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1 Introduction
We study over 100 years of US economic data on inflation, real output,

short-term and long-termnominal interest rates as well asmoney growth

through the lens of a time-varying parameter model to assess how the

dynamics of the economy have changed and how the impact of monetary

policy shocks has evolved over time.

Our sample covers two World Wars, the Great Depression, the Great In-

flation, the Great Moderation, the recent financial crisis and the associ-

ated recession, technological revolutions and the founding of the Federal

Reserve, so there is ample reason to believe that indeed the dynamics

and co-movement of the variables we consider might have changed over

time.

To tackle these questions, we have to confront the measurement issues

inherent in historicalmacroeconomic data, as discussed by Romer (1989).

Long-run historical time series are usually compiled using a variety of

sources for different time periods, so measurement issues (i.e. changes

in the quality of the data) are unavoidable. We combine a model of pos-

sibly mis-measured historical data with a time-varying parameter VAR

with stochastic volatility along the lines of Primiceri (2005) and Cogley

& Sargent (2005) to jointly assess the importance of measurement error

and time variation in the dynamics of historical macroeconomic time se-

ries. Our model of measurement error builds on the measurement error

models used by Cogley, Sargent & Surico (2015) and Cogley & Sargent

(2014), who introduce measurement error in time series model of infla-

tion, and Schorfheide, Song & Yaron (2014), who model measurement

errors in consumption. Romer (1989) emphasized that the large volatil-
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ity we see in U.S. GDP data before the end ofWWII is substantially due to

measurement error. To tackle the measurement issue Ritschl, Sarferaz

& Uebele (2015) employ a time-varying dynamic factor model for long

time series of US economic activity indicators and find similar results.

Our approach confirms the findings in Romer (1989). To our knowledge,

this is the first paper to explicitly introducemeasurement errors in a VAR

framework, let alone a VARwith time-varying parameters and stochastic

volatility.

To gauge how much the dynamics of the US economy have changed dur-

ing our sample period, we first calculate four different measures of time

variation implied by ourmultivariate time-varying parametermodel: vari-

ation in persistence, volatility, long-run averages, and co-movement. We

find that along all these lines there is substantial variation, even after

taking into account measurement error. The correlation structure be-

tween our variables of interest has changed dramatically over time.

One of the most pressing questions in macroeconomics is that of the

effects of unanticipated changes in policy instruments, particularly for

the case of monetary policy (Christiano, Eichenbaum & Evans (1999)).

We want to analyze both how the impact of unexpected movements in

monetary policy has evolved across monetary regimes as well as how

much those unexpected movements have contributed to overall volatil-

ity in the economy. Defining a monetary policy shock for post-WWII data

is straightforward: many economists tend to think of the Federal Re-

serve after WWII as choosing a path for the short-term interest rate. If

we were to have a model (or equation) for the short-term nominal inter-

est rate, we could define the monetary policy shock as the residual after

properly accounting for movements in all variables deemed relevant for
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the setting of the short-term interest rate. The same would hold true if

the Federal Reserve consistently used changes in money growth as its

policy instrument. However, in our sample we are faced with the diffi-

culty that there has been no consistent conduct of monetary policy. For

example, the Federal Reserve targeted monetary aggregates as recently

as the beginning of Paul Volcker’s tenure (Hetzel (2008)). We thus aim to

identify monetary policy shocks not as identified shocks associated with

a certain equation or variable, but rather by their impact on the economy

through the use of sign restrictions. These sign restrictions identify the

set of impulse responses consistent with the sign restrictions.

We find that effects of an ’average’ (one standard deviation) shock have

changed substantially. These changes could be driven by changes in both

the average size of a shock (changes in the standard deviation) and the

dynamic responses to shocks. We disentangle these possible causes and

find that the size of the innovation is the major driver of the changes in

the effects of a monetary policy innovation.

Our work is related to the growing literature on time-varying VARs, most

notably Cogley & Sargent (2002), who were the first to use this class of

models, and Primiceri (2005), who first identified monetary policy shocks

in this class of models. Our finding of surprising stability of the effects

of a monetary policy shock (once we condition on the size of the shock)

has precedents in the literature: using a recursive identification scheme,

Primiceri (2005) finds that there is notmuch time variation in impulse re-

sponses to shocks of a given size in post-WWII data. Sims & Zha (2006)

argue that most of the time variation in post-WWII US time series is

driven by changes in the volatility of innovations. Canova & Gambetti

(2009) argue that the transmission of monetary policy shocks has been
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relatively stable over the post-WWII period. Using a simple split sam-

ple analysis and not considering measurement error, Sims (1999) argues

that the response to monetary policy shocks has not changed dramati-

cally between the inter-war and post-war periods. In line with our find-

ings, Amir-Ahmadi & Ritschl (2013) use a factor-augmented VAR for the

interwar period and find effects of monetary policy shocks on real activity

that are comparable with the effects in post-WWII data. In comparison

to those papers, our paper combines a long-run historical perspective, a

careful treatment of measurement errors and time variation in parame-

ters and volatilities.

Analysis that focus only on a sample split around 1980 will have diffi-

culty identifying structural changes at other points in time. Focusing

only on pre- or post WWII data would not allow us to compare the mon-

etary transmission mechanism for the Federal Reserve’s entire history.

Finally, our analysis shows that different statistics (such as correlations,

impulse responses, or forecasts) change substantially at different points

in time, making an a priori choice of subsamples hard to defend. We thus

find that building one model for the entire sample that explicitly tackles

the issues of time variation, stochastic volatility and measurement er-

ror seems the most straightforward way to answer the questions we are

interested in.

2 The Model
We are interested in modeling the dynamics of the following vector of

observables:

ỹt =

(
∆gdpt πt ist spreadt ∆moneyt

)′
(1)
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where ∆gdpt is the one-year difference in the log of real output, πt is the

one-year inflation rate, ist is a short-term nominal interest rate, spreadt is

the spread between a long-term nominal interest rate and our short-term

nominal interest rate, and finally, ∆moneyt is the one year difference in

the log of a monetary aggregate. Our benchmark monetary aggregate is

the monetary base.

ChristinaRomer’s work (see, for example, Romer (1986) andRomer (1989))

has brought the measurement issues associated with historical macroe-

conomic data front and center. We tackle measurement issues by build-

ing a model of measured data that allows for relatively general stochas-

tic processes for the measurement errors. We use over 100 years of data

and thus have to confront the possibility of not only measurement er-

ror, but also changes in the measurement process (as suggested by the

work of Christina Romer). To do this, we extend the framework of Cog-

ley, Sargent & Surico (2015). They build a univariate model for infla-

tion, allowing for an autocorrelated measurement error process whose

parameters can change when the underlying data source changes. Be-

cause this framework allows for time variation in the parameters of the

measurement error only at those known break dates, we can, just as Cog-

ley, Sargent & Surico (2015), separately identify the changes in the mea-

surement error process and the changes in the process of the underlying

’true’ data. We model the measurement error processes as independent

across variables, while allowing for autocorrelation in each of the errors.

We assume that the observed data vector ỹt is a function of a measure-
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ment error vector mt and the ’true’ (unobserved) data yt:1

ỹt = yt +M(L)mt (2)

M(L) is a diagonal matrix where the i-th diagonal element Mi(L) is a

polynomial in the lag operator whose role we will describe in detail below.

Our model for the ’true’ unobserved data yt follows Primiceri (2005)2 and

models yt as a time-varying VAR:

yt = ct +
L∑

j=1

Aj,tyt−j + et (3)

where the intercepts ct, the autoregressive matrices Aj,t, and the covari-

ance matrix Ωt of et are allowed to vary over time. We set the number of

lags L = 2. To be able to parsimoniously describe the dynamics of our

model, we define X ′t ≡ I ⊗ (1, y′t−1..., y
′
t−L) and rewrite (3) in the following

state space form3:

yt = X ′tθt + et (4)

θt = θt−1 + ut (5)

The observation equation (4) is a more compact expression for (3). The

state equation (5) describes the law of motion for the intercepts and au-

toregressive matrices. The covariance matrix of the innovations in equa-

tion (4) is modeled after Primiceri (2005):

et = Λ−1t Σtεt (6)

Λt is a lower triangular matrix with ones on the main diagonal and rep-

resentative non-fixed element λit. Σt is a diagonal matrix with represen-
1While Christina Romer’s work has emphasized mismeasurement issues in output

and unemployment, Cogley, Sargent & Surico (2015) and Cogley & Sargent (2014) have
put their focus on inflation. It might be less clear why we also assume measurement
error for interest rates. We do so because we combine different sources of interest rate
data.

2The modeling assumptions we make for this part of the model are widely used in
empirical macroeconomics. An overview of the methods used and assumptions made in
this literature is given by Koop & Korobilis (2010).

3I denotes the identity matrix.
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tative non-fixed element σj
t . The dynamics of the non-fixed elements of

Λt and Σt are given by:

λit = λit−1 + ζ it (7)

log σj
t = log σj

t−1 + ηjt (8)

To conclude the specification of the VAR for the true data, we need to

make distributional assumptions on the innovations εt, ut, ηt and ζt, where

ηt and ζt are vectors of the corresponding scalar innovations in the el-

ements of Σt and Λt. We assume that all these innovations are nor-

mally distributed with covariance matrix V , which we, following Prim-

iceri (2005), restrict as follows:

V = V ar





εt

ut

ζt

ηt




=



I 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W


(9)

S is further restricted to be block diagonal, which simplifies inference.

We estimate this model using the Gibbs sampling algorithm described in

Del Negro & Primiceri (2013)4 augmented with additional Gibbs steps

for the drawing of the measurement errors and the parameters of the

measurement error process. A summary of this algorithm can be found

in the online appendix, where we also describe the priors, whose specifi-

cation is standard in the literature.

Some variables that we use in our model are measured in year-over-year

rates5 (GDP growth, inflation and money growth). To capture the fact

that it might in fact be the levels of these variables that are measured

with error (along the lines of Schorfheide et al. (2014)), we introduce the
4We use 100000 draws.
5Specifically we calculate the year-over-year rates as 100 ∗ ln( yt

yt−4
).
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lag polynomials Mi(L), which are the diagonal elements of the diagonal

matrix M(L). For variables that we assume are directly measured with

error, we setMi(L) = 1, so that the measurement error operates directly

on this variable. If, instead, the measurement error for variable i is as-

sociated with the level of a variable that we include in annual growth

rates in the VAR, we setMi(L) = 1−L4. We use this specification for out-

put growth, inflation and money growth in the benchmark model. The

benchmark model usesMi(L) = 1 for interest rates and the interest rate

spread.6In the online appendix we study a specification of the model in

which we set Mi(L) = 1 ∀i, in line with the model used for inflation by

Cogley, Sargent & Surico (2015). We call that specification our growth

rate specification.

Each element i of mt follows an AR(1) process:

mi
t = ρijm

i
t−1 + σi

jε
m,i
t (10)

We allow the measurement error process for each variable to change

whenever a data source changes over our sample.7 The data source for

each variable is indexed by j. The coefficients for each measurement er-

ror process can thus change at points in time that can be different for

each variable. Just as Cogley, Sargent & Surico (2015), we assume that

the latest source corresponds to data measured without error. This helps

identify measurement error process parameters and is also (at least im-

plicitly) the assumption underlying most of Christina Romer’s work such

as Romer (1989). The innovations εm,i are Gaussian with mean 0 and
6Our approach can also easily accommodate other situations such as measurement

error in levels when the observed data is in one period growth rates (Mi(L) = 1− L) or
when the measurement error is in levels, but we observe an N-period average (Mi(L) =

1/N
∑N

n=1 L
n−1).

7The exact timing of the break dates is described later. We also add one additional
break date for GDP, but this is inconsequential for our results.
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variance 1, and are independent over time and across i, as well as inde-

pendent of all other innovations in the model.

The break points in the measurement error processes for the different

variables are given in table 1. The dates are motivated by changes in the

sources of the data, which are described in detail in the online appendix.

For robustness, we have included an additional break data for real GDP

growth in 1930 to account for possible measurement issues during the

great depression. It turns out that adding this break date does not alter

results in any meaningful way. After the last break date for each vari-

able, that variable is assumed to be measured without error.

∆gdpt πt ist spreadt ∆moneyt
1st break date 1930:Q1 1947:Q1 1920:Q1 1920:Q1 1918:Q1
2nd break date 1947:Q1 − − − 1936:Q1
3rd break date − − − − 1959:Q1

Table 1: Break dates (if applicable) for parameters in the measurement
error processes for all variables

3 Data
In this section we briefly describe our data (plotted in Figure 9) and dis-

cuss the estimated measurement errors. Figure 9 focuses on the part

of the sample where measurement error is present - a plot of the entire

data set can be found in the online appendix. We use quarterly U.S. data

covering the period from the first quarter 1876 to the second quarter of

2011. This time span is of specific interest as it covers the pre-Fed pe-

riod as well as all chairmanships prior to Janet Yellen, which represent

potentially different monetary policy regimes. Furthermore, the period

covers 29 recessions, as measured by the NBER, of different duration and

depth. In our application, we will use the first part of our constructed
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sample (up until 1913) to inform the prior for our VAR. The estimation

of our time-varying VAR starts in 1914. The earlier part of our sample

comes from Balke & Gordon (1986), whereas most of the post-WWII data

is taken from the FRED database at the St. Louis Fed.

3.1 Measurement Errors in the Data

Figure 9 plots the observed data as well as the estimated ’true’ data until

1960 (in percentages). To focus on the role of measurement error in the

early part of the sample, we do not plot the more ’standard’ part of the

sample, which consists of standard US macroeconomic data after 1960.

The online appendix shows a plot of the entire dataset. Along the lines

of Romer (1989), GDP growth is identified by our estimation as having

significant amounts of measurement error during some periods before

WWII.

Overall, our estimatedmedian ’true’ GDP growth exhibits lower volatil-

ity than observed GDP growth up to 1947. Most notably, during the pe-

riod from 1930 to 1947 observed GDP growth is almost four times more

volatile than our estimated ’true’ GDP growth, which explicitly takes

measurement errors into account. While still clearly visible, the sever-

ity and magnitude of the Great Depression in our ’true’ estimated GDP

growth is substantially smaller and the corresponding expansion during

WWII is estimated to be more shallow. It is worth noting that our esti-

mation procedure does not just automatically smooth out movements in

the observed series - the large movements in observed GDP before 1930

are estimated to be movements in the underlying true GDP growth pro-

cess. Measurement error plays a substantially smaller role for all other

variables.
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Figure 1: Data until 1960

To assess how important measurement error is during different peri-

ods, we focus on real GDP growth where we suspect measurement error

is most important, as highlighted by Romer (1989). Table 2 shows the

standard deviation of observed and estimated ’true’ real GDP growth for

the period before the end of WWII, both in absolute terms and relative

to post-WWII volatility. For simplicity, we focus on the median of the es-

timated GDP growth series.

The standard deviation of both observed and estimated GDP growth from

1915 to 1946 is higher than the standard deviation of what we assume

to be perfectly observed GDP growth after WWII (1947-2006). We find

that measurement error drives a substantial fraction of the GDP growth
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volatility between 1930 and 1946 and estimated ’true’ GDP growth is

quite smooth. It is important to note that for the period 1930 − 1946 we

do not find ’true’ GDP growth to be less volatile because observed GDP

growth is less volatile - actually the standard deviation of observed GDP

growth is higher. Rather, our model uses the VAR structure of the ’true’

data (and thus the relation between the variables in our dataset) to con-

clude that ’true’ GDP growth must have been smoother during that pe-

riod. While we do find more volatile ’true’ GDP growth before the end

of WWII relative to the immediate post-war period, the differences rel-

ative to post-WWII data are substantially smaller than what one would

expect from observed data - in particular, in spite of the Great Depres-

sion and WWII, true GDP growth between 1915 and 1946 was only 87 %

more volatile than afterWWII, a far cry from the 268% difference implied

by observed data. These findings are qualitatively in line with Romer

(1986), who argues that the postwar stabilization was substantially less

significant than generally believed.

Estimated Observed Estimated
Post WWII

Observed
Post WWII

1915-1946 4.8 9.6 1.9 3.7
1915-1929 6.4 7.7 2.5 2.9
1930-1946 2.9 11.0 1.1 4.2
1947-2006 2.6 2.6 1 1

Table 2: Standard deviation of observed and estimated real GDP growth
for different periods

4 Results
In this section we describe how the dynamics of our estimated VARmodel

have changed over time. The goals of this section are two-fold: we are

not only interested in these statistics in their own right, but also want
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to know if those changes will be reflected in changes in the impulse re-

sponses that we describe later.

4.1 Examining Stochastic Volatility

First, we study the estimated volatilities of the innovations hitting our

model. We focus on the square roots of the diagonal elements of Ωt =

V ar(et), which incorporate both time variation in Σt and Λt.

Figure 2: Volatility of reduced form residuals

Figure 2 plots the median as well as 16th and 86th percentile bands

of these time-varying standard deviations of the reduced-form residu-

als. The residuals associated with real GDP growth, inflation and money

growth are substantially more volatile during the first part of our sam-

ple, whereas the residuals of short-term interest rates and the spread are

more volatile after World War II, in particular around the Volcker disin-
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flation of 1980. The residual in money growth, on the other hand, does

not have a substantially larger volatility around the Volcker disinflation.

One important take-away from this exercise is that relative to the de-

crease in volatility of real GDP and inflation after the Great Depression

and World War II, the so-called "Great Moderation" is almost invisible in

the estimated volatilities because the overall level of volatility is so much

higher in the earlier part of the sample.8

The volatility of the reduced form error in the equation for the spread

shows a discrete jump in 1980. Interestingly, while average volatility

in that error has come down in the 1980s and 1990s, the levels remain

elevated relative to pre-1980 values. Since the reduced form residuals

are the one-quarter ahead forecast errors, our model implies that one-

quarter ahead forecasts of the slope of the yield curve have thus become

less precise since 1980, an interesting hypothesis for future work.

4.2 Time t Approximations to Moments of Forecasts

To analyze the estimated time variation further, we ask what the first

and second moments of our observables would be if the dynamics of the

observables were governed by parameter estimates that are fixed at the

level estimated at one particular time t9. Since we do not impose station-

arity on our VAR, we cannot compute the unconditional moments under

the assumption that the time t parameter estimates do not change in

the future. Instead, we compute time t moments for different forecast

horizons, which do not require the (smoothed) time t estimates of the

companion form matrix of the VAR having all eigenvalues (except for the
8The "Great Moderation" refers to decreases of volatility in observables, not neces-

sarily residuals, but it seems natural to expect part of this decrease to be reflected in
residuals with smaller variance.

9Cogley & Sargent (2005) have used this approach.
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Figure 3: Evolving forecast means: 20 years ahead

eigenvalue associated with the intercept) being less than 1 in absolute

value. Following the suggestion of Sims (2001) and the work by Cogley &

Sargent (2005), we calculate summary statistics that help us understand

how the economy has changed over time using all available information

(since we use smoothed estimates).

Figure 3 plots the posterior medians and 16th and 86th percentile

bands of the evolution of these forecast means at the 20-years-ahead hori-

zon. A substantial part of the time variation is actually in the uncertainty

surrounding the forecast means rather than in the median, which does

not move too much for long periods of time for the observables we con-

sider.

The period from 1920 to 1940 (which encompasses the Great Depres-

sion) is represented in Figure 3 as a time of substantial uncertainty sur-

rounding long-run values, but it is (maybe surprisingly) not associated
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with substantial movement in the median of the forecasts. Our model

thus attributes a substantial part of the Great Depression to temporary

changes in volatilities. Benati & Lubik (2014) have a similar finding us-

ing inventory and sales data.10

The 1970s instead are viewed by our model as a time in which the long-

run outlook was quite bleak in terms of GDP growth and inflation.

The Volcker disinflation around 1980 is seen as a major structural break

in our model. Average forecasted inflation dropped dramatically, aver-

age forecasted output growth increased by 1 percent in annual terms,

and the uncertainty surrounding these long-run-forecasts shrank. The

recent financial crisis does not dramatically manifest itself in these long-

run averages.

We use the h-step ahead forecast variance V art[yt+h] 11 to construct time

t approximations of the forecast correlations between our observables,

which are depicted in Figure 4. For the sake of brevity, we focus on the

5 year horizon for these plots. Other horizons are qualitatively simi-

lar. There is substantial time variation in these correlations. The er-

ror bands are in general quite wide. A substantial number of these cor-

relations feature large movements in the 1970s and then a structural

break at the time of the Volcker disinflation. Starting with the output

growth/inflation correlation, we see that inflation and output growth are

substantially negatively correlated when looking at the median correla-

tion, but that this correlation is significantly different from 0 only in the

1940s. A similar pattern can be observed for the output growth/interest

rate relationship. The 68 percent error bands for the output growth/spread
10The estimates are based on all sample information. Out-of-sample forecasts using

only information up to that time period would presumably look quite different.
11Lütkepohl (2010) describes how to construct this variance.
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Figure 4: Forecast correlations: 5 years ahead

correlation contain 0 for the entire sample. Note though that the median

correlation decreases substantially in magnitude after 1980. The mid-

1980s have been identified before as a point in time after which yield

curve information does not carry much information for forecasting out-

put growth.12 Inflation and interest rates have not been significantly cor-

related until 1960 (the "Gibson Paradox" studied by Cogley, Surico & Sar-

gent (2012)). The correlation then grew throughout the 1960s and was

close to 1 during the 1970s. Revisiting the by now common theme, the

correlation falls dramatically with the disinflation of the early 1980s13.
12Wheelock & Wohar (2009) state that "Several studies find that the spread has been

less useful for forecasting output growth since the mid-1980s, at least for the United
States."

13To see why a 0 correlation between inflation and the nominal interest rate may be
surprising, remember the Fisher equation in its approximate linear form:

ist = rt + Etπt+1 (11)
If we think about the real interest rate rt being roughly constant in the distant future
then this equation tells us that in the long run short-term interest rates and inflation
should move one-for-one. In our model we can not subtract our inflation measure from
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A possible explanation for the disappearance of a significant correlation

could be that during periods of low correlation between inflation and

nominal interest rates inflation expectations are ‘well-anchored’ in that

they do not move much in response to movements in variables at the time

when the forecast is made. Inspecting our long-run forecast of inflation,

we do indeed see little movement in forecasted inflation during times of

low correlation between forecasted inflation and forecasted short-term

interest rates.

Inflation and money growth are not significantly correlated before the

mid-1960s, when the correlation becomes positive. The strength of this

correlation disappears immediately with the beginning of the Volcker

chairmanship and the associated disinflation. This again points to a pos-

itive relationship at high levels of inflation, but not at the substantially

lower levels we have observed since the 1980s.

We see a substantially negative relationship between the short-term in-

terest rate and the spread before 1980. This correlation has since become

much closer to 0, meaning forecasted long-run movements in the short

rate do not feed (linearly) into the slope of the yield curve. This might

have implications for monetary policy - policymakers hope to influence

long-term interest rates by moving the short-term interest rate. These

correlations, however, are not conditional on specific shocks hitting the

economy.
our measure of the short-term nominal interest rate to get a measure of the ex-post
real rate because our short-term interest rate is a three month (annualized) interest
rate, whereas we use an annual inflation measure. In terms of long-run forecasts, the
difference between an annual interest rate and an annualized 3 month interest rate
for a safe asset like we consider should be small. Also, we plot the correlation between
inflation and the nominal interest rate 20 years in the future, whereas the Fisher equa-
tion would call for the correlation between the nominal interest rate in 20 years and the
inflation rate in 20 years and one quarter. Given our long forecast horizon this seems
inconsequential.
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Finally, the correlation betweenmoney growth and the spread has moved

into positive territory after 1980. Only at the very end of the sample do

these correlations move toward 0 again. Taken at face value, this implies

that from 1980 to the early 2000s money growth could have been useful

in predicting movements of the yield curve.

The correlations described in this section share common themes: sub-

stantial changes around 1980 and correlations that are larger in absolute

value when some of the time series themselves are relatively large (such

as the inflation/GDP growth correlation). This points to substantial non-

linearity in reduced-form Phillips curve relationships, for example.

It is worth pointing out that even though 1980 is identified as a break

point in many correlations, there are other break points, many of them

in the early 1960s. We interpret this as evidence that a simple split sam-

ple analysis using pre- and post-Volcker data is bound to miss interesting

aspects of time variation in the economy. Furthermore, many analyses

using post-WWII US data only use data starting in the late 1950s or early

1960s (Primiceri (2005) and Sims & Zha (2006) are two prime examples)

and will thus not be able to detect those changes.

4.3 Impulse Responses to aMonetary ShockOver the

Last Century

Having characterized the substantial changes in the reduced form dy-

namics of US time series over the last century, we now turn to the ques-

tion of the effects of monetary policy on the economy and changes of those

effects over time.

This section will first describe the impact of a one standard-deviation

monetary policy shock on the economy. Then we will examine the rela-
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tive importance of fluctuations in volatility when compared to changes in

the dynamic response to shocks.

The following assumption summarizes our sign restrictions:

Assumption 1: A monetary policy impulse vector at time t is an im-

pulse vector at, so that the impulse responses to at of the price level, the

level of output and money growth are not positive and the impulse re-

sponses for the short term interest rate are not negative, all at horizons

k = 0, . . . , K.14

Our benchmark specification does not restrict the impulse responses of

the spread. Setting K = 2, we impose the sign restrictions at each point

in time for the specified contemporaneous responses and for the first and

second quarters.15 This is in line with Uhlig (2005), who uses fivemonths

in a monthly model, and Benati (2010), who imposes the restrictions on

impact and for the two following quarters. In contrast to the benchmark

case in Uhlig (2005), we do restrict the response of output not to react

positively following a contractionary monetary policy shock. Most the-

oretical macroeconomic models feature meaningful output responses to

monetary policy shocks, a feature that we use to guide our identification

restrictions (see Canova & Paustian (2011) for an introduction to this

approach). The candidate time t impulse vector at is given by

at = Λ−1t|TΣt|Tαt (12)

where αt is a column vector of conformable size drawn from the unit

sphere of norm 1, which we vary across draws to capture the uncertainty
14Imposing the restrictions on inflation and output growth, instead of the price level

and the level of output, leads to quantitatively very similar results.
15Our results are robust to restricting the response of output growth and inflation

instead of the level of output and the price level.
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implied by the sign restrictions. To compute one draw of the impulse

response vector, we simulate data from our model under two scenarios:

one in which all random innovations are drawn from their estimated dis-

tributions, and another where all innovations are drawn from their esti-

mated distribution except for one time period, where we impose a mone-

tary shock of a given size.

This approach builds on Uhlig (2005), Faust (1998), Canova & Nicolo

(2002), and Canova & Gambetti (2009). Additional details regarding im-

plementation and normalization are provided in the online appendix.

The impulse responses we show follow Canova & Gambetti (2009) and

Benati & Mumtaz (2007) and take into account all sources of uncertainty

in our model, including the uncertainty associated with the rotation αt

(which is not point-identified) and the uncertainty associated with pa-

rameters changing in the future - we calculate generalized impulse re-

sponses along the lines of Koop, Pesaran & Potter (1996).

Using sign restrictions to identify a monetary policy frees us from hav-

ing to make an assumption about what variable is used as the mone-

tary policy instrument. With these sign restrictions, we aim to capture

the effects of an unanticipated monetary shock for the different policy

regimes in place throughout our sample. Before the Great Depression,

the Fed adhered to the Real Bills doctrine. While this represented a pol-

icy regime that a-priori could be viewed as featuring a different system-

atic part of monetary policy, there does not seem to be ample reason to

think that the sign restrictions we use were not valid during that period.

Even though the Gold Standard was in place during that time, Bernanke

(2013) identifies it as not binding. After the Great Depression the Fed-

eral Reserve was substantially influenced by the Treasury until the 1951
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Fed-Treasury accord. This is another episode where the systematic part

of monetary policy could be different from other periods, but we do not

have substantial reason a-priori to doubt that unexpected effects of mon-

etary policy followed our identifying assumptions during that period.

Nonetheless, we can not rule out that our identification restrictions are

too strong in that a monetary policy shock might not have the effects

we ascribe to it during certain periods. To give an example, Lubik &

Schorfheide (2003) show that in a New Keynesian model under indeter-

minacy, some (but not all) equilibria display dynamics where inflation

rises with a positive (i.e. contractionary) monetary policy shock. Incor-

porating this kind of information, while at the same time not giving up

on our reasonable identifying assumptions for most of the sample, would

force us tomake substantially stronger assumptions such aswhen exactly

those dynamics are in place and what exactly the identification assump-

tions in those periods are. We feel that the associated costs outweigh

the benefits given that our assumptions seem standard for most of our

sample.

4.3.1 AHistorical Assessment of Consequences ofMonetary Pol-

icy Shocks

In a model with time-varying parameters, we could compute impulse re-

sponse paths for each variable at each point in the sample. To keep this

overwhelming amount of information manageable, we organize our dis-

cussion by dividing our sample into 7 time periods that together span

our entire sample and each stand for a succinct time period in the Fed-

eral Reserve’s history. We borrow these time periods from the Federal

Reserve itself, which used the same time-line to summarize its history
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during the celebration of its centennial.16 For each of those 7 periods we

calculate generalized impulse response functions that take into account

all sources of uncertainty in our model. We generate impulse response

paths to one standard deviation shocks for every time period t and all

posterior draws and then compute the average response for each of the

seven periods, which can be seen in figure (5). Since the standard devi-

ations of shocks in our model change over time, the responses we show

in this section are best interpreted as the response to an average sized

shock during each time period, where the average size of the shock can

change across time periods. The black vertical line displays the horizon

until which the sign restrictions are imposed. Even though we impose

sign restrictions on the level of output and the price level, we plot the im-

pulse responses in terms of inflation and output growth. First focusing

on possible policy instruments of the Federal Reserve, we see that the

median responses of the interest rate and the money base vary substan-

tially over regimes, both in their median responses and in the variability

around those responses. The variability of the money growth response

has decreased monotonically over the different time periods for each re-

sponse horizon, whereas the response of the nominal rate increased in

variability before it started decreasing. The median response of inflation

decreases until 1982, but then increases again. The median response

of the nominal rate has decreased somewhat over time for each horizon,

but those changes are small compared to the variability implied by the

error bands. The median response of money growth has decreased more

substantially over time. Our main takeaway here is that the impact of

monetary policy shocks on policy instruments of the Fed has changed
16http://www.federalreservehistory.org/Events
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Figure 5: One standard deviation impulse responses across time. The
solid bold line is the median response, the shaded area represents the 68
% posterior probability bands centered at the median.

substantially over time, especially when it comes to the uncertainty sur-

rounding the impact.

Before the Great Inflation period, monetary policy shocks had a signifi-

cantly negative effect on the spread. While the median impact of mone-

tary policy shocks on the spread has remained negative throughout, the

magnitude of the response has decreased over time for every horizon and

the error bands include 0 for every horizon starting with the Great Infla-

tion period.

The response of GDP growth over time becomes more muted as well as

substantially less uncertain. This response is remarkably stable between
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1929 and 1951 (or, to almost the same extent, until 1965). The median

response starts to become smaller in magnitude and less uncertain after

the Fed Treasury Accord that gave the Fed substantially independence.17

This pattern is more pronounced with our alternative specification of

measurement error (see the online appendix for the corresponding fig-

ures). However, it is important not to lose sight of the big picture: the

patterns of impulse responses to monetary policy shocks have remained

surprisingly stable throughout our sample.

Given that we set-identify the responses to a monetary policy shock

(that is, even if we knew the reduced form parameters with certainty, we

could still not exactly pin down the impulse responses), readers might

be interested in the amount of uncertainty coming only from the par-

tial identification of the impulse response function. Following Moon,

Granziera & Schorfheide (2013) we report in figure (6) the full set of

identified impulse responses conditional on the posterior mean estimates

of all reduced form parameters (so that reduced form parameter uncer-

tainty plays no role when computing these error bands) along with the

standard 90% posterior error bands that take into account parameter

uncertainty and the partial identification of the impulse responses. As

noted by Moon et al. (2013), either of these bands could be wider than the

other. Next, we turn to isolating the driving force behind these changes

- are the changes in the volatility of monetary policy shocks the reason

behind the more muted real effects or did the transmission of monetary

policy shocks of a given size change?
17The Fed-Treasury Accord removed the Fed’s obligation to maintain a low-interest

rate peg on government securities.
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Figure 6: Full identified set at the posterior mean of one standard devia-
tion impulse responses (lighter shaded area) alongwith the 90%posterior
bands (darker shaded area).

4.3.2 Characterizing the Evolution of the Monetary Transmis-

sion Mechanism

So far, we have documented both changes in contemporaneous volatilities

of forecast errors associated with our VAR as well as changes in parame-

ters governing the dynamic responses in our model. We now disentangle

the effects of changes in contemporaneous volatility and changes in re-

sponse parameters. This allows us to identify changes in the monetary

policy transmission rather than changes in the effects of monetary policy

that are driven by changes in the volatilities of exogenous disturbances.
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To do so, we want to isolate the effects of changes in Σt on the impulse

responses. To do so we follow Canova & Gambetti (2009), who normalize

their sign-restriction-based impulse responses by fixing the contempora-

neous effect on the nominal interest rate. In figure 7 we consider a 25

basis point increase in the nominal rate (but any other normalization

would just rescale the impulse responses we show). This does not mean

that we think the nominal rate was the policy instrument throughout

our sample - we just normalize the impact of the monetary policy shock

through time. As mentioned before, our sign restriction approach allows

us to not take a stand on the nature of the policy instrument. For the sake

of brevity, we report the median response as well as the 68 % posterior

bands, but omit the identified set of impulse responses. Again focusing

first on possible policy instruments, we see only small changes in the me-

dian response for money growth and only mild reductions in uncertainty.

It now becomes clear that the nominal rate response has become more

persistent over time, a fact that had been masked by the changes in the

impact of a monetary policy shock on the nominal rate on impact and the

uncertainty surrounding that impact effect.

After 1982, the median response of inflation has become larger across

horizons, and the probability of a strong negative response of inflation to

a 25 basis point increase in the nominal rate has increased substantially.

The response of the spread to a monetary policy shock shows the same

pattern as in the previous section - themedian response is negative through-

out, but the error bands include 0 for every horizon starting with the

Great Inflation period. Monetary policy in the latter part of the sample

thus shifts the entire yield curve without changing the slope. The impact

of monetary policy on long-term rates has increased over time, consistent
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Figure 7: Impulse responses normalized on nominal rate impact across
time.The solid bold line is the median response, the shaded area repre-
sents the 68 % posterior probability bands centered at the median.

with a narrative that attributes more credibility to the Fed in the latter

part of the sample.

The median impact of monetary policy shocks for a given size on real

GDP growth have decreased over time (similar to what we found for the

one standard deviation shock), but this decrease is small compared to

the width of the error bands at any point in time. For real GDP growth,

we do not see a substantial difference in the response before and after

Volcker. One feature that we do find for both shocks of fixed size and one

standard deviation shocks, is that the downside risk associated with a

contractionary monetary policy shock have become smaller over time -

29



the 16th percentile error band for the GDP growth response has become

smaller in magnitude over time for all horizons.

While the reaction of policy instruments to a monetary policy shock of

a given size has changed over time, we do find more similarities than

differences in the responses of real GDP growth and inflation across the

different time periods we consider. While there is substantial time vari-

ation in reduced-form moments, as we documented in previous sections,

our identification scheme for monetary policy shocks implicitly attributes

a substantial part of those changes to changes not associated with mon-

etary policy shocks.

5 Conclusion
To study changes in the dynamics of the U.S. economy over the last cen-

tury, we enrich a time-varying parameter VAR model along the lines of

Primiceri (2005) to allow for possibly mismeasured data. We find sub-

stantial evidence of measurement error before and during WWII (partic-

ularly in GDP, in line with Romer (1989)), time variation in volatilities

of reduced form innovations and substantial time variation in the corre-

lations between the macroeconomic variables we consider. In particular,

the early 1980s were a time period that our model associates with sub-

stantial shifts in the structure of the economy.

Changes in the responses to a monetary policy shock are clearly present,

but once we condition on the size of the shock (i.e. the initial impact on

short-term nominal interest rates) the most noteworthy finding is that of

surprising stability over the past century.
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Appendix

A Data

A.1 Annual Output Growth

Our output growth series is obtained by splicing two different real out-

put series covering different time spans. We use real GNP series as con-

structed by Balke & Gordon (1986) from the first quarter of 1876 to the

fourth quarter of 1946 (1930:Q1 and 1947:Q1 are the break dates for the

parameters of the measurement error process associated with this se-

ries). Starting in 1947:Q1, we use the real GDP series provided by the

St. Louis Fed FRED database covering the first quarter of 1947 to the

second quarter of 2011. The spliced series are transformed in logs and

then we take year-on-year differences.

A.2 Annual Inflation Rate

The corresponding annual inflation rate is also based on the combination

of two different series on the output deflator. Again the first part comes

from Balke & Gordon (1986) covering the period 1876Q1-1946Q4. Just

as with output growth, the break date for the parameters of the mea-

surement error process is 1947:Q1. The second part of the series comes

from the St. Louis Fed FRED database covering the time span 1948Q1-

2011Q2. Again we transform the data into year-on-year growth rates.

A.3 Short-Term Interest Rate

The short term interest rate plays the role of a potential direct or in-

direct monetary policy instrument for at least a substantial part of the

time span we analyze. There is no single series on shorter interest rates
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at quarterly frequency for the full sample, which requires constructing

a series based on several data sources reflecting short-term borrowing

conditions. From 1920Q1-2011Q2 we use data on the 90-day T-Bill rate

from the secondary market. Prior to that we backcast the series includ-

ing as regressors data on call money rates and commercial paper rates.

These two series show a strong contemporaneous correlation with the T-

Bill rate when all series are available. The series used for backcasting

and our target short term interest rate series are all available at monthly

frequency. Specifically, we regress 90-day T-Bill rate on call money rates

and commercial paper rates based on a sample running from February

1920 to April 193418. Combining the resulting coefficients with our re-

gressors we can backcast our target series back to the first quarter of

1876. This way we interpolate backward the missing observations for

the 90-day T-Bill rate. We thus avoid using the six-month short term

interest rate, which would lead to a maturity mismatch combining the

three-month and six-month rates. Furthermore, we prefer the shorter

maturity rate as a potential monetary policy instrument. We use annu-

alized interest rates throughout. The break point for the parameters of

the measurement error process is 1920:Q1.

A.4 Long-Term Interest Rate

As for the term spread, we employ the difference between a constructed

measure of the long-term interest rate and the short-term interest rate

described in the previous section. The lack of a consistent long-term gov-

ernment benchmark interest rate requires the combination and back-

casting of three indicators. From 1920Q1-2011Q2 we use data on the
18Some experimentation with alternative windows for the backcasting exercise lead

to essentially same results.
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10-year government bond yields at constant maturities. Prior to that, we

backcast the series including as regressors data on railroad bond yields

(high grade) and a railroad bond yields index. Again, there is a strong

contemporaneous correlation between the series we use to approximate

the long-term interest rate and that interest rate itself when all series

are available.

We regress 10-year government bond yields at constant maturities on

railroad bond yields (high grade) and railroad bond yields index based

on a sample running from February 1920 to April 1934. Combining the

resulting coefficients with our regressors we can backcast our target se-

ries back to the first quarter in 1876. The long-term interest rate is ex-

pressed in annual terms. Just as with short-term rates, the break point

for the parameters of the measurement error process here is 1920:Q1.

A.5 Annual Base Money Growth

The monetary base measure we use to represent a direct or indirect mon-

etary policy instrument is obtained by combining by two series. The first

part of the sample from 1876Q1-1958Q4 comes from Balke & Gordon

(1986) and the second part from the FRED database covering 1959Q1-

2011Q2. Since the Balke & Gordon (1986) data uses different sources

itself, we allow for further breaks in 1918 and 1935 in addition to the

break point in 1958.19

19While themeasurement of themoney base has undergonemultiple changes over the
years, our reading of St. Louis Fed documentation on this subject helped us identify
these possibly major break points. The St Louis Fed uses similar sources for the first
part of the sample as do Balke & Gordon (1986). Links to this documentation are:

1. http://research.stlouisfed.org/publications/review/03/09/Anderson.pdf

2. http://research.stlouisfed.org/aggreg/newbase.html
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B Prior Choice
We choose priors in a way to stay as close as possible to the previous lit-

erature, while taking into account our larger sample and the addition of

measurement error processes. We use data from 1876:Q1 to 1913:Q4 to

initialize the priors for the VAR for yt by using a fixed coefficient VAR,

similarly to Primiceri (2005).

The priors for the measurement errors and the associated parameters

are set similarly to Cogley, Sargent & Surico (2015). The priors are the

same for each data source, but vary across variables to take into account

the different volatilities of each variable.

We use independent normal-inverse gamma priors for each set of mea-

surement error process coefficients. As we change the measurement er-

ror process for inflation and output growth, we keep the structure of the

prior (i.e. the distributional assumptions), but modify some of the pa-

rameters of the priors for the measurement error processes to take into

account how the measurement error enters the measurement equations

for inflation and output growth. The prior for the AR coefficients for the

measurement errors is independent across variables and break dates. It

is Gaussianwithmean 0 and prior standard deviation 0.45, whichwe keep

for both sets of specifications, our benchmark specification and the spec-

ification with Mi(L) = 1∀i. The prior for the variance of the innovation

of the AR processes is inverse-gamma and independent across variables

and break dates. The mode of the inverse-gamma distribution is set to

a fraction of the standard deviation of each variable during the train-

ing sample (the prior scale parameters are set to 2). Cogley, Sargent &

Surico (2015) use 50 % of the training sample standard deviation for the
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prior mode for their model of inflation. For our growth rate specification

(which is the specification Cogley, Sargent & Surico (2015) used for their

model of inflation), we use the same value for our inflation measurement

error as well as for the interest rate and spread series, but found that

the standard deviation for real GDP growth and money growth during

the training sample is so high that mechanically using the same value

as Cogley, Sargent & Surico (2015) for those series resulted in somewhat

implausible estimates. Instead of a scaling factor of 50 % of the train-

ing standard deviation, we in that case thus a scaling factor of 15 % of

the training sample deviation for GDP growth and money growth. Since

we use priors for σi
j with an infinite variance (Cogley, Sargent & Surico

(2015) also use a prior with infinite variances for their corresponding

parameter), this change does not restrict the posterior to assign only a

minor role to measurement error.

For our benchmark specification, we keep the prior on the AR coefficients,

but reduce the prior mode for the innovation in the AR process. We do

this because the level specification automatically introduces additional

volatility (this is easiest to see if we think of iid measurement errors in

levels - then the composite measurement error is the difference of two

iid measurement errors and thus has twice the volatility of the original

measurement error). We thus set the priormode of the innovation volatil-

ities in the measurement error processes to capture half of the standard

deviation that the corresponding prior in the growth rate specification

captured. We keep the scale parameters the same across the two specifi-

cations. Summarizing the priors for the measurement error process, we
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have

ρij ∼ N(0, .452) (13)

σi
j ∼ IG(scalingi ∗ σ̂2

i,train, 2) (14)

where σ̂2
i,train is the estimate of the variance of observed variable i from the

training sample and scaling is set as described above. We use (somewhat

non-standard) notation for the inverse gamma where the first argument

gives the prior mode and the second argument the scale parameter.20

An important prior for time-varying parameter VARs is the prior for

Q, the covariance matrix of the residuals that enter the law of motion

for θ. We assume that Q, which governs the amount of time variation

in the VAR coefficients, follows an inverse Wishart distribution with the

following parameters:

Q ∼ IW (κ2Q ∗ 152 ∗ V (θOLS), 152) (15)

where the prior degrees of freedom is set to 152, which is the length of our

training sample, V (θOLS) is the variance of the OLS estimator of the VAR

coefficients in our training sample and κQ = 0.01 is the tuning parame-

ter to parameterize the prior belief about the amount of time variation.

Primiceri (2005) uses exactly the same approach to set his prior. Choos-

ing the same approach allows us to keep our results comparable to his.

The other priors are also set according to Primiceri (2005), adjusting for

the larger size of our vector of observables. In contrast to Cogley & Sar-

gent (2005), we do not impose the prior that the companion matrix of our

VAR only has eigenvalues smaller than 1 in absolute value. We do this to

be able to study if there is significant variation in the probability of this

local non-stationarity.
20The scale parameter of an inverse gamma distribution is one of the two parameters

commonly used for this family of distributions. Importantly, when we talk about the
scale parameter, we do not mean scalingi.
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C Sources of Volatility
Volatility in time series models can be traced back to two sources: the

innovations (or unpredictable components) that influence the time series

of interest and the systematic response to those innovations. To make

this point, consider a univariate AR(1) model with Gaussian innovations:

zt = ρzt−1 + wt, wt ∼ N(0, σ2
w) (16)

Then the j-step ahead conditional variance is given by

V art(zt+j) = σ2
w

j∑
k=1

ρ2(j−k) (17)

We can see that the volatility of this process is fully characterized by

the autoregressive coefficient and the variance of the innovation. The

next two sections present a similar characterization for our time-varying

VAR. The objects corresponding to ρ in the multivariate context are the

At matrices, which are high dimensional. To study dynamics, we can

focus on the eigenvalues, but even those are large in number (given that

they vary over time). The section below therefore focuses on the largest

eigenvalue in absolute value. This object does not fully characterize the

effects of time variation in persistence on volatility, but it does give an

idea about whether or not our estimatedmodel features (locally) unstable

dynamics, which in turn will have an effect on volatility.

C.1 Are There Explosive Dynamics in U.S. Time Se-

ries?

We study the probability of matrix At having eigenvalues larger than

1 in our sample by checking the draws of At that are generated by our

Gibbs sampler. We can do this because, as mentioned before, we do not
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follow Cogley & Sargent (2005) and impose conditions on the eigenvalues

of the companion matrix of our VAR. The right panel of Figure 8 shows

this probability, whereas the left panel shows draws from the posterior

path of the maximum absolute eigenvalue as well as the median and 68

percent posterior probability bands.

Figure 8: Explosive behavior

The average level of the probability until the 1940s is quite high,

reaching over 0.5. The probability drops almost 20 percentage points

at the end of WWII. It rises again until the end of the 1970s. The second

big decrease in this probability following the Volcker disinflation could be

interpreted in terms of a structural model in which agents have to learn

about the true data-generating process (DGP): Cogley, Matthes & Sbor-

done (2015) show that times in which beliefs of private agents are far

away from the DGP can lead to explosive dynamics, whereas the prob-

ability of explosive eigenvalues falls as beliefs move closer to the true

DGP. An alternative structural model that can give temporarily explo-
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sive dynamics is given by Bianchi & Ilut (2013). To wit, we find two large

changes in the probability of local non-stationarity.

Despite the fact that high probability of explosiveness can be found in

various periods in the history, the left panel of Figure 8 shows that the

absolute value of those eigenvalues larger than 1 is only slightly larger

than 1. This means that even if there are eigenvalues larger than 1, it

takes a long time for the economy to become noticeably unstable. Con-

cerning the kind of stationarity restrictions used by Cogley & Sargent

(2005), there is a substantial posterior probability of having explosive

eigenvalues, making estimation algorithms with this restriction slow to

converge. At the same time, the restriction itself is not far from being

met for large parts of post-WWII data in the sense that the estimated

eigenvalues are not far from 121.

D The Growth Rate Specification for Mea-

surement Error
In this section we study a model with Mi(L) = 1 ∀i. The differences in

results between this approach and our benchmark are small. For the

sake of brevity, we focus on the estimated ’true’ data as well as impulse

responses. The first figure shows the estimated ’true’ data (with the me-

dian in bold red), and 68% posterior bands. The break points for the

measurement errors are the same as for our benchmark, with the excep-

tion that we do not have a break for GDP growth in 1930. Adding this

break here does not change the results. After the last break point the

estimated ’true’ data coincides with the observed data. We see in figure
21Given that we also use pre-WWII data, this approach would be harder to defend for

our application.

44



9 that the estimated ’true’data is very similar to that obtained using our

benchmark specification. The major difference between this specification

and our benchmark is that this specification attributes the GDP growth

downturns in the second half of the 1930s and after WWII to movements

in actual data, whereas our benchmarkmainly sees this as measurement

error.

Figure 9: Data

Concerning the impulse responses, the patterns are very similar to

our benchmark results. Figures 10 and 11 shoes the impulse responses.

Once thing we do find in this specification, at least in the one standard

deviation shock case, is a change in the behavior of the GDP growth im-

pulse response with the Fed Treasury Accord, in line with some of the

reduced form changes that we found both in the benchmark case and

with this specification.

Table 1 shows the volatility of the estimated and observedGDP growth

series for different periods. We see the same patterns as for our bench-

mark specification. The reduction in the volatility of the estimated ’true’

series starting in 1930 is still present, albeit less pronounced.
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Figure 10: Impulse responses for one standard deviation shock

Figure 11: Impulse responses for 25 basis point nominal interest rate
shock

E Estimation Algorithm
We use a Gibbs-Sampler to approximate the posterior distribution by

generating 100, 000 draws. The exact implementation for time-varying

parameters and stochastic volatilities follows Primiceri (2005) including
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Estimated Observed Estimated
Post WWII

Observed
Post WWII

1915-1946 6.1 9.6 2.4 3.7
1915-1929 6.7 7.7 2.6 2.9
1930-1946 5.5 11.0 2.1 4.2
1947-2006 2.6 2.6 1 1

Table 3: Standard deviation of observed and estimated real GDP growth
for different periods calculated using the alternative specification of the
measurement error process.

the corrigendum of Del Negro and Primiceri (2013). In addition, we pro-

pose a multivariate generalization of Cogley, Sargent & Surico (2015) to

simulate the posterior distribution for measurement error process pa-

rameters and unobserved ’true’ data.

Let ỹT be the observed noisy data vector, ST = (yT ,mT ) be the vector

of the unobserved data and associated measurement errors with and ΘT

be the collection of all parameters of the time-varying VAR with stochas-

tic volatilities. Note that conditional on the (partly unobserved) ’true’

data, the steps we borrow from Primiceri (2005) do not need to be altered:

knowledge of the measurement error or the parameters of the measure-

ment error process are irrelevant for those steps in the Gibbs sampler.

The algorithm proceeds as follows22

1. Draw ΣT from p(ΣT |yT , θT ,ΛT , V, sT ). This step requires us to gener-

ate draws from a nonlinear state space system. We use the approach

by Kim, Shephard & Chib (1998) to approximate draws from the de-

sired distribution. For a correct posterior sampling of the stochastic

volatilities we follow the corrigendum in Del Negro and Primiceri

(2013) and the modified steps therein.

2. Draw θT from p(θT |yT ,ΛT ,ΣT , V ). Conditional on all other param-
22A superscript T denotes a sample of the relevant variable from t = 1 to T .
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eter blocks equations (4) and (5) from the main text form a linear

Gaussian state space system. This step can be carried out using the

simulation smoother detailed in Carter & Kohn (1994).

3. Draw ΛT from p(ΛT |yT , θT ,ΣT , V ). Again we draw these covariance

states based on the simulation smoother of the previous step, ex-

ploiting our assumption that the covariance matrix of the innova-

tions in the law of motion for the λ coefficients is block diagonal.

This assumption follows Primiceri (2005), where further details on

this step can be found.

4. Draw V from p(V |ΣTyT , θT ,ΛT ). Given our distributional assump-

tions, this conditional posterior of the time-invariant variances fol-

lows an inverse-Wishart distribution, which we can easily sample

from.

5. Draw ST from p(ST |ΘT , ρm, σ
2
m, ỹ

T )

Conditional on ΘT , ρm, σ
2
m and ỹT , equation (2) from the main text

and and the set of equations (10) from the main text form a linear-

Gaussian state-space system where the conditional posterior of ST

is also Gaussian and can be simulated using the Carter & Kohn

(1994) sampler. The initialization of the Kalman filter is given by

S0 =

 y0

m0

 =

ȳtrain
0


where ȳtrain is the mean of the training sample of the observed data
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vector ỹT . The initial MSE matrix P0 is specified as

P0 =



σ̂2
1,train 0 0 · · · 0 0

0
. . . 0 0 0 0

... 0 σ̂2
M,train 0 0

...

0 0 0 σ2
1,mode 0 0

0 0 0 0
. . . 0

0 0 0 · · · 0 σ2
M,mode


where σ̂2

i,train is the unbiased variance estimate of the observed vari-

able i from the training sample and σ2
i,mode is the prior mode of the

variance of the measurement error i. We describe the state space

system used to draw S in more detail in a separate section below.

6. Draw ρm and σ2
m from p(ρm, σ

2
m|ST ,ΘT , ỹT )

Since all measurement error innovations are independent, the only

relevant conditional information set is mT . Conditioned on mT and

using the independent normal-inverse gamma prior for each of the

measurement error process independently, the conditional poste-

rior p(ρm|σ2
m,m

T ) is normal and the conditional posterior p(σ2
m|ρm,mT )

is inverse gamma, which can be sampled using two Gibbs steps.

7. Draw sT , the sequence of indicators for themixture of normals needed

for the Kim et al. (1998) stochastic volatility algorithm.

F Algorithm to Draw Generalized Impulse

Responses
Here we describe the Monte Carlo procedure for the identification of the

evolving generalized impulse response functions to contractionary mone-

tary policy shocks employed via pure sign restrictions as briefly outlined
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in themain text. The exposition drawsmostly on the procedure described

in Benati & Mumtaz (2007), Baumeister & Benati (2013) and Baumeis-

ter & Peersman (2013), who build on Koop et al. (1996).

We compute the candidate generalized impulse responses as the dif-

ference between the conditional expectations with and without a specific

value of the exogenous shock ε at time t

irfcand,t+k = E[Xt+k | εt, ωt]− E[Xt+k | ωt]

whereXt+k contains the forecasts of the endogenous variables at horizon

k, ωt represents the current information set that captures the entire his-

tory up to that point in time, and εt is the current disturbance term. At

each point in time, the information set upon which we condition the fore-

casts contains the actual values of the lagged endogenous variables and

a random draw of the model parameters and hyperparameters. To calcu-

late the conditional expectations, we randomly draw from the Gibbs sam-

pler output at a given time t the time-varying coefficients, the variance

covariance matrix and the hyperparameters. We employ the transition

laws and stochastically simulate the future paths of the coefficient vector

and the components of the variance covariance matrix for up to 20 quar-

ters into the future. By projecting the evolution of the system we account

for all potential three sources of uncertainty from the corresponding in-

novations in the system. To obtain the time t structural impact matrix,

B0,t we first obtain a rotation matrix Q following (Rubio-Ramirez, Wag-

goner & Zha (2010)) and combine it with the lower triangular Cholesky

factor of Ωt|T resulting in B0,t = Λ−1t|TΣt|TQ
′. Given this contemporane-

ous impact matrix, we compute the reduced-form innovations based on

the relationship et = B0,tεt. From the set of candidate impulse responses

derived in this way, only those satisfying our sign restriction are used
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to compute the impulse responses. All others are discarded. Based on

these impulse responses, we calculate the statistics of interest. In par-

ticular, the minimum and maximum responses at each horizon are used

to estimate the full identified set.

This procedure is computationally cumbersome and quite time con-

suming. We calculate the generalized impulse response functions at each

point in time t = 1, . . . , 366, given a random selection of 500 states of the

economy explicitly taking into account possible future uncertainty in the

structure of the economy along the horizon considered. For each of those

random draws we calculate 50 candidate impulse response functions re-

sulting in a total of 9.15 million candidates. The procedure described

here (not including the Gibbs sampler to estimate the model in the re-

duced form model in the first place) takes for a given specification on an

AMD Opteron(tm) Processor 6172, 2.10 GHz (8 processors), 16GB RAM

and a 64-bit operating system about 7 days to run.

G Drawing Measurement Errors and ’True’

Data
This section describes the state space system used to generate draws of

the measurement errors and the unobserved ’true’ data. For notational

convenience, we focus here on our benchmark specification, but general-

izing this section to the case with generalMi(L) is straightforward.

Let St = (Yt,m
1
t ,m

2
t ,m

3
t ,m

4
t ,m

5
t )
′ be the vector of unobserved data and

measurement errors wheremi
t = (mi

t,m
i
t−1,m

i
t−2,m

i
t−3,m

i
t−4)

′ for i = 1, 2, 5

where the index i denotes the measurement error associated with the

VAR variable i in the ordering23. The joint state space representation for
23We could in principle include higher order lags of measurement errors for the in-
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observed noisy data vector ỹt is defined as (we write the dynamics of Yt

as a VAR(1) - it is the companion form of our original VAR):

ỹt = JSt

St = δt + FtSt−1 + ωt

where the state law of motion is given by the VAR and the measurement

error structure:

Yt

m1
t

m2
t

m3
t

m4
t

m5
t


=



µt

0

...

0


+



At 0 · · · 0

0 ρ1m 0

0 ρ2m 0
...

... 0 ρ3m 0

0 ρ4m 0

0 · · · 0 ρ5m





Yt−1

m1
t−1

m2
t−1

m3
t−1

m4
t−1

m5
t−1


+



et

εm,1
t

εm,2
t

εm,3
t

εm,4
t

εm,5
t


where

ρim =



ρim 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


and εm,i

t = (εm,i
t , 0, ..., 0)′ for i = 1, 2, 5.

The covariance matrix of ωt is given by

V ar(ωt) =



V ar(et) 0 · · · 0

0 V ar(εm,1
t ) 0

0 V ar(εm,2
t ) 0

...
... 0 V ar(εm,3

t ) 0

0 V ar(εm,4
t ) 0

0 · · · 0 V ar(εm,5
t )


.

terest rate and term spread for notational convenience. But in our application both
variables are actually measured in levels.
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Finally, the selection matrix J is specified such that

∆gdpt

πt

ist

spreadt

∆moneyt


=



y1,t +m1
t −m1

t−4

y2,t +m2
t −m2

t−4

y3,t +m3
t

y4,t +m4
t

y5,t +m5
t −m5

t−4


= J × St
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