estimates. Results are unchanged.

In conclusion, it seems a bad idea to add measurement errors to the model to be

able to use more variables in estimation. Relative to a setup where a reduced number of

variables is chosen in some meaningful way, impulse responses are tighter but strictly

more inaccurate. Similarly, it seems far from optimal to complete the probability

space of the model by artiÖcially inserting structural shocks. Given standard prior

restrictions, their presence will distort parameter estimates and impulse responses in

two ways: they will take away importance from the true shocks; they will generate

responses which will look reasonable, even if their true e§ects are zero. In this sense, our

conclusions echo results derived by Cooley and Dweyer (1998) in a di§erent framework.

5 Conclusions and practical suggestions

This paper proposes criteria to select the observable variables to be used in the esti-

mation of the structural parameters when one feels uncomfortable in having a model

driven by a large number of potentially non-structural shocks or does not have good

reasons to add measurement errors to the decision rules, and insists in working with a

singular DSGE model. The methods we suggest measure the identiÖcation and the in-

formation content of vectors of observables, are easy to implement, and can e§ectively
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rank combinations of variables. Interestingly, and despite the fact that the statistics we

employ are derived from di§erent principles, the best combinations of variables these

methods deliver are pretty much the same.

In the model we consider, parameter identiÖcation and variable informativeness

are optimized including output, consumption and investment among the observables.

These variables help to identify the intertemporal and the intratemporal links in the

model and thus are useful to correctly measure income and substitution e§ects, which

crucially determine the dynamics of the model in response to the shocks. Interestingly,

using interest rate and ináation jointly in the estimation makes identiÖcation worse and

the loss of information due to variable reduction larger. When one takes the curvature

of the likelihood into consideration, the nominal interest rate is weakly preferable to

the ináation rate.

We also show that, in terms of likelihood curvature, there are important trade-

o§s when deciding to use hours or labor productivity together with output among the

observables and demonstrate that changes in the setup of the experiment do not alter

the main conclusions of the exercise.

The estimation exercise we perform indicates that the best models our criteria

select capture the conditional dynamics of the singular model reasonably well while

the worst models do not. Furthermore, the practice of tagging-on measurement errors

or non-existent structural shocks to use a larger number of observables in estimation

may distort parameter estimates and jeopardize inference.

While our conclusions are sharp, an econometrician working in a real world ap-

plication should certainly consider whether the measurement of a variables is reliable

or not. Our study only asks what procedure is preferable, when a singular model is

assumed to be the DGP. In practice, the analysis can be undertaken also when some

justiÖed measurement error is preliminarily added to the model.

In designing criteria to select the variables for estimation, we have taken as given

that researchers have a set of shocks they are interested in studying. One may also

consider the alternative of a researcher with no strong a-priori ideas about which dis-

turbances the theory should specify. In this case, our variable selection procedures can

be nested in a more general approach which would involve taking a vector of data,

characterizing the principal components of the one-step ahead prediction error and se-

lecting those explaining a certain prespeciÖed variance of the data (as in Andrle, 2012).
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Then, one would perform prior predictive analysis to select the theoretical shocks that

are more likely to generate the second order properties produced in the data by the

principal components of the shocks one has selected. Once this is done, our procedures

can then be applied to select the endogenous variables used for estimation, given the

empirically chosen vector of structural shocks.

Our selection criteria implicitly assume that all variables are equally relevant from

an economic point of view. That may not always be the case and one may have a set of

core and a set of ancillary variables, potentially relevant to characterize a phenomena.

For example, in a model featuring macro-Önancial linkages, the macro variables could

be held Öxed and one may want to choose the vector of Önancial variables that best

inform researchers on this link. In this situation, our selection criteria can be used to

select relevant variables from the latter set.

The approaches are designed with the idea that a researcher wants to use the

likelihood function for inferential purposes. If this is not the case, the spectral methods

of Qu and Tkachenko (2011) can be employed to estimate the structural parameters,

since the spectral density is well deÖned object that can be optimized, even in a singular

system.

One way of interpreting our exercises is in terms of prior predictive analysis (see

Faust and Gupta, 2011). In this perspective, prior to the estimation of the structural

parameters, one may want to examine which features of the model are well identiÖed

and what is the information content of di§erent vector of observables. Seen through

these lenses, the analysis we perform complements those of Canova and Paustian (2011)

and of Mueller (2010).
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Figure 1: One dimensional convoluted likelihood slope of the DGP and of

(yt; ct; rt; ht).
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Figure 3: Impulse response to a government spending shock. Blue starred lines

represent highest 90 percent credible sets for Model A; red circles lines the highest 90

percent credible sets for Model Z; the black solid line the true impulse response.

From top left to bottom right, are the response of output (y), consumption (c),

investment (i), real wage (w), hours (h), ináation () and nominal interest rate (r).
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Figure 4: Impulse response to a technology shock. Blue starred lines represent the

highest 90 percent credible sets for Model B; red circles lines the highest 90 percent

credible sets for Model C; the black solid line the true impulse response. From top

left to bottom right, are the response of output (y), consumption (c), investment (i),

real wage (w), hours (h), ináation () and nominal interest rate (r).
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Figure 5: Impulse response to a price markup shock. Blue starred lines represent the

estimated responses in a SW model when there are 7 structural shocks; red circles

lines the estimated responses in a SW model with four structural shocks. From top

left to bottom right, are the response of output (y), hours (h), ináation (), and

nominal interest rate (r).
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Table 1: Log-linear equations, Smets and Wouter (2007) model. Variables without the
time subscript are steady state values, variable with time subscript are deviation from the
steady state. kp =

(1p)(1p)
p((p1)ep+1)

, k! =
(1!)(1!)
!((!1)e!+1)

, c1 =
(c1)!hn=c
c(1+h)

and c2 = 1h
c(1+h)

, q1 =
rk

rk+1
 
1 and q2 =

1
rk+1 . In the version of model we consider 

a
t = a 

a
t1+

a
t (technology),

it = i
i
t1 + it (investment speciÖc), 

r
t = rt (Taylor rule), 

g
t = g

g
t1 + gt + ga

a
t

(government spending), !t = 0 (wage markup) and 
p
t = 0 (price markup),

b
t = 0 (preference).
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 Description Value
 depreciation rate 0.025
"p good markets Kimball aggregator 10
"w labor markets Kimball aggregator 10
w elasticity of substitution labor 1.5
cg goverment consumption share 0.18
 discount factor 0.998
p 1 plus the share of Öxed cost in production 1.61
 elasticity capital utilization adjustment costs 5.74
 capital share 0.19
h habit parameter 0.71
! wage stickiness parameter 0.73
p price stickiness parameter 0.65
i! wage indexation parameter 0.59
ip price indexation parameter 0.47
n elasticity of labor supply 1.92
c intertemporal elasticity of substitution 1.39
' steady state elasticity of capital adjustment costs 0.54
 monetary policy response to ináation 2.04
R monetary policy autoregressive parameter 0.81
y monetary policy response to output 0.08
y monetary policy response to output growth 0.22
a technology autoregressive paramter 0.95
g gov spending autoregressive parameter 0.97
i investment autoregressive parameter 0.71
ga cross coe¢cient techology-goverment shocks 0.52
a standard deviation technology shock 0.45
g standard deviation government spending shock 0.53
i standard deviation investment shock 0.45
r standard deviation monetary policy shock 0.24

Table 2: Parameters description and values used in the DGP.
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Unrestricted Restricted Resticted and E¢cient Restrictions
Rank() Rank() Restriction on Four parameters Öxed, "p, "w and

y; c; i; w 186 188  (w;  ), (p;  ), ( ; !), ( ; p), ( ; n), ( ; c), ( ; ), ( ; y)
y; c; i;  185 188  ( ; p), ( ; !), ( ; p), ( ; n)
y; c; r; h 185 188  ( ; p), ( ; i!), ( ; ), ( ; y), (p; c), (i!; c), (c; ), (c; y)
y; i; w; r 185 188  (w;  ), ( ; !), ( ; y)
c; i; w; h 185 188  ; c; i (w;  ), ( ; !), ( ; y)
c; i; ; h 185 188  (w;  ), (cg;  ), ( ; !), ( ; c)
c; i; r; h 185 188 !; p; i! (w;  ), (cg;  ), ( ; n), ( ; !), ( ; c)
y; c; i; r 185 187 (w;  ), (cg;  ), ( ; !), ( ; c)
y; c; i; h 185 187 (w;  ), (cg;  ), ( ; !), ( ; c)
i; w; r; h 185 188  (w;  ), (cg;  ), ( ; !), ( ; c)
y; i; w; h 185 188  
y; i; ; h 185 188  
y; i; r; h 185 188  ; i
y; c; w; r 185 188  
y; i; w;  185 188  y; i; ; r

i; ; r; h 184 188  
c;w; r; h 184 188  
y; c; w;  184 187
y; c; w; h 184 187 (p; c), (cg;  ), (p;  ), (cg; c), (p; c), ( ; p)
y; c; ; r 184 187
y; c; ; h 184 187 (p;  ), (cg;  )
y; w; ; r 184 187 (cg; !), (p;  ), (p; !), ( ; y)
y; w; ; h 184 187
y; w; r; h 184 187
y; ; r; h 184 187
c; i; w;  184 187
c; i; w; r 184 188
c; ; r; h 184 187
c; w; ; r 183 187
c; w; ; h 183 187
i; w; ; r 183 187
w; ; r; h 183 187
c; i; ; r 183 186
Required 189 189
Static PC 186 184  (w;  ), (p;  ), ( ; !), ( ; p), ( ; n), ( ; c), ( ; ), ( ; y)
Dynamic PC 184 188  

Table 3: Rank conditions for combinations of observables in the unrestricted SW model
(columns 2) and in the restricted SW model (column 3), where  = 0:025, "p = "w =
10, w = 1:5 and cg = 0:18 are Öxed. The fourth columns reports the extra parameter
restriction needed to achieve full parameter identiÖcation; a blank space means that there
are no additional parameter restriction that guarantees identiÖcation. The last column
reports the e¢cient restrictions that generates identiÖcation, in addition to Öxing ("p; "w).
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Order Cumulative Ratio Weighted Ratio
Deviation Square

1 (c; i; r; h) 1.00 (c; i; r; h) 1.00
2 (y:c; i; w) 1.49 (c; i; w; h) 1.65
3 (c; i; w; h) 1.87 (y; c; i; w) 1.91
4 (y; c; r; h) 2.04 (y; c; r; h) 2.12

Table 4: Ranking of the four top combinations of variables using the elasticity distance. Unrestricted
SW model. The Örst column uses as objective function the sum of absolute deviation of the likelihood

curvature of the parameters, the second the weighed sum of square deviations of the likelihood curvature of

the parameters. îRatioî reports the value of the objective function relative to the best combination.

Order CombinationRelative Information
1 (y; c; i; h) 1
2 (y; c; i; w) 0.89
3 (y; c; i; r) 0.52
4 (y; c; i; ) 0.5

PC static 0.84
PC dynamic 0.65

Table 5: Ranking based on the information statistic. Relative information is the ratio of the p() statistic
relative to the statistic obtained for the best combination.
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Parameter True Model A Model B Model Z Model C Model D
a 0.95 (0.920, 0.975) (0.905, 0.966) (0.946, 0.958) (0.951, 0.952) (0.939, 0.943)
g 0.97 (0.930, 0.969) (0.930, 0.972) (0.601, 0.856 ) (0.970, 0.971) (0.970, 0.972)
i 0.71 (0.621, 0.743) (0.616, 0.788) (0.733, 0.844) (0.681, 0.684) (0.655, 0.669)
ga 0.51 (0.303, 0.668) (0.323 , 0.684) (0.010, 0.237) (0.453, 0.780) (0.114, 0.885)
n 1.92 (1.750, 2.209) (1.040, 2.738) ( 0.942, 2.133) (1.913, 1.934) (1.793, 1.864)
c 1.39 (1.152, 1.546) (1.071, 1.581) ( 1.367, 1.563) (1.468, 1.496) (1.417, 1.444)
h 0.71 (0.593, 0.720) (0.591, 0.780) (0.716 , 0.743) ( 0.699, 0.701) (0.732, 0.746)
! 0.73 (0.402, 0.756) (0.242, 0.721) (0.211, 0.656) (0.806, 0.839)
p 0.65 (0.313, 0.617) (0.251, 0.713) (0.512, 0.616) (0.317, 0.322) (0.509, 0.514)
i! 0.59 (0.694, 0.745) (0.663, 0.892) (0.532, 0.732) (0.728, 0.729) (0.683, 0.690)
ip 0.47 (0.571, 0.680) (0.564, 0.847) (0.613, 0.768) (0.625, 0.628) (0.606, 0.611)
p 1.61 (1.523, 1.810) (1.495, 1.850) (1.371, 1.894) (1.624, 1.631) (1.654, 1.661)
' 0.26 (0.145, 0.301) (0.153, 0.343) (0.255, 0.373) (0.279, 0.295) (0.281, 0.306)
 5.48 (3.289, 7.955) (3.253, 7.623) (2.932, 7.530) (11.376, 13.897) (4.332, 5.371)
 0.2 (0.189, 0.331) (0.167, 0.314) (0.136, 0.266) (0.177, 0.198) (0.174, 0.199)
 2.03 (1.309, 2.547) (1.277, 2.642) (1.718, 2.573) (1.868, 1.980) (2.119, 2.188)
y 0.08 (0.001, 0.143) (0.001, 0.169) (0.012, 0.173) (0.124, 0.162)
R 0.87 (0.776, 0.928) (0.813, 0.963) (0.868, 0.916) (0.881, 0.886)
y 0.22 (0.001, 0.167) (0.010, 0.192) (0.130, 0.215) (0.235, 0.244)
a 0.46 (0.261, 0.575) (0.382, 0.460) (0.420, 0.677) (0.357, 0.422) (0.386, 0.455)
g 0.61 (0.551, 0.655) (0.551, 0.657) (0.071, 0.113) (0.536, 0.629) (0.585, 0.688)
i 0.6 (0.569, 0.771) (0.532, 0.756) (0.503, 0.663) (0.561, 0.660) (0.693, 0.819)
r 0.25 (0.100, 0.259) (0.078, 0.286) (0.225, 0.267) (0.226, 0.265) (0.222, 0.261)

Table 6: True parameter values and highest posterior 90 percent credible sets for the common structural
parameters of the Öve models. Model A has four structural shocks and (y; c; i; w) as observables, model B

has Four structural shocks and (y; c; i; h) as observables, model Z has four structural shocks and (c; i; ; r) as

observables, model C has four structural shocks and three measurement errors, attached to output, interest

rates and hours and all seven observable variables, model D has seven structural shocks and uses all seven

observable variables


