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1 Introduction

Impulse responses are a key tool in macroeconomists’ arsenal to trace out the effects of

structural shocks on aggregate quantities and prices. When estimating these impulse re-

sponses, economists have a wide range of options. For example, a researcher can choose

between local projections (LPs) and vector autoregressions (VARs), Bayesian and frequen-

tist methods, and different specifications. Each choice has its own drawbacks and benefits,

and these choices can generate significantly different results (see Ramey (2016) for several

leading examples). While there is a growing literature discussing conditions under which one

approach might be preferred over another (Stock and Watson, 2018; Herbst and Johannsen,

2020; Plagborg-Møller and Wolf, 2021), many of these conditions are difficult to verify in

practical applications.

In this paper, we introduce a method to average impulse responses from different estima-

tors by extending the optimal prediction pools studied by Geweke and Amisano (2011) and

Hall and Mitchell (2007).1 In particular, we compute the optimal weights that maximize the

weighted average log score function for forecasts conditional on the structural shock of inter-

est. This conditionality separates our approach from the literature. If a specific structural

shock is important for forecasting variables of interest, our weights differ substantially from

weights computed using traditional approaches that do not account for the shock. The only

input required for our method is a set of forecast densities that trace out the model-specific

effects of the shock of interest. Individual impulse responses can be based on any method

that delivers such a conditional forecast density for a given variable at a given horizon.

Our approach is designed to appeal to empirical macroeconomists, who may find it dif-

ficult to choose between different methods for estimating impulse responses and who want

to take into account uncertainty across methods. LPs have become popular because they

allow for the introduction of extraneous variables in a straightforward manner. At the same

1Opinion pools, i.e., a forecast density formed by averaging over model-specific forecast densities, were
first introduced by Stone (1961).
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time, the confidence intervals of the LP-based responses tend to be wide. In contrast, VAR-

based impulse response estimates suffer from a well-known bias when used to approximate

moving average processes with many lags. Our proposed solution to these issues in practical

applications is to take all of these concerns at face value and compute combined responses

that take these trade-offs into account. Our use of prediction pools provides a systematic

and computationally tractable method to account for these issues in a wide range of appli-

cations, where the focus is on identifying plausible and robust dynamic behavior over time,

irrespective of the underlying models.

A key strength of our approach is its flexibility. In particular, it removes the necessity to

choose one model or even one statistical paradigm. Moreover, the methodology is applicable

to a wide range of models. Typical methods such as Bayesian model averaging are unavailable

when one of the estimators considered is based on LPs as LPs are not ‘generative models’,

that is, a set of LPs for different horizons do not form a consistent data-generating process.

In addition to the aforementioned LPs and VARs, dynamic equilibrium models (Smets and

Wouters, 2007), dynamic factor models (Stock and Watson, 2016), or single equation methods

(Baek and Lee, 2022) can be used in our framework. Our method provides horizon- and

variable-specific averages, thus exploiting each method’s strength as much as possible.

As highlighted by Geweke and Amisano (2011), prediction pools have properties that

make them well-suited to average over models or estimators when it is clear that all included

models are misspecified. In contrast to Bayesian model averaging or related frequentist

methods, more than one model will generally receive a positive weight. This helps prediction

pools to outperform other model selection or model averaging approaches using various

measures of forecast accuracy. Our extension inherits these properties, as we demonstrate

with Monte Carlo exercises and with two empirical applications.

Prediction pools are also computationally straightforward to implement relative to al-

ternative methods of averaging across models. Since each model-specific forecasting density

can be obtained separately, the most-time consuming part of forming prediction pools can
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be parallelized. The second step is then a relatively simple numerical maximization prob-

lem with a concave objective function and convex constraints. Other methods that also

combine information from various models such as mixture models or composite-likelihood

estimators (Qu, 2018; Canova and Matthes, 2021) do not share this modularity and thus

have substantially higher computational complexity.

Overall, our paper highlights several broad messages for estimating impulse responses.

The theoretical properties of individual models are not sufficient criteria for the choice of

optimal weights in the prediction pool. Misspecified models can dominate correctly specified

(or more flexible) models in finite samples. On the other hand, models that produce tighter

estimates need not receive greater weight. The choice of models and their weights depend on

the entire predictive distribution and not only the point estimates. While our examples focus

on the mean and variance, higher-order moments or any other properties of the predictive

distribution can be important more generally. Finally, we also find that the optimal weights

on models depend on horizon, variable, and application, making it difficult to derive general

guidelines or rules-of-thumb.

We illustrate our methodology using Monte Carlo experiments. The first is a stylized

univariate example motivated by Herbst and Johannsen (2020), which serves as a proof of

concept and implies reasonable optimal weights. They result in an average impulse response

with a bias similar to one chosen by minimizing a squared error criterion. The second Monte

Carlo compares a VAR and an LP in a setting where the VAR is misspecified, but the LP

produces noisier estimates and has finite sample bias that is of the opposite sign from the

VAR. While most of the weight is placed on the VAR, substantial weight is also placed

on the LP, reducing the bias of the averaged impulse response relative to the VAR on its

own, with the biases of the two models offsetting each other. In the appendix, we also

consider a Monte Carlo exercise that simulates data from the DSGE model from Smets and

Wouters (2007), illustrating the weighting scheme’s ability to trade off bias and variance for

a relatively realistic data-generating process. These exercises highlight how our approach
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often gives positive weight to all competing models, but is also consistent with previous

theoretical results found in Herbst and Johannsen (2020) and Li et al. (2022).

We then consider an empirical application that follows Ramey (2016), where we average

across three models that use the same Romer and Romer (2004) narrative instrument for

monetary shocks. We find a range of results depending on horizon and variable, emphasizing

the flexibility of our methodology and the importance of considering the full predictive distri-

bution rather than individual statistics. Notably, the averaged response rules out implausible

features of the impulse response estimates from individual models.

Finally, we study the the response of unemployment to a total factor productivity (TFP)

shock measured using the series from Fernald (2014). We consider three VARs, three LPs, a

factor-augmented VAR (FAVAR), and a single equation regression model (as in Romer and

Romer (2004)). While the estimated responses differ substantially across models, we find an

averaged response that is consistent with Basu et al. (2006)—unemployment rises initially

in response to the TFP shock, but rapidly returns to its long-run average.

Related Literature. Our approach is motivated by the vast array of choices for computing

impulse responses available to practitioners. It allows researchers to average optimally across

multiple approaches rather than choosing just one. The two main statistical models are VARs

(Sims, 1980) and LPs (Jordà, 2005), which we focus on for most of the paper. Within these

two classes of models there are numerous variations. For example, in VARs inference can

be conducted using Bayesian or frequentist methods (Sims and Zha, 1999). The Bayesian

approach requires the choice of priors (Doan et al., 1984; Del Negro and Schorfheide, 2004;

Giannone et al., 2015) while the frequentist approach requires choices about bias correction

and the construction of confidence intervals (Kilian, 1998; Pesavento and Rossi, 2006). With

LPs, there is a growing literature providing choices on the approach to inference (Herbst

and Johannsen, 2020; Montiel Olea and Plagborg-Møller, 2021; Lusompa, 2021; Bruns and

Lütkepohl, 2022) and smoothing the impulse responses (Barnichon and Brownlees, 2019;
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Ferreira et al., 2023).

Having a method that is flexible enough to cater to different models, variables, and

horizons is particularly useful given the range of conclusions in the literature about the

relative strengths of the different methods. Asymptotic results on the relative performance of

VARs and LPs (Stock and Watson, 2018; Plagborg-Møller and Wolf, 2021) rely on conditions

that may not be easily verifiable in practice. In finite sample settings, the literature has also

compared the performance of VARs and LPs (Kilian, 1998; Marcellino et al., 2006; Li et al.,

2022). However, it is difficult to draw general conclusions, especially in empirical applications

when the true model is not known. Our Monte Carlos and empirical applications show that

the relative weights on different models can vary substantially not only with the data but

also by variable and horizon, consistent with results in the literature (Marcellino et al., 2006;

Gürkaynak et al., 2013). We consider it therefore important to rely on a general method

that is able to assign weights variable by variable and horizon by horizon.

Prediction pools have been used to average models since their introduction by Geweke

and Amisano (2011) and subsequent follow-up work in Geweke and Amisano (2012) and

Amisano and Geweke (2017). Our key innovation is that prediction pools can be used to

average impulse responses by treating the impulse responses as conditional forecasts. This

allows for a flexible method that inherits desirable properties of the original prediction pools.

Model averaging has a long tradition in economics, partially motivated by the observation

that averages of forecasts across multiple models tend to outperform forecasts based on an

individual model (Bates and Granger, 1969). In the Bayesian setting, model averaging

is just an application of Bayes’ theorem (for an application to VARs, see, for example,

Strachan and van Dijk (2007)). As mentioned, Bayesian model averaging generally requires

the use of generative models and, as such, rules out LPs. Frequentist versions of model or

forecast averaging such as Hansen (2007) also focus on specific classes of models (averages of

least squares estimators in that case). Hansen (2016) studies model combination of various

restricted VARs estimated via least squares. He proposes to find optimal model weights to
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minimize the mean squared error of a function of the VAR parameters (which can be an

impulse response at a specific horizon). Dinh et al. (2023) propose averaging across different

LP specifications, especially in the presence of a large number of possible controls. Unlike

us, they do not solve for an optimal weight and do not consider models beyond LPs.

Outline. The rest of the paper is structured as follows. Section 2 introduces our method-

ology. Section 3 describes our Monte Carlo exercises. In Section 4, we apply our method to

study the impulse responses to monetary and TFP shocks. Section 5 concludes.

2 Prediction Pools

We use prediction pools to average impulse responses across different models, based on

Geweke and Amisano (2011). In their framework, predictive densities p (zt+h|X t
m;Mm) for

each modelMm are combined to create a predictive density for an observable zt conditional

on model-specific predictive variables X t
m, from which objects of interest, such as forecasts,

can be computed.2 The individual predictive densities are taken as given; that is, in contrast

with other approaches to model averaging such as the estimation of mixture models, the

parameters of the specific models and the model weights are not estimated jointly.

Formally, for any given horizon h, the goal is to maximize the log predictive score function:

max∑M
m=1 wm,h=1,wm,h≥0

T∑
t=1

log

[
M∑

m=1

wm,hp
(
zt+h|X t

m;Mm

)]
, (1)

where zt+h denotes the variable of interest, X t
m denotes the history of variables that zt+h

depends on in model Mm, and m = 1, ...,M indexes different models. The framework can

be extended to the multivariate case, where zt+h is a vector of observables, but for ease of

exposition and in our empirics later we find it useful to focus on one variable at a time.3

2Subscripts generally denote period-specific outcomes (except for the subscript m, which denotes the
model at hand), whereas superscripts denote histories up to and including the period specified in the super-
script.

3We treat the computation of the weights at different horizons as distinct problems. One could, alterna-
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A key feature of prediction pools is that they generally improve forecasting ability relative

to individual models as judged by the log predictive score (Geweke and Amisano, 2011,

2012). They do so by usually giving more than one model a positive weight, in contrast with

posterior model probabilities in a Bayesian setting.

2.1 Adapting Prediction Pools to Impulse Response Averaging

We leverage the useful properties of prediction pools for the problem of impulse response

estimation using the insight that impulse responses are nothing but conditional forecasts.

The impulse responses in our framework are averages of model-specific impulse response

estimators.4 Our approach thus rewards models that forecast well.

The main feature distinguishing our approach from Geweke and Amisano (2011) is that

we use a measure of the shock of interest as a conditioning argument in our predictive

densities. In general, we form forecast densities that depend on observables up to time t− 1

and a measure of the structural shock at time t. These measures of shocks can depend on

time t data and model parameters. They can also incorporate identification restrictions.

This conditioning scheme makes our approach relevant for the empirical practice and

choices that researchers are facing. An alternative approach would be to use the Geweke

and Amisano (2011) approach for different reduced-form models directly and then impose

identifying restrictions ex-post after finding the optimal weights. However, many applica-

tions of LPs directly use information on structural shocks (or instruments thereof) in the

estimation, making this alternative less appealing when at least one of the models in our

tively, compute weights jointly and impose a penalty that forces the changes in the weights across horizons to
be smoother than in our benchmark. For example, one could estimate the sets of weights {{wm,h}Mm=1}Hh=1

by maximizing the following objective function:

max∑M
m=1 wm,h=1,wm,h≥0

H∑
h=1

T∑
t=1

log

[
M∑

m=1

wm,hp
(
zt+h|Xt

m;Mm

)]
+ λ

H∑
h=2

M∑
m=1

(wm,h − wm,h−1)2,

where λ controls how much smoother the weights will be relative to our benchmark. With λ = 0, we replicate
our benchmark since then each horizon’s weights can be solved for independently of all other horizons.

4Our focus on this paper is on linear models, but our approach could also be used in nonlinear settings.
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pool is based on LPs. Conditioning on the shock explicitly rewards models where the shock

helps to forecast the variable of interest.

Another distinctive component of our approach is how we implement the distribution

over each model’s parameters, i.e., how our forecasting densities incorporate parameter un-

certainty within a model. Geweke and Amisano (2011) use two approaches: The posterior

distribution of parameters from a Bayesian estimation or fixed parameter values from some

point estimate. We use a more general framework where the parameters of model Mm are

collected in a vector Ωm. We generate draws from a distribution gm(Ωm) that captures

the parameter uncertainty we want to consider. This could be a posterior distribution, a

point mass, a prior distribution, or a distribution derived using frequentist principles, say, by

appealing to standard asymptotic arguments or numerical approaches such as the bootstrap.

We generally study a vector yt of macroeconomic variables and denote the jth variable of

that vector by yt,j. Since LPs are usually estimated for one specific variable and horizon at

a time, we carry out our analysis variable by variable and horizon by horizon as well. This

also gives us additional flexibility as different models might have better forecasting ability

for different variables or horizons.

With these definitions in hand, we define our optimization problem:

max∑M
m=1 wm,h=1,wm,h≥0

T∑
t=1

log

[
M∑

m=1

wm,hp
∗
m (yt+h,j)

]
(2)

where, relative to Geweke and Amisano (2011), we simply replace the unconditional predic-

tive density p (zt+h|X t
m;Mm) in (1) with the conditional predictive density p∗m defined:

p∗m (yt+h,j) =

∫
p
(
yt+h,j|yt−1, εt(Ωm, y

t),Ωm,Mm

)
gm(Ωm)dΩm. (3)

As noted above, the key differences between p∗m and p (zt+h|X t
m;Mm) are the dependence of

p∗m on the shock εt and the integration over the distribution gm of the parameters Ωm.

We can approximate the integral on the right-hand side of (3) by Monte Carlo methods,
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as is often necessary in practice. We can extend our definition of p∗ by allowing different

models to depend on different right-hand side variables. While we allow the shock measure

εt(Ωm, y
t) to be model-specific, in our applications we use the same shock (or instrument of

a shock as a conditioning argument) in all models and assume that the observed shock is

one element of the vector yt.

Geweke and Amisano (2011) use true out-of-sample forecast densities, i.e., their densi-

ties p (zt+h|X t
m;Mm) are generally re-estimated every period. While this is possible in our

framework as well, we use an alternative approach inspired by cross validation (Hastie et al.,

2009). In particular, we split the sample in half and estimate the models for each subsample

separately. We then use these estimates to obtain implied out-of-sample forecast densities

for the parts of the sample that were not used for estimation. Combining the two subsamples

gives us out-of-sample predictive densities for the entire sample, which we then use to obtain

a single set of weights.

More specifically, we first estimate each model using the first half of the sample, and then

use those parameter estimates to forecast the second half. In the next step, we estimate based

on the second subsample, fix parameter estimates and forecast the first subsample. This

produces the necessary out-of-sample forecast densities for each subsample and, therefore,

each period, without having to re-estimate every period. We view this approach as trading

off computing time and overfitting concerns, which would play a role if we did not split the

sample at all. While the sample splitting can increase estimation time, it does not change

the time taken to compute the weights since we solve for a single set of weights using the

full sample of predictive densities.

More generally, one could split the sample into S > 2 subsamples and compute the

predictive densities for each subsample using the remaining S − 1 subsamples to estimate

the parameters. The case of S = T is analogous to leave-one-out cross validation, where

an observation is predicted using all other data points. The Geweke and Amisano (2011)

approach takes S = T but only uses data from subsamples (or, equivalently, observations)
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1, .., s− 1 to obtain parameter estimates and predictive densities for observation t.

2.2 Properties of Prediction Pools

With forecast densities (3) in hand, the theorems stated in Geweke and Amisano (2011)

all apply. In particular, as long as the expected average forecast densities do not take

on the same value for different models, the true model asymptotically receives a weight

of 1 if it is contained in the set of models we consider. In contrast to Bayesian model

averaging, more than one model will receive positive weight even asymptotically if the true

model is not contained in the set of weights (Geweke and Amisano, 2012). The individual

model with the highest log predictive score might not even receive a positive weight in the

optimal pool if more than two models are being considered. The pooling weights thus do

not necessarily represent a ranking or evaluation of the models. Rather, the weights are

chosen to optimize the performance of the averaged model in terms of the log-score objective

function. Furthermore, the weights satisfy a number of consistency requirements that make

their use appealing. We state these consistency requirements as derived by Geweke and

Amisano (2011) in Appendix A.

The prediction pool framework is particularly well suited for applications in empirical

macroeconomics. First, by studying each horizon separately, we overcome the issue that LPs

are not generative models. In particular, there is no unique way to simulate a sample of arbi-

trary length from LPs estimated using different horizons. The simulation from one horizon is

in general inconsistent with simulations from LPs for a different horizon. As a consequence,

Bayesian model averaging is not possible. Second, prediction pools allow us to compare

Bayesian and frequentist approaches. In particular, the probability distribution gm(Ωm) can

be either Bayesian (i.e., a posterior distribution) or frequentist (i.e., an asymptotic distribu-

tion).5 Finally, the optimization problem (2) is computationally straightforward.

5By allowing for both Bayesian and frequentist models to enter our model pool, we implicitly equate the
interpretations of uncertainty in Bayesian and frequentist frameworks. This is in the spirit of much applied
work, which compares error bands across Bayesian and frequentist approaches, disregarding philosophical
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Despite the flexibility of our framework, there are some notable limitations, all of which

apply more generally to model averaging techniques. First, in averaging across impulse

responses, a researcher has to entertain the assumption that each response corresponds to the

same shock. This may be a controversial assumption when comparing responses identified by

different instruments if one views each instrument as identifying a different shock.6 Second,

the optimal weights are not informative about whether exogeneity assumptions are satisfied.

Instead, arguments about such exogeneity require economic theory that is not reflected in the

predictive densities. Next, when comparing Bayesian and frequentist estimates, one should

be mindful of the differing interpretations of the respective credible or confidence intervals.

While these are important caveats, we consider our approach as reflective of actual practice

in much applied macroeconomic research.

In addition, while the predictive density p∗m conditions on the shock of interest, it can

also depend on other features of the model. By conditioning on the shock, our approach

already improves on typical model averaging or comparison methods (e.g., Bayesian model

averaging, Akaike information criterion, or the original Geweke and Amisano (2011) ap-

proach), which focus on the overall performance of the model without explicitly account for

the shock of interest. Nevertheless, Section 2.5 shows how to modify the objective function

to reward models in which the structural shock improves forecasting ability, hence putting

more emphasis specifically on the shock.

Finally, a key question is how many models should be included in the prediction pool

and along which dimensions they should differ. Heuristically, and practically, applied re-

searchers would likely consider one LP and one VAR specification. That being said, Geweke

and Amisano (2011) show that in population, models in the prediction pool that are not

informative (i.e., are dominated by the other models), receive zero weight. Consequently,

one decision rule would be to stop adding to the pool when the additional model’s estimated

differences between the two approaches. In our applications below, we do not compare across paradigms.
6For instance, McKay and Wolf (2023) argue that the instruments in Romer and Romer (2004) and

Gertler and Karadi (2015) identify different types of monetary shocks.
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weight is below some threshold close to zero. Alternatively, a good pool of models is one

where the forecast density is properly calibrated. Amisano and Geweke (2017) report on a

battery of tests to check whether a pool is large enough along this dimension, while Hansen

et al. (2011) use a sequential testing approach to compute the model confidence set.

2.3 Implementation

We now present a step-by-step guide that summarizes our approach.

1. Partition: Split the estimation sample in half, so that each subsample has T/2 obser-

vations (we assume for simplicity that T is even). We denote the subsample by s = 1, 2,

where s = 1 means that periods dated t = 1, ...T/2 are used in the estimation, whereas

s = 2 means that periods t = T/2 + 1, ..., T are used. In a slight abuse of notation, we

define a function s(t) that is equal to 1 if t ≤ T/2 and equal to 2 if t > T/2. We now

give densities additional superscripts that denote the estimation sample.

2. Estimation: Estimate (or calibrate) each model m = 1, ...,M for each subsample s.

This means that for each model we get a distribution psm(Ωm) for each subsample.

3. Predictive densities: For each model and subsample construct p∗,sm (yt+h,j) by first

constructing the forecast density conditional on parameters and a given shock (see

Section 2.4 for an example on how to do this in VAR models). Then average over

draws from the relevant psm(Ωm) density. Doing this for each subsample gives us a full

set of predictive densities for t = 1 to T .

4. Prediction pool weights: Compute model weights by solving the following maxi-

mization problem for each horizon h and each variable j separately:

max∑M
m=1 w

j
m,h=1,wj

m,h≥0

T∑
t=1

log

[
M∑

m=1

wj
m,hp

∗,3−s(t)
m (yt+h,j)

]
(4)
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The superscript of the density p
∗,3−s(t)
m clarifies that we use out-of-sample forecasts to

construct the objective function, but the first summation goes from t = 1 to T , showing

that we use the full sample of predictive densities to compute a single set of weights.7

5. Average impulse responses: With model weights in hand, we can construct

weighted averages of impulse responses and other statistics of interest from each model.

First, re-estimate each model using the entire sample to obtain a final estimate of

gm(Ωm) and use that distribution to construct our statistics of interest. Next, take

draws k = 1, ..., K from the set of models mk ∈ {1, ...,M} with probabilities given by

the weights. Finally, for each draw, k, take a draw of the impulse response from model

mk. This gives us K draws from the averaged impulse response, which we can then

use to compute moments or quantiles.

Steps 2 and 3 are the most time-consuming steps of the algorithm, but they can both be

parallelized across models.

2.4 Illustrative example: Constructing p∗ for a VAR(1)

For concreteness, we now illustrate how to construct the forecasting density p∗m (yt+h,j) in

the context of a linear Gaussian VAR(1):

yt = Byt−1 + ut (5)

ut = Cεt, (6)

where εt ∼ N (0, I) is a vector of structural shocks and V [ut] = CC ′. In terms of the notation

from the previous section and assuming this VAR is model 1, we have Ω1 = [vec(B)′ vec(C)′]′,

where vec denotes columnwise vectorization of a matrix. The impulse response of yt to shock

j at horizon h is then BhC•,j, where C•,j is the jth column of the matrix C.

7Geweke and Amisano (2011) provide conditions for the concavity of the objective function.
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Given B and C, we can compute the on-impact conditional distributions:

E [yt | yt−1, εt,j] = Byt−1 + C•,jεt,j (7)

V [yt | yt−1, εt,j] = CC ′ − C•,jC ′•,j (8)

and iterate forward:

E [yt+h | yt−1, εt,j] = BE [yt+h−1 | yt−1, εt,j] (9)

V [yt+h | yt−1, εt,j] = BV [yt+h−1 | yt−1, εt,j]B′ + CC ′ (10)

The predictive density of the vector yt conditional on parameters h periods ahead is then

Gaussian with conditional means and variances defined above. Furthermore, the forecast dis-

tribution of a specific variable yt,j conditional on parameters and the shock is given by a nor-

mal distribution where the mean and variance are the relevant elements of E [yt+h | yt−1, εt,j]

and V [yt+h | yt−1, εt,j].

With the internal instrument VAR (Noh, 2018; Plagborg-Møller and Wolf, 2021), which

we use in our Monte Carlos and empirical applications in Sections 3 and 4, an econometrician

observes the shock if she knows the parameters. More generally, we replace εt,j with ε̂t,j, the

jth element of ε̂t ≡ C−1(yt −Byt−1), the fitted value of εt.

If B and C are estimated, we can account for parameter uncertainty by integrating over

their posterior or asymptotic distribution. We implement this by averaging the predictive

density across draws in a Bayesian framework, for example.

It is instructive to compare the forecast errors for the case where we condition on εt,j

with the case where we do not. In the latter, the forecast error is given by yt − Byt−1. In

the former, there is an additional adjustment due to knowledge of a structural shock, which

leads to a forecast error of yt−Byt−1−C•,jεt,j. Since the impulse response depends not only

on the autocorrelation structure summarized by the Byt−1 term, but also the effect of the

shock on impact captured by the additional C•,jεt,j term, it is important to condition on the
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shock when computing predictive densities as input into the optimal weights.

The special case of an internal instrument VAR with two variables, i.e., an instrument

ordered first followed by one endogenous variable, provides further intuition for how condi-

tioning on the shock might matter. With B and CC ′ known, and the internal instrument

assumption that C is lower triangular, we can show:

C•,1εt,1 =

1

β

ut,1 with β ≡ σ21
σ2
1

, (11)

where σ21 is the covariance of the reduced form errors and σ2
1 is the variance of the first

reduced form error. The forecast error for the endogenous variable is thus

[
−β 1

]
ut, when

conditioning on the shock, and ut,2, when we do not condition on the shock. Once we

condition on the shock, the forecast error for the endogenous variable is thus altered by

−βut,1, where the parameter β captures how well the forecast error of the instrument can

predict that of the endogenous variable.

How this difference propagates to longer horizons depends on the autoregressive coefficient

B, as reflected by equation (9). Denote the (i, j) element of Bh by b
(h)
ij . The difference

between the h period ahead conditional expectation for the endogenous variable with and

without conditioning on the shock is (b
(h)
21 + b

(h)
22 β)ut,1. This expression reveals two channels,

through which conditioning on the shock may be important. First, the b
(h)
21 term captures how

the persistent response of the instrument to the initial shock spills over to the endogenous

variable. Second, the b
(h)
22 β term captures how the shock continues to have an effect at horizon

h through the persistence of the endogenous variable.

2.5 Extensions

It is straightforward to extend our methodology to several common settings.

In many scenarios, macroeconomists use identification schemes that do not point identify

the structural shock of interest (such as in the case of sign restrictions in VARs). To accom-
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modate such cases, we can enlarge the parameter vector Ωm for any model m, where the

structural shock is not point-identified, to include a parameter that selects one possible value

of the structural shock consistent with the other parameters of the model. In a VAR, this

would be a rotation matrix that maps the covariance matrix of the one-step ahead forecast

error into the matrix of impact impulse responses. While this parameter is by definition not

point identified, it does not conflict with our approach.

Similarly, it is numerically straightforward to accommodate models with nonlinearities

where the models are conditionally linear and Gaussian. Key examples are VAR models with

parameters that follow discrete (Sims and Zha, 2006) or continuous (Cogley and Sargent,

2005; Primiceri, 2005) Markov processes, where the respective innovations are independent

of other innovations in the model. In these cases, we need to enlarge the parameter vector

Ωm to include estimates of the time t state of the Markov process.8

Our approach typically gives larger weights to models that are better at forecasting the

series of interest at a given horizon. This forecasting ability can be due to the inclusion of

the structural shock or due to other features of each model. If a researcher wants to reward

models with a larger weight when the inclusion of the structural shock improves forecast

ability, the following alternative objective function could be used:

T∑
t=1

log

[
M∑

m=1

wmp
∗
m (yt+h,j)

]
︸ ︷︷ ︸

standard objective

+φ

[
T∑
t=1

log

[
M∑

m=1

wm (p∗m (yt+h,j) /pm (yt+h,j))

]]
︸ ︷︷ ︸

reward for forecast improvement due to structural shock

, (12)

where we define

pm (yt+h,j) =

∫
p
(
yt+h,j|yt−1,Ωm,Mm

)
gm(Ωm)dΩm (13)

as the forecast density based on model Mm when the structural shock is not used as a

predictive variable. The parameter φ governs how much the researcher rewards forecast

8We can also extend our approach to allow for time-varying weights along the lines of Waggoner and Zha
(2012) or Del Negro et al. (2016).
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improvement due to the inclusion of a structural shock. For simplicity, we set φ = 0 and

ignore the forecast improvement from the structural shock, as is typical in most model

averaging in the literature. To assess the plausibility of this modification, one can also study

how the weights change when we replace p∗m with pm in our baseline problem (2), as we do

below. How much these weights differ is application-specific and depends on how important

the shock of interest is for the evolution of the variables a researcher studies.

3 Monte Carlo Simulations

We now present Monte Carlo exercises to illustrate our methodology. First, we consider a

univariate example with two alternative models that produce consistent estimates but differ

in finite sample. Second, we consider a model in which the VAR is misspecified but the LP

produces consistent estimates. In Appendix C, we also consider data simulated from a DSGE

model, such that both the VAR and LP are misspecified. We report biases and standard

deviations of our approach vis-a-vis individual models, following the common focus of the

literature on first and second moments. However, our approach targets the entire forecast

distribution and is not restricted to these moments.

3.1 AR(1)

As an initial proof of concept, we first consider the AR(1) Monte Carlo exercise from Herbst

and Johannsen (2020). We show that in this setting, our model averaging approach performs

close to optimally on a number of dimensions.

Data-Generating Process. We generate data from the univariate model:

yt = ρyt−1 + v1,t + v2,t, (14)
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where (v1,t, v2,t)
′ iid∼ N (0, I). We take ρ = 0.95 and use T = 150 observations. We seek the

impulse response of yt to a shock v1,t.

Models. We estimate models of the form:

yt+h = β(h)′
m xm,t + ε

(h)
m,t+h, (15)

and compare the two specifications for xm,t considered by Herbst and Johannsen (2020):

• With Controls: xm,t = (v1,t, yt−1)
′.

• Without Controls: xm,t = v1,t.

Both specifications produce consistent estimates β
(h)
m,1 of the impulse response at horizon h.

However, the second specification does not control for lagged yt, resulting in differing finite

sample performances between models. Herbst and Johannsen (2020) show that the two

specifications produce different finite sample biases. The variances of the estimated impulse

responses also differ. Appendix B.1 shows that adding a VAR(1) into the pool of models

does not materially change the relative weights on each of these models.

Results. Figure 1 shows the results averaged across 5 × 104 simulations. The weights

produced are intuitive and perform well on a number of dimensions. The top left panel

shows that optimal weights tend to favor the model with a smaller bias. The weights are

closer to 0.5 when the biases of the two models are closer.

The remaining panels show that the resulting mixture model performs well. First, the

bias of the mixture model is close to the optimum that one could get with each individual

model horizon by horizon. Second, the standard deviation of the mean estimate from the

mixture model is also close to the lower envelope of the two individual models. Finally, the

mixture model generally performs as well as the better model in terms of coverage as well.

19



0 5 10 15 20
0

0.5

1
Weight on Model With Controls

0 5 10 15 20
-0.15

-0.1

-0.05

0
Average Bias

0 5 10 15 20

0.1

0.2

0.3

0.4
Std. Dev. of Point Estimates

With Controls

No Controls

Prediction Pool Average

Least Squares Average

0 5 10 15 20

Horizon

0.5

0.6

0.7

0.8
Coverage (68%)

0 5 10 15 20

Horizon

0.85

0.9

0.95

1
Coverage (95%)

Figure 1: Prediction pool weights, biases, standard deviations, and coverage from Monte
Carlo with AR(1) model from Herbst and Johannsen (2020). Top left: Prediction pool and
least-squares weights on model with controls; Middle left: Bias of impulse responses under
each specification and averaged model; Middle right: Standard deviation of point estimate
of impulse response estimates; Bottom: Coverage of equal-tailed 68% (left) and 95% (right)
error bands. Dashed lines correspond to individual models, solid lines correspond to averaged
model. All plots show averages across all Monte Carlo repetitions.
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In Appendix B.2, we specifically show that the mixture model improves more substantially

on the coverage of the individual models once we introduce omitted variable bias.

We also compare the results to optimal weights computed using a least-squares objective

function, which replaces the optimization problem in equation (2) with:

min∑M
m=1 wm,h=1,wm,h≥0

T−h∑
t=1

(
yt+h −

M∑
m=1

wmŷ
(h)
m,t+h

)2

, (16)

where ŷ
(h)
m,t+h = β

(h)′
m Xm,t is the fitted value of yt+h in model m. We use the same sample-

splitting scheme as with the prediction pool weights.9

Even though the least-squares objective function directly targets the bias and the stan-

dard deviation of the averaged point estimates, the prediction pool performs similarly on

both these measures. The prediction pool is thus able to obtain close to optimal point esti-

mates according to this criterion while taking into account the entire probability distribution

for the estimated impulse response in each simulation. In situations where the forecasting

density is more complicated, this is not necessarily guaranteed to be true and weights based

on such a least squares objective could miss important features of the data.

3.2 Misspecified Shock

We now present an example in which the VAR is misspecified but the LP produces consistent

estimates. The weights trade off the flexibility of the LP and the structure and relatively

tighter estimates of the VAR. In addition, the two models produce impulse responses with

biases of opposite signs in finite sample, offsetting each other once we average them.

9Even in the case of Gaussian predictive densities, a comparison of this least squares objective function
with our benchmark is not straightforward because our objective then computes the natural logarithm of
a sum of Gaussian densities, which cannot be written as a weighted sum of the logarithms of Gaussian
densities. Furthermore, in practice, we use a bootstrap procedure to construct the predictive densities in
this section. We describe this procedure in Appendix E.
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Data-Generating Process. We consider data generated from a model similar to (14),

but where the shock is AR(1) instead of iid:

yt = ρyt−1 + v1,t + v2,t (17)

v2,t = γv2,t−1 + e2,t, (18)

where v1,t
e2,t

 ∼ N

0

0

 ,
1 0

0 1− γ2


 .

Our parameterization ensures that the long-run variance of both v1,t v2,t are 1. We take

(ρ, γ) = (0.97, 0.75) and simulate the model over 250 periods. We seek the impulse response

of yt to a shock v1,t, which is ρh at horizon h under the data-generating process.

Models. The first model we estimate is an internal instrument VAR:zt
yt

 = B

zt−1
yt−1

+ ut, (19)

where zt is the shock of interest and ut is assumed to be independent over time. The

impulse response at horizon h is BhC•,1, where C is the lower triangular matrix satisfying

CC ′ = V [ut], obtained using a Cholesky decomposition.10 As before, C•,1 is the first column

of C. We assume for simplicity that the shock is perfectly observed, i.e., zt = v1,t. We

estimate the model equation by equation using least squares, with standard errors computed

using the “wild” bootstrap (Gonçalves and Kilian, 2004).

The second model we consider is an LP:

yt+h = β(h)v1,t + γ(h)v v1,t−1 + γ(h)y y1,t−1 + ε
(h)
t+h. (20)

10This is closely related to the VARX model from Bagliano and Favero (1999) and Paul (2020), where the
instrument is included as an exogenous variable in a VAR.
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Figure 2: Prediction pool weights, biases, and asymptotic standard deviations from Monte
Carlo with persistent shocks. Top left: Optimal weights on LP; Top right: Correlation
between conditional and unconditional weights across Monte Carlo repetitions; Bottom
left: Bias of impulse responses; Bottom right: Standard deviation of impulse responses.
Weights, bias, and standard deviation averaged across all Monte Carlo repetitions.

The estimated impulse response at horizon h is β(h). The model is estimated using least

squares, with White standard errors (Montiel Olea and Plagborg-Møller, 2021).

The two models face a bias-variance trade-off highlighted by Li et al. (2022). The VAR

(19) is misspecified because the autocorrelation of the shock ut is assumed to be zero. This

induces bias even asymptotically. The LP produces consistent estimates, with a finite sample

bias that vanishes as the sample size goes to infinity. However, the structure of the VAR

induces a smaller variance than the LP. Our averaging approach balances both considerations

while also taking into account the finite sample performance of each method.

Results. The results, averaged across 2.5 × 104 simulations, are summarized in Figure 2.

While the majority of the weight is placed on the VAR, there is substantial weight of up to

0.51 placed on the LP. The weight on the LP peaks around h = 3, but remains above 0.2 for

all horizons after impact. By averaging the two models, we obtain an impulse response that
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has a lower standard deviation and only slightly larger bias than the LP. Since the VAR and

LP have biases of opposite signs, averaging them tends to offset each other. In this case, the

difference in standard deviations leads to a larger weight on the VAR.11

More generally, a correctly-specified or more flexible model need not dominate a mis-

specified model in finite sample. The finite sample performance of each model may not

correspond to their asymptotic behavior. Furthermore, these properties may differ across

impulse response horizon or the variable of interest. Our impulse response averaging ap-

proach flexibly accounts for these by constructing an optimal composite impulse response

variable by variable and horizon by horizon. Figure 2 also highlights the trade-off between

bias and standard deviation that is present in practically any model-averaging exercise (un-

less one model dominates in terms of both bias and standard deviation). Our approach

reduces the bias relative to the VAR, but does so by increasing the standard deviation.

To highlight the role of conditioning on the shock, we also compare the weights from our

methodology to those implied by problem (1), as initially proposed by Geweke and Amisano

(2011). On impact, the weights (averaged across Monte Carlo repetitions) are noticeably

different—the unconditional weight on the LP is 0.46 while the one that conditions on the

shock is 0.33. When we look across simulations, the correlation between the conditional

and unconditional weights is 0.49, suggesting that the two tend to differ in a given sample.

For longer horizons, the weights become more similar and the correlation across simulations

increases to close to 1. Intuitively, at short horizons, the shock plays a larger role in the

conditional forecast. Since the shock is transitory, the forecast at longer horizons depends

more on the autocorrelation structure of yt, which is already captured by the unconditional

forecasts. This is not at odds with our goal—the shape of the impulse response itself also

depends more on these autocorrelations at longer horizons.

As further evidence of the behavior of the optimal weights in empirically relevant settings,

11We compute the standard deviation of the impulse responses for each Monte Carlo sample and then
average across all samples. Both the sample specific bias and standard deviation depend on the estimated
weights for that sample. The averages we report in our figure for the Monte Carlo experiments thus take
into account sample variation in the estimated weights.
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Appendix C reports a Monte Carlo exercise data simulated from the New Keynesian model

of Smets and Wouters (2007). The results there highlight features of prediction pool that

may underlie the empirical results here. First, the flexibility to trade off bias and variance

concerns variable by variable and horizon by horizon allows one to make full use of the relative

strengths of each model. Second, even when models have similar asymptotic properties, there

can be substantial gains from averaging over them in finite sample. In particular, the bias

of the average impulse response can be lower than that of any individual model.

4 Empirical Applications

We now apply our methodology using actual data to estimate impulse responses to monetary

and TFP shocks. Overall, our applications indicate that prediction pools offer a plausible

assessment of the dynamic effects of the shocks as they optimally resolve the bias-variance

trade-off, especially when, as is likely, the underlying models are misspecified.

4.1 Monetary Shock

Our first empirical application follows the study of the Romer and Romer (2004) shocks in

Ramey (2016). We use monthly data on the log of industrial production (IP), the unemploy-

ment rate, the log of the consumer price index (CPI), the log of a commodity price index,

the federal funds rate, and the Romer and Romer (2004) instrument for March 1969 through

December 1996 as endogenous variables.

We consider three models, each estimated using frequentist methods:

1. Internal Instrument VAR: We estimate a VAR with the Romer and Romer (2004)

instrument as the first variable as in equation (19), followed by the endogenous vari-

ables. The monetary shock is assumed to be the first shock from a Cholesky decom-

position.
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2. LP With Contemporaneous Controls: We follow Ramey (2016) and estimate

regressions of the form

zt+h = αh + θh · shockt + control variables + εt+h, (21)

where zt+h is the variable of interest and shockt is the Romer and Romer (2004) in-

strument. The control variables include lags of the Romer and Romer (2004) shock

and the endogenous variables, as well as contemporaneous values of all endogenous

variables except the federal funds rate.

3. LP With Lagged Controls Only: This is identical to the previous LP specification,

except that we do not control for contemporaneous variables. We rely on the assump-

tion that the Greenbook forecasts used by Romer and Romer (2004) already include

all information used by the Fed for setting interest rates.12

Following Ramey (2016), the VAR uses twelve lags and both LPs use two lags. All three

models aim to estimate the same impulse response using the same instrument. However, the

models make different assumptions, include different controls, and have different numbers of

lags. Importantly, this means that the LPs do not nest the VARs.

Results. The results are summarized in Figure 3. The averaged impulse responses are

reported in black with gray error bands - they are the same in each of the three plots that

show the individual model impulse responses for a given variable. Overall, average impulse

responses show a contraction, peaking around the one-year horizon, followed by a return to

trend. Inflation displays a small initial increase followed by an insignificant response.13

12Such an assumption is not necessarily valid, which would result in a misspecified model. For instance,
Aruoba and Drechsel (2023) find evidence that Greenbook forecast errors are correlated with economic
information available to the Fed. Nevertheless, as pointed out in the Monte Carlo exercise of Section 3.2,
our approach appropriately downweights misspecified models to the extent that their conditional forecasts
do not perform as well as the other models in the pool.

13Aruoba and Drechsel (2023) find similar results in a VAR with additional controls. They use an alterna-
tive text-based instrument constructed with natural language processing and machine learning techniques.
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application. Top left: Optimal weights on each model; Top right, bottom: Impulse
responses and 68% error bands.
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While the three models have fairly similar responses at shorter horizons, the impact of

the averaging becomes more notable as the responses begin to diverge at longer horizons. In

general, a majority of weight is placed on the LPs on impact, while the VAR gets assigned

successively greater weight in the following periods. Appendix C shows a similar result in a

Monte Carlo with data simulated from a DSGE model. Nevertheless, there are substantial

differences in the weights across variables, with mostly extreme weights for CPI and more

even weights for IP.

We also observe that minimal weight is put on impulse responses that seem a priori less

plausible. For example, the LPs estimate that a decline in CPI continues to deepen even

after four years, a feature that seems ex ante unlikely based on theory. Correspondingly,

almost all the weight is placed on the VAR after the initial months.

One notable instance where an LP gets higher weight at a longer horizon is for IP at

the two- to three-year horizon. In particular, even though the LP with contemporaneous

controls has higher variance and a similar point estimate to the VAR, more weight is put

on the LP. The weights are therefore not solely tied to the precision of the estimate and we

find an average response that has wider error bands than the VAR.

In Appendix D, we show several additional results. First, we consider different approaches

to splitting the sample. While the weights and average responses change substantially when

the predictive densities are computed in-sample (i.e., no sample splitting), the difference is

much smaller when we consider more subsamples. Second, we add an additional model into

the pool and show that the weights are consistent with the theoretical results we state in

Appendix A. Finally, we replace the narrative instrument with high frequency instruments

from Gertler and Karadi (2015), Miranda-Agrippino and Ricco (2021), and Jarociński and

Karadi (2020). While the exact average differs across instruments, we continue to find a

large weight on the VAR.
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4.2 Total Factor Productivity Shock

We now consider the effect of a TFP shock on unemployment as a second example. We revisit

the results of Gali (1999) and Basu et al. (2006) that suggest that positive productivity shocks

lead to a decline in labor inputs.

We take quarterly data from 1968Q1 through 2019Q4. As a measure of TFP, we use the

updated version of the TFP series from Fernald (2014).14 The remaining data come from

the updated FRED-QD database (McCracken and Ng, 2020).15

We consider eight models:

• VARs: Recursive identification with TFP ordered last.

– All Controls: Control for the first three principal components, GDP growth,

and utilization.

– Factors: Control for the first three principal components.

– No Controls: Only include unemployment and TFP.

• FAVAR: Following Bernanke et al. (2005), we estimate:

Yt = ΛFt + ut (22)

Ft =
L∑

`=1

B`Ft−` + Cεt (23)

We take the first three principal components and TFP as observed factors, Ft, and

identify TFP shock recursively with TFP ordered last.

• LPs: Use TFP as an instrument and include the same sets of controls as the VARs.

• Single Equation: Following Romer and Romer (2004) and Baek and Lee (2022), we

14Available on John Fernald’s website.
15Available on Michael McCracken’s website.
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estimate:

∆Ut = γ +
A∑
`=0

α`∆TFPt−` +
B∑
`=1

β`∆Ut−` + vt, (24)

with A = 20 and B = 4, from which we can recursively compute the impulse responses.

All models include 4 lags of the endogenous variables.

The wide variety of models emphasizes the flexibility of the methodology. The range of

controls reflects the question of whether and how one should control for capacity utilization

when estimating the effects of productivity shocks, a point emphasized by Basu et al. (2006).

The inclusion of this many models does not substantially change the computation time, as

the individual model estimation and computations can be parallelized and the calculation of

the weights is relatively efficient.

Results. We plot the individual model and averaged impulse responses panel by panel in

Figure 4. The models find a wide range of possible impulse responses, with no consistent

pattern, especially at 1-2 year horizon. For example, the VARs have zero response on impact

by assumption, the FAVAR estimates a negative response of unemployment on impact, while

the LPs and single equation model find mixed results. At the five-year horizon, there are

again substantial differences in point estimates and error bands across models.

Despite the differences across models, the averaged response delivers a clear message:

unemployment rises over the first year, but returns to trend, with a tightly estimated zero

response at the five-year horizon. Notably, the uncertainty region in the middle of the horizon

is moderately wide, reflecting the different responses across models. Yet, the average remains

resolutely positive. This is consistent with results in Basu et al. (2006). Importantly, no

single model replicates all the features of the averaged response.

Figure 5 shows the weights underlying these average responses. While most of the weight

is placed on the LPs at the one- to two-year horizon, the VARs and FAVAR are more heavily

weighted subsequently. The difference across horizons is again consistent with the monetary

shock application and DSGE Monte Carlo in Appendix C. As expected, the additional
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Figure 4: Impulse responses for each model, mean and 68% error bands. Colored lines
correspond to individual models, black line and gray shade regions correspond to averaged
model.

structure of multiple equation models such as the VARs and FAVAR tighten estimates of the

longer run response to the shock, resulting in predictive densities that are supported by the

data. We also find that models that use the principal components as controls are favored.

Figure 5 also shows how the weights and average response change when we instead con-

sider predictive densities without conditioning on the shock, as in Geweke and Amisano

(2011). The weights for the first three years look substantially different. Most noticeably,
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unconditional weights. Top: Averaged impulse response, median and 68% error bands;
Middle: Weights conditional on shock; Bottom: Unconditional weights.

there is less weight on the VAR and LP that only control for the principal components, with

more weight placed on the models that also control for GDP growth and utilization. As a

result, the averaged impulse response finds a slight dip in unemployment after ten quarters,

in contrast to the flat response under the weights that condition on the shock.

32



On the other hand, the weights at the four- to five-year horizon do not materially depend

on whether we condition on the shock. The weights that condition on the shock suggest that

the effect of the TFP shock is only transitory. As a result, the most preferred models at

these horizons are also the ones that forecast well unconditionally. In practice, it may not

be clear ex ante how much conditioning on the shock might matter since this could depend

on the data, models, and shock, and could vary across variables and horizons.

5 Conclusion

In this paper, we develop a methodology that delivers an encompassing approach to com-

puting dynamic responses of macroeconomic variables to shocks. Building on the idea of

prediction pools, as in Geweke and Amisano (2011), we average across impulse responses

from multiple models by leveraging their close connection with conditional forecasts. Our

framework thus presents an approach to incorporate evidence from a variety of models in a

consistent and plausible manner to get closer to the actual truth in the data.

Our methodology tackles the fundamental challenge of choosing a specific impulse re-

sponse estimator. Each estimator comes with its own issues such as bias or large standard

errors, but general theorems about which class of models should be used are hard to come by

once we make realistic assumptions. This has led to many alternative impulse response esti-

mators coexisting in the literature. We exploit that each of these can be useful in particular

situations, making empirical macroeconomics an ideal setting for flexible model-averaging

schemes. Our approach makes model-averaging in these scenarios possible.

The key differences relative to existing methods are (i) much greater flexibility in the

range of possible estimators; (ii) a relatively small computational burden; and (iii) ability

to exploit each method’s strength as much as possible by computing horizon- and variable-

specific weights based on predictive densities instead of a few selected statistics.

Overall, our Monte Carlos and empirical applications highlight several broad messages:
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1. The optimal weights on models depend on horizon, variable, and application.

2. The optimal weights depend on the entire predictive distribution, not only the point

estimates. Our examples focus on the mean and variance, but skewness, kurtosis, or

any other property of the predictive distribution could be important more generally.

3. Theoretical properties of individual models are not sufficient criteria for the choice of

weights. For instance, misspecified models may dominate correctly specified (or more

flexible) models in finite sample. On the other hand, models that produce tighter

estimates need not receive greater weight.

Our use of prediction pools provides a systematic and computationally tractable way to

account for these issues in a wide range of applications.
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A Theoretical Results of Geweke and Amisano (2011)

In this section we state major theoretical results from Geweke and Amisano (2011) for the

sake of completeness. Let us first restate our objective function:

fT (wh) =
T∑
t=1

log

[
M∑

m=1

wm,hp
∗
m (yt+h,j)

]
(A.1)

where wh = [w1,h w2,h · · ·wM,h]′ is the vector of model weights for a given horizon h (and

a given variable j, which we have not made explicit in this notation). We will generally

assume that fT (wh) is concave, i.e., ∂2fT/∂wh∂w′h is negative definite. For the case of two

models (M = 2), Geweke and Amisano (2011) show that that the objective function will be

concave if the expected difference between the two predictive densities will not be zero as the

same size increases.16 We will call a subset of models dominant if its weights sum to 1. A

subset of models is excluded if each of these models has a weight of 0. With the assumption

of concavity, Geweke and Amisano (2011) show the following results:

1. If {M1, . . . ,Mm} dominates the pool {M1, . . . ,Mn} then {M1, . . . ,Mm} dominates

{M1, . . . ,Mm,Mj1 , . . . ,Mjk} for all {j1, . . . , jk} ⊆ {m+ 1, . . . , n}.

2. If {M1, . . . ,Mm} dominates all pools {M1, . . . ,Mm,Mj} (j = m + 1, . . . , n) then

{M1, . . . ,Mm} dominates the pool {M1, . . . ,Mn}.

3. The set of models {M1, . . . ,Mm} is excluded in the pool {M1, . . . ,Mn} if and only

if Mj is excluded in each of the pools {Mj,Mm+1, . . . ,Mn} (j = 1, . . . ,m).

4. If the modelM1 is excluded in all pools (M1,Mi) (i = 2, . . . , n) thenM1 is excluded

in the pool (M1, . . . ,Mn).

16Note that even in the case of LPs and VARs with the same right-hand side variables, it is unlikely (at
least at larger horizons) that the implied predictive densities are the same even though the VAR specification
is nested in LPs.
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Figure A.1: Prediction pool weights, biases, and standard deviations from Monte Carlo with
AR(1) model from Herbst and Johannsen (2020) in pool with internal instrument VAR.
Top left: Prediction pool and least-squares weights on model with controls; Bottom left:
Bias of impulse responses under each specification and averaged model; Bottom right:
Standard deviation of point estimate of impulse response estimates. Dashed lines correspond
to individual models, solid lines correspond to averaged model. All plots show averages across
all Monte Carlo repetitions.

B AR(1) Monte Carlo Supplementary Results

B.1 Including a VAR(1) in the Pool of Models

We now add a VAR(1) with v1,t as an internal instrument (i.e., equation (19) with zt = v1,t)

into the pool of models. On the one hand, the VAR assumes an autoregressive structure

that is consistent with the data-generating process. On the other hand, including the lagged

instrument v1,t−1 introduces additional parameters to estimate. Moreover, while the innova-

tion is directly observed in the LPs, it has to be inferred from the estimated parameters in

the VAR.

The results are shown in Figure A.1. A large weight is placed on the VAR. In particular,

additional structure of the VAR substantially reduces the standard deviation of the estimates,
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especially at longer horizons. However, the VAR also generates finite sample bias that is

larger than that of the LPs, except for short horizons. The resulting optimal weights reflect

the bias-variance tradeoff, and tend to favor the VAR.

The ratio of the weights on the two LPs remains relatively unchanged after the introduc-

tion of the VAR. Appendix D shows that we find a similar result when we add a model to the

monetary policy application in Section 4.1. The comparability of the relative weights across

nested prediction pools is a desirable feature of the methodology, formalized theoretical

results in Appendix A for the limit case where particular models receive zero weight.

B.2 Coverage with Omitted Variables

As an additional example of how our approach can improve coverage, we augment the data-

generating process (14) in Section 3.1 with an omitted variable. Specifically, we generate

data from the model:

yt = ρyt−1 + wt + v1,t + v2,t (A.2)

wt = γwt−1 + vw,t (A.3)
vw,t

v1,t

v2,t

 ∼ N



0

0

0

 ,


1 η 0

η 1 0

0 0 1


 . (A.4)

However, we estimate the same models as in Section 3.1, i.e., equation (15) with xm,t =

(v1,t, yt−1)
′ or xm,t = v1,t. Importantly, the exclusion of wt in these estimated models leads

to omitted variable bias when η 6= 0. The parameter η controls the bias on impact and the

persistence γ of wt controls how this bias spills over to longer horizons. We set γ = 0.75 and

η ∈ {−0.05, 0.05}. As in Section 3.1, we take ρ = 0.95 and use T = 150 observations. We

present results averaged over 5× 105 simulations.

Figures A.2 and A.3 show the results with η = −0.05 and η = 0.05, respectively. Using
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Figure A.2: Prediction pool weights, biases, standard deviations, and coverage from Monte
Carlo with AR(1) model with negative omitted variable bias (η = −0.05). Top left: Pre-
diction pool and least-squares weights on model with controls; Middle left: Bias of impulse
responses under each specification and averaged model; Middle right: Standard deviation
of point estimate of impulse response estimates; Bottom: Coverage of equal-tailed 68%
(left) and 95% (right) error bands. Dashed lines correspond to individual models, solid lines
correspond to averaged model. All plots show averages across all Monte Carlo repetitions.
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Figure A.3: Prediction pool weights, biases, standard deviations, and coverage from Monte
Carlo with AR(1) model with positive omitted variable bias (η = 0.05). Top left: Predic-
tion pool and least-squares weights on model with controls; Middle left: Bias of impulse
responses under each specification and averaged model; Middle right: Standard deviation
of point estimate of impulse response estimates; Bottom: Coverage of equal-tailed 68%
(left) and 95% (right) error bands. Dashed lines correspond to individual models, solid lines
correspond to averaged model. All plots show averages across all Monte Carlo repetitions.
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the prediction pool to average across models improves coverage across almost all horizons. In

contrast, the least squares average traces the upper envelope of the coverage across the two

models, thus yielding poorer coverage than the prediction pool average even though their

average bias and standard deviation of point estimates are similar.

Since the prediction pools objective function does not explicitly target coverage, an es-

timator with correct coverage but relative large bias or wide error bands could receive low

weight because it yields low predictive densities. In this example, we find for the impulse

response on impact that most of the weight is placed on the model with controls despite

its poorer coverage. Nevertheless, this seemingly small amount of averaging still leads to a

noticeable improvement in coverage compared to the model with controls on its own.

C Medium-Scale New Keynesian Model Monte Carlo

We next consider a Monte Carlo exercise with data generated from a quantitative dynamic

stochastic general equilibrium (DSGE) model to connect the simple simulation examples in

Section 3 more closely to actual empirical settings. We use a DSGE model as our data-

generating process because it implies vector autoregressive moving average dynamics for the

vector of observables, so that both models we consider, VARs and LPs, are misspecified. De-

spite using closely related models, we find different estimates in finite sample. The averaged

impulse response balances the bias-variance trade-off, and in some cases even has a smaller

bias than either individual model.

Data-Generating Process. We simulate data from the log-linearized medium-scale New

Keynesian model from Smets and Wouters (2007) with parameters fixed at the posterior

mode reported in the paper. We use the model to generate 150 periods of simulated data

for the seven observables used by Smets and Wouters (2007) to estimate the model: GDP

growth, consumption growth, investment growth, wage growth, hours, inflation, and the

federal funds rate. We focus on the impulse response of each variable to a monetary shock,
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which we assume to be observed by the econometrician. We obtain results across 2.5× 104

simulations.

Models. We compare two models: an internal instrument VAR (19) estimated using

Bayesian methods and the Bayesian LP from Ferreira et al. (2023). The Bayesian LP esti-

mates: zt+h

yt+h

 = B(h)

zt
yt

+ u
(h)
t+h. (A.5)

for each horizon h > 0. The impulse response at horizon h is B(h)C•,1, where C•,1 is obtained

from (19). Ferreira et al. (2023) show how to impose a prior on the model and estimate the

LP impulse response analogously to a Bayesian VAR.17 Both models have one lag and use

the same Minnesota prior. In addition, we assume that the shock zt is perfectly observed.

The two models are closely connected. First, if B(h) = Bh, then the VAR and LP pro-

duce identical impulse responses. In particular, given the same priors, the two models would

produce identical on-impact impulse responses. Next, as pointed out by Plagborg-Møller

and Wolf (2021), under the appropriate regularity conditions, the two models asymptoti-

cally produce identical impulse responses. However, as our Monte Carlo exercises show, in

finite sample and under misspecification the two models can lead to substantially different

estimates despite their close connections. Arguably, this requires a systematic way to average

across models.18

Results. The weights, averaged across simulations, are summarized in the left panels of

Figure A.4. We start the horizontal axis for each panel at horizon 1 since the two models

17Ferreira et al. (2023) do not explicitly model autocorrelation in the residual of their LP specification,
but instead use a sandwich-type estimator for the posterior covariance matrix.

18There are two differences of note relative to Plagborg-Møller and Wolf (2021). First, because we impose
a prior, the estimated impulse responses at horizon h > 0 differ even if the least squares estimates are
equivalent. In particular, for longer horizons, the likelihood of the LP becomes more dispersed, bringing
the posterior closer to the prior. Second, the estimated system (A.5) differs from the LP setup used in
Plagborg-Møller and Wolf (2021).
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Figure A.4: Prediction pool weights, biases, and posterior standard deviations from Smets
and Wouters (2007) Monte Carlo. Biases and standard deviations averaged across simula-
tions. Left: Optimal weights on LP; Middle: Bias of impulse responses; Right: Posterior
standard deviation of impulse responses. All plots show averages across all Monte Carlo
repetitions.

48



0 5 10 15
-1

-0.5

0

GDP

0 5 10 15
-0.06

-0.04

-0.02

0
Inflation

0 5 10 15
0

0.5

1
Interest Rate

0 5 10 15

Horizon

-1

-0.5

0

Consumption

0 5 10 15

Horizon

-2

-1

0

Investment

0 5 10 15

Horizon

-0.1

-0.05

0

Wages

0 5 10 15

Horizon

-1.5

-1

-0.5

0
Hours

VAR

LP

Average

True

Figure A.5: Posterior mean estimates of impulse response to monetary policy shock in New
Keynesian model Monte Carlo, average across simulations. GDP, consumption, investment,
and wages in growth rates.

imply identical impulse responses on impact. Overall, the prediction pools place greater

weight on the VAR, with the LP typically getting a weight of 0.2 or less. The weight on the

LP tends to fall at longer horizons. Nevertheless, there are non-trivial weights on the LP,

especially for inflation.

The middle and right panels of Figure A.4 plot the average biases and standard deviations

of the impulse response functions, providing an explanation for the small weights on the LP.

First, even though the LP has greater flexibility, in many cases its bias tends to be larger or is

at most of similar magnitude relative to the VAR. This arises partly due to the relatively short

sample of 150 periods. Second, the right panels show that the LP has substantially larger

posterior standard deviations, which is consistent with evidence reported in the literature

(Miranda-Agrippino and Ricco, 2021; Li et al., 2022). The difference in standard deviations

is especially large at longer horizons, which accounts for the lower weights on the LP at those

horizons.

To get a better sense of what is driving the weights, we focus first on the impulse response

for consumption. At short horizons, the LP has a substantially larger bias than the VAR,

resulting in almost all the weight being placed on the VAR. Over the initial periods, the
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relative bias of the LP decreases rapidly, and the weight on the LP correspondingly increases.

However, after horizon h = 3 the weight on the LP decreases again, as the optimal weights

trade off the declining bias of the LP with its increasing standard deviation. Finally, the

weight increases again at longer horizons as the VAR begins to have a larger bias than the

LP. In particular, the Figure A.5 shows that the stationarity imposed by the VAR generates

a VAR that converges more quickly to zero than the true response from the DSGE model.

The impulse response for hours further illustrates the behavior of the prediction pools.

The weights on the LP increases over the first four periods but does not decay as quickly

as for other variables. Even though the standard deviations are similar initially, the LP

displays a substantially larger bias than the VAR at short horizons, reducing its optimal

weight. Subsequently, the LP and VAR have biases of opposite signs that offset each other

when averaged, as was the case in the Monte Carlo exercise in Section 3.2. By averaging

the impulse responses, the prediction pool can produce an average impulse response that

has a smaller bias than either model, with the bias almost completely eliminated at horizon

h = 15. At longer horizons, the weights trade off two forces. First, the VAR bias begins to

increase while the LP bias begins to decrease. Second, the LP posterior standard deviation

increases while the VAR standard deviation remains relatively constant. In balance, the

weights begin to favor the LP less at longer horizons, but with a decline that is less steep

than in other variables.

Overall, the results here emphasize two key messages. First, the relative biases and

variances of the models differ depending on variable and horizon. Prediction pools offer

the flexibility to trade off these properties variable by variable and horizon by horizon, thus

making full use of the relative strengths of each model. Second, even when models have

similar asymptotic properties, there can be substantial gains from averaging over them in

finite sample. In particular, the bias of the average impulse response can in some cases be

lower than that of either individual model.
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D Monetary Shock Supplementary Results

We present results from several supplementary exercises to the monetary policy application

in Section 4.1.

D.1 Sample Splits

Throughout the main text, we computed the optimal prediction pool weights by splitting

our sample into half. We estimated the models for each subsample separately and used the

implied out-of-sample forecasting densities for the parts of the sample that were not used for

estimation to obtain model weights. Using the monetary shock application, we now illustrate

the role of the sample splitting scheme.

First, we ask how much our results change the predictive densities were taken in-sample

rather than out-of-sample. To that end, instead of splitting the sample, we estimate the

model on the full data sample and compute in-sample predictive densities using the full

sample estimates. Next, we ask how the number of subsamples matters. In particular, we

split the sample into five blocks instead of two. For each block, we compute the predictive

densities using estimates from the remaining 4 blocks.

Figures A.6 and A.7 show that using in-sample predictive densities substantially change

the results. In particular, with in-sample predictive densities, majority of the weight is

placed on the LPs, especially at longer horizons. This reverses the result in Section 4.1

that the VAR tended to receive more weight at longer horizons. Intuitively, the additional

flexibility the LPs offer allows them to fit the data more closely, whereas the VAR tightly

links the forecasts of different horizons. However, a better in-sample fit does not necessarily

translate to better out-of-sample forecasts, as evidenced by the contrast between in-sample

and out-of-sample weights. The resulting averaged impulse responses also differ markedly,

especially for CPI, where the in-sample weights produce an averaged response that continues

to decline even five years after the initial shock.
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Figure A.6: Prediction pool weights from monetary shock empirical application with differ-
ent sample splits. Left: No sample splitting; Middle: Two blocks; Right: Five blocks.

Splitting the sample into more blocks impacts the results much less. While overall there

is more weight placed on the LPs, the VAR continues to receive a majority of the weight at

long horizons. The corresponding averaged impulse responses look similar to the two block

case, but with slightly wider error bands.

D.2 Changing the Pool of Models

To show how the addition of models affects the weights and averaged impulse response, we

repeat the monetary shock exercise in Section 4.1 with an additional model:

4. Cholesky VAR. Following Coibion (2012), we estimate a VAR with the log of IP,

the unemployment rate, the log of the CPI, and the log of the commodity price index

in the first block, followed by the cumulated Romer and Romer (2004) instrument

ordered last. The monetary shock is assumed to be the last shock from a Cholesky
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Figure A.7: Average impulse responses (mean and 68% error bands) from monetary shock
empirical application with different sample splits. Left: No sample splitting; Right: Five
blocks. Black lines and gray shaded regions correspond to benchmark with two blocks;
colored lines and shaded regions correspond to alternative sample splits.

decomposition.

We are assuming that using the cumulated instrument ordered last in a Cholesky decompo-

sition estimates the same shock as the internal instrument VAR and LPs from the original

exercise in Secction 4.1. We view this as reasonable since the same underlying instrument is

used in each model. However, the using the instrument in a Cholesky decomposition does

make the assumption less straightforward, motivating our focus on the three models in the

main text.

The results are shown in Figure A.8. The main difference in weights is on the internal

instrument VAR, which is the closest model to the Cholesky VAR both in terms of specifi-

cation and estimated impulse responses. We find that the weights on the LP remain similar
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Figure A.8: Prediction pool weights and impulse responses from monetary shock empirical
application with additional Cholesky VAR model. Top Left: Optimal weights on each
model; Top Right: Mean and 68% error bands for averaged impulse responses; Bottom:
Mean and 68% error bands for individual models.
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to the benchmark exercise in Section 4.1 with three models. The averaged impulse responses

remain relatively similar, illustrating the consistency of the weights assigned as we change

the set of models (see Appendix A for details).

D.3 Alternative Instruments

Finally, we repeat the exercise for three different high-frequency identification instruments

for monetary shocks instead of the narrative instruments in Section 4.1. In each case, we

use the same models and variables.

The three instruments we consider are from Gertler and Karadi (2015), Miranda-

Agrippino and Ricco (2021), and Jarociński and Karadi (2020). The corresponding sample

periods are January 1990 through June 2012, January 1991 through December 2015, and

February 1990 through June 2019, respectively, which are chosen to maximize the sample

length for each instrument.

Figure A.9 shows the model weights for each of the instruments. While there are some

differences across instruments, the common feature is that the VAR tends to be favored more

at longer horizons. Notably, this downweights some less plausible impulse responses, such

as the LPs finding a negative response of unemployment at the three- to four-year horizon

with the Jarociński and Karadi (2020) instrument.
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Figure A.9: Prediction pool weights from monetary shock empirical application with al-
ternative instruments. Left: Gertler and Karadi (2015); Middle: Miranda-Agrippino and
Ricco (2021); Right: Jarociński and Karadi (2020).
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Figure A.10: Average impulse responses to 25bp monetary policy shock, identified with
high frequency instruments. Left: Gertler and Karadi (2015); Middle: Miranda-Agrippino
and Ricco (2021); Right: Jarociński and Karadi (2020).
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E Bootstrap Procedure to Construct Predictive Den-

sities for Frequentist Local Projections

In order not to have to assume Gaussianity of the shocks for the frequentist local projection

estimators, we use a bootstrap procedure, which we describe below. We utilize the fact that

given the distribution of β, we know the distribution of X ′β. Therefore, we can use the

bootstrap to obtain draws of the shocks, which in turn gives us a sample of X ′β. We then

integrate over this distribution of shocks.

For each horizon and each model, we run OLS and compute White standard errors for

the relevant subsample. This gives us a normal distribution N(β̂, Σ̂) for the coefficients. To

compute the predictive densities, we do the following:

1. Take N draws of the parameters from N (β̂, Σ̂) and call these draws β1, . . . , βN .

2. For each draw i, compute the fitted shocks. This gives us a sample of N × T
2

fitted

shocks ei,t, where i = 1, . . . , N and t = 1, . . . , T
2
.

3. Draw from the sample of shocks with replacement to get a set of shocks

u1,T
2
+1, . . . , uN,T , where ui,t ∈ {e1,1, . . . , eN,T

2
}.

4. Compute the predicted value predi,t ≡ Yi,t − ui,t for Xtβ.

5. Compute the predictive density of predi,t ∼ N (X̂t
′
β̂, X̂t

′
Σ̂X̂t), where X̂t is the predicted

value of Xt.
19

6. Average this density over all N draws.

The intuition behind the steps is as follows. Step 1 gives draws from the distribution for β.

Step 2 then gives draws from the approximate marginal distribution for the shocks. Steps

3-5 then compute the density conditional on a draw of the shock. Finally, Step 6 integrates

over the distribution of shocks.

19For simplicity, we can take Xt = X̂t, which is exact when Xt does not contain contemporaneous endoge-
nous variables.
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