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Abstract 

 

We investigate the role of asymmetric information and learning in a New Keynesian framework in which 

private agents and the central bank have imperfect knowledge of the economy. We assume that agents 

employ the data that they observe to form beliefs about the relationships that they do not know, use their 

beliefs to decide on actions, and revise these beliefs through a statistical learning algorithm as new 

information becomes available. Using simulations, we show that asymmetric information and learning 

can significantly change the dynamics of the variables of the model. 
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1 Introduction

This note studies asymmetric information and two-sided learning in a New Keynesian frame-

work in which private agents do not know the monetary policy rule and do not observe

monetary policy shocks, while the central bank has imperfect knowledge about the behavior

of private agents. We assume that agents use all the information that they have available to

estimate the structural equations of the model that they do not know, and use a statistical

learning algorithm to update their beliefs as new data become available. In each period,

these beliefs will be the basis for policy decisions (on the side of the central bank) and for

production and pricing decisions (on the side of private agents).

The literature on monetary policy in environments characterized by imperfect knowledge

and learning is extensive.1 Two-sided learning was first studied in the seminal work of

Marcet and Sargent (1989), upon which most of the ensuing research (including this paper)

is built. We employ a framework that departs from the previous literature in this area in

two directions. First, we assume that agents are only forming beliefs on the equilibrium

relationships that they do not know rather than estimating reduced-form regressions on all

equilibrium variables (as, for instance, in Dennis and Ravenna, 2008). Second, we assume

that both sides of the economy are implementing optimal choices. As a consequence, our

analysis does not focus on the ability of the central bank to enforce a particular policy rule

or to achieve convergence to a rational expectations equilibrium (as, for instance, in Evans

and Honkapohja, 2003). Instead, the goal of this note is to study the short-run dynamics

that the interactions of beliefs and actions can generate.

To what extent can asymmetric information and learning affect the time-series properties

of the variables of interest? We address this question by examining the results of simulations

performed using a New Keynesian model with parameters calibrated to standard values. Our

results indicate that asymmetric information and two-sided learning can significantly alter

the dynamics of the model compared to the situation in which the economy is operating at

a rational expectations equilibrium (REE).

2 The Model

The true model of the economy is a standard New Keynesian framework; the specification

is similar to Dennis and Ravenna (2008). The private sector is described by the equations:

yt = EPA
t (yt+1) −

1

σ

(
it − EPA

t (πt+1) − rnt
)

(1)

1For a review, see Evans and Honkapohja (2009).
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πt =
1

(1 + β)
πt−1 +

β

(1 + β)
EPA
t (πt+1) −

κ

(1 + β)
yt + wt (2)

rnt = r + ut (3)

ut = ρuut−1 + εut (4)

wt = ρwwt−1 + εwt (5)

where yt is the output gap, πt the inflation rate, it the nominal interest rate, rnt the natural

rate of interest (which is the sum of its steady state value r and a shock ut), and wt can be

interpreted as a shock to the marginal cost of production. Both ut and wt evolve according to

an AR(1) process, as described by (4) and (5), with εut ∼ i.i.d.(0, σ2
u) and εwt ∼ i.i.d.(0, σ2

w).

The operator EPA
t (·) in (1) and (2) denotes the fact that private agents form expectations

based on their own information set.

The economy is also populated by a central bank, which controls it through the policy

instrument xt according to:

it = xt + vt (6)

where vt is a monetary policy shocks, which follows the AR(1) process:

vt = ρvvt−1 + εvt (7)

Agents do not have full knowledge of the economy: the central bank does not observe the

shocks ut and wt, and does not know how private agents form expectations and decide about

prices and output, while private agents do not know the policy rule that the central bank

uses to set xt and do not observe the monetary policy shock vt. We assume that each agent

uses the available data to estimate the relationships that they do not know, and employs the

perceived model of the economy to make their respective decisions. These steps are updated

in each period as new information is observed over time.

All agents use the same vector zRt to estimate the unknown structural relationships of

the model:2

zRt =
[
yt πt it 1

]′
(8)

Private agents estimate the unknown monetary policy rule as:

it = zR′t−1ψt + ωPAt (9)

2The results do not change if we allow private agents to use ut and wt, and the central bank to use vt,
when estimating the unknown relationships of the model. The learning algorithm typically ends up attaching
a coefficients of zero to the variables that are only observed by one side and not the other.
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Similarly, the monetary authorities estimate the unknown private side of the economy as:

yt = zR′t−1cyt + ωCByt (10)

πt = zR′t−1cπt + ωCBπt (11)

We assume that agents use a standard recursive least squares algorithm (see Evans and

Honkapohja, 2001) to update ψt, cyt and cπt. The linear relationships in (9), (10) and (11),

can be written in a general form as:

qt = zR′t−1φt + ηt

where qt is either it, yt, or πt, φt is the vector of parameters, and ηt the residual. Using this

notation, the learning algorithm is written as:

Rt = Rt−1 + gt
(
zRt−1z

R′
t−1 −Rt−1

)
φt = φt−1 + gtR

−1
t zRt−1

(
qt − zR′t−1φt−1

)
(12)

Our simulations focus on Recursive Least Squares (RLS) learning, in which gt = 1
t0+t

.

In our framework, the error ωPAt affects private agents’ expectations and perceived law

of motion (PLM), and we assume that private agents estimate its variance as:3

σ̂2
ωt = σ̂2

ωt−1 + gt
[
(it − ψtz

R
t−1)

2 − σ̂2
ωt−1

]
(13)

We augment our learning algorithm with a projection facility. More specifically, we

allow private agents to disregard estimates of (9) for which the solution of the expectational

difference equation implied by (1) and (2) does not exist, and policymakers to rule out

estimates of (10) and (11) for which the central bank’s perceived law of motion for yt, it,

and πt is not stable.4 In practice, this projection facility is never invoked in our simulations.

Policymakers and private agents base their decisions on their respective PLMs. All agents

are assumed to behave as anticipated utility decision makers (Kreps, 1998), so they treat

parameter estimates as true values, and disregard parameter uncertainty and the effects of

learning.

The PLM for private agents is obtained from (1) - (5) and (9). We assume the same

timing as Cogley et al. (2011): private agents first estimate the parameters of (9) using

3An online Appendix explains why the estimated variance of the policy shocks enters the PLM (and thus
the actual law of motion, ALM) in our case.

4If the projection facility is active, we assume that agents will use their estimates from the previous
periods as beliefs.

3



data up to time t − 1, then observe current period shocks (except for the monetary policy

shock) and the value of the policy instrument, and finally use all this information to solve the

expectational difference equation implied by the equilibrium conditions and the estimated

policy rule. We use Sims’(2001) Gensys program to find this solution, and we do not rule

out the possibility of indeterminate equilibria.

The central bank, on the other hand, decides the value of the policy instrument xt by

minimizing the quadratic loss function:

ECB
t−1

∞∑
j=0

βj[(πt+j)
2 + λy(yt+j)

2 + λi(it+j − it+j−1)
2] (14)

given (10) and (11), and the estimated values of cyt and cπt. The operator ECB
t−1 indicates

that expectations are formed with respect to the information available to the central bank.

The optimization problem is repeated in every period given updated values of cyt and cπt;

thus, the optimal interest rate rule will be changing over time:

it = f0t + fπtπt−1 + fytyt−1 + fitit−1 + vt (15)

The ALM for the model is obtained from (1) - (7), private agents’ decisions for EPA
t (yt+1)

and EPA
t (πt+1), and policymakers’ interest rate rule in (15). In matrix form, this ALM can

be written as:

zt = Ψ1,tzt−1 + Ψ2,tεt (16)

where

zt =
[
yt πt it ut wt vt EPA

t (yt+1) EPA
t (πt+1) 1

]′
εt =

[
εut εwt εvt

]′
The matrices Ψ1,t and Ψ2,t and further details about the PLMs and ALM for the model are

given in an Appendix available online.5

3 Simulation Exercises

The optimization approach of policymakers and the expectation formation process of private

agents are highly nonlinear functions of the estimated parameters, and the equilibrium of

our model cannot be characterized analytically. Thus, we study its dynamics using Monte

Carlo simulations. We set: σ = 1; κ = 0.4; βPA = βCB = 0.99; r = 1/βPA − 1; λy = 1

5https://sites.google.com/site/francescarondina/AppendixTSL.pdf
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and λi = 0.5. For the shocks, we assume normal distributions with parameters: σ2
εu = 0.52;

σ2
εw = 0.52; σ2

εv = 0.52; ρu = 0; ρw = 0; ρv = 0.6 The data is measured quarterly, and the

variables are interpreted as annualized rates. In the RLS algorithm we set t0 = 20 (5 years).7

In all the exercises, we set the period length to T = 200 (50 years), and we perform N = 500

simulations.

We compute the ordinary differential equation of Marcet and Sargent (1989) numerically

and we find that, given the chosen parameter values, our model converges to a symmetric

and learnable, but indeterminate, self-confirming equilibrium (SCE).8 As point of departure

and comparison for the dynamics of our model, we use the rational expectation equilibrium

(REE) that emerges when policymakers maintain a fixed policy rule for xt, while private

agents continue to learn and compute expectations using the procedure described in the

previous section. The specific policy rule that we employ is:

xt = 0.1it−1 + (1 − 0.1) [0.5yt−1 + 1.5πt−1 + r] (17)

While this rule is chosen arbitrarily, its sole purpose is to provide a REE that we can employ

as starting point for the analysis.

Table 1 reports our results. Column (1) describes the behavior of the variables at the

REE. In the other scenarios, we let policymakers and private agents implement the full

learning and decision procedure, but we consider different sets of initial beliefs on the pa-

rameters cyt, cπt, and ψt (specified at the top of each column in Table 1).9 In columns (1)-(2),

agents’ initial beliefs are consistent with the long-run equilibrium of the economy. On the

other hand, columns (3)-(5) study scenarios in which the beliefs of one or both sides of the

economy are on the process of moving from the their initial REE values towards their SCE

values.

Three main results emerge from Table 1. Column (2) shows that two-sided learning can

alter the behavior of the variables relative to the REE case, even when beliefs are already

at their SCE values. Columns (3)-(5) suggest that when the beliefs of at least one side of

the economy are changing, the learning and decision sequence implied by our model can

affect the correlations between variables in terms of magnitude and/or sign. Finally, column

(5) indicates that policymakers’ changing beliefs might be particularly important for the

dynamics of the economy, as they seem to have an impact on the volatility of the variables

6The simplyfing assumption of uncorrelated exogenous shocks is made to fully focus on the persistence
arising from the dynamics of our model.

7We also experimented with t0 = 40 and gt = g = 0.01 (constant gains), and we found that the results
were very similar.

8For all values of the parameters within a reasonable range, the SCE is indeterminate.
9The value of σ̂2

ω,0 is the same (0.5) in both the REE and the SCE.
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and their persistence, in addition to their correlations.

REE
(1)

cy0,cπ0 at SCE
ψ0 at SCE

(2)

cy0,cπ0 at REE
ψ0 at REE

(3)

cy0,cπ0 at SCE
ψ0 at REE

(4)

cy0,cπ0 at REE
ψ0 at SCE

(5)

σy 0.869 0.756 0.780 0.768 0.806

σπ 0.575 0.740 0.684 0.592 1.033

σi 0.811 0.614 0.745 0.616 0.816

autocorry 0.201 0.580 0.449 0.478 0.692

autocorrπ 0.368 0.527 0.597 0.435 0.735

autocorri -0.130 0.252 0.724 0.340 0.747

σy,π -0.538 -0.228 -0.133 -0.537 0.086

σy,i -0.811 -0.424 -0.739 -0.724 0.132

σπ,i 0.165 0.266 -0.406 0.065 0.650

Table 1 - Summary statistics for yt, πt, and it under different scenarios.

Figure 1 provides some insights about the speed of convergence of agents’ beliefs and

actions. This figure shows the difference between the actual policy parameters Ft and private

agents’ beliefs ψt in all the simulated patterns for the scenario reported in column (3) of Table

1. As evident from the top panels of the figure, for some of the parameters convergence can

be extremely slow.

Figure 1 - Converge between private agents’ beliefs and actual policy parameters.
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4 Conclusions

This note represents a first attempt to investigate the role of asymmetric information and

two-sided learning in a New Keynesian framework in which both private agents and poli-

cymakers are behaving optimally given their knowledge of the economy. The results of our

simulations show that two-sided learning can have important consequences on the relation-

ships between variables, particularly when the beliefs of the central bank are still adjusting

towards their (long-run) SCE values.
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Appendix to Two-sided Learning and Short-Run

Dynamics in a New Keynesian Model∗

Christian Matthes† Francesca Rondina‡

Matrices in the PLMs for private agents and the central bank

The true model of the economy is a standard New Keynesian framework, as developed by

Gali (2008); the specification that we use is similar to Dennis and Ravenna (2008). We assume

perfect indexation of prices that cannot be reset to past inflation, as in Christiano et al. (2001).1

Private agents’ behavior in this economy can be described by the following equations:

yt = EPA
t (yt+1)−

1

σ

(
it − EPA

t (πt+1)− rnt
)

(1)

πt =
1

(1 + β)
πt−1 +

β

(1 + β)
EPA
t (πt+1)−

κ

(1 + β)
yt + wt (2)

rnt = r + ut (3)

ut = ρuut−1 + εut (4)

wt = ρwwt−1 + εwt (5)

where all the variables are as described in the paper. In addition the central bank controls the

nominal interest rate it through the policy instrument xt according to the equation:

it = xt + vt (6)

where vt is a monetary policy shocks, which is assumed to follow the AR(1) process:

vt = ρvvt−1 + εvt (7)

∗The views expressed in this appendix are those of the authors and don’t necessarily reflect the position of
the Federal Reserve Bank of Richmond or the Federal Reserve System.
†Federal Reserve Bank of Richmond, email: christian.matthes@rich.frb.org
‡University of Ottawa, email: frondina@uottawa.ca
1This assumption ensures that the pricing equations are unaffected by the presence of positive trend inflation,

so that the steady state output level is independent of the steady state inflation level. See Ascari (2004) for a
discussion.
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Private agents estimate:

it = zR′t−1ψt + ωPAt (8)

while the central bank estimates:

yt = zR′t−1cyt + ωCByt (9)

πt = zR′t−1cπt + ωCBπt (10)

where in both cases:

zRt =
[
yt πt it 1

]′
(11)

The central bank, chooses the policy rule for xt by minimizing the expected discounted

quadratic loss function:

ECB
t−1

∞∑
j=0

βj[(πt+j)
2 + λy(yt+j)

2 + λi(it+j − it+j−1)2] (12)

given (9) and (10), and the estimated values of cyt and cπt. Since the central bank’s optimization

problem is repeated in every period given updated values of cyt and cπt, the optimal policy vector

will be dependent on the current period estimates of these parameters and it will be changing

over time: xt = −FtzRt−1. The expression for the nominal interest rate becomes:

it = f0t + fπtπt−1 + fytyt−1 + fitit−1 + vt (13)

The matrices of the PLM for the central bank can easily be obtained using (9), (10), and

the policy rule (13).
1 0 0 0 0

0 1 0 0 0

0 0 1 −1 0

0 0 0 1 0

0 0 0 0 1




yt

πt

it

vt

1

 =


c1yt c2yt c3yt 0 c4yt

c1πt c2πt c3πt 0 c4πt

−fπt −fyt −fit 0 −f0t
0 0 0 ρv 0

0 0 0 0 1




yt−1

πt−1

it−1

vt−1

1

+

+


1 0 0

0 1 0

0 0 0

0 0 1

0 0 0


ω

CB
yt

ωCBπt

εvt


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or:

ACBzCBt =
(
CCB
t −BCBFt

)
zCBt−1 +DCBεCBt

This expression gives the PLM for the Central Bank:

zCBt = Φ1,tz
CB
t−1 + Φ2ε

CB
t (14)

where Φ1,t =
(
ACB

)−1 (
CCB
t −BCBFtQ

CB
)

and Φ2 =
(
ACB

)−1
DCB.

The PLM for private agents is given by the equations of the model (1)− (4) together with

the perceived interest rate rule (8). These equations can be rewritten in matrix form as:



1 0 1
σ
− 1
σ

0 0 0 − 1
σ
r

κ
(1+β)

1 0 0 −1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





yt

πt

it

ut

wt

EPA
t (yt+1)

EPA
t (πt+1)

1


=



1 1
σ

0 0 0 0 0 0

0 β
(1+β)

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0


EPA
t





yt+1

πt+1

it+1

ut+1

wt+1

EPA
t+1(yt+2)

EPA
t+1(πt+2)

1




+

+



0 0 0 0 0 0 0 0

0 1
(1+β)

0 0 0 0 0 0

ψyt ψπt ψit 0 0 0 0 ψ0t

0 0 0 ρu 0 0 0 0

0 0 0 0 ρw 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1





yt−1

πt−1

it−1

ut−1

wt−1

EPA
t−1(yt)

EPA
t−1(πt)

1


+



0 0 0

0 0 0

0 0 1

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0



 εut

εwt

ωPAt



3



or

APAzPAt = BPAEPA
t

(
zPAt+1

)
+ CPA

t zPAt−1 +DPAεPAt

The solution will take the form:

zPAt = Γ1,tz
PA
t−1 + Γ2,tε

PA
t

thus

EPA
t

(
zPAt+1

)
= Γ1,tz

PA
t

and we can rewrite

APAzPAt = BPAΓ1,tz
PA
t + Ctz

PA
t−1 +DPAεPAt

This expression can be used to solve for Γ1,t and Γ2,t; we use Sims’(2001) Gensys program for

this purpose and we allow for the possibility of an indeterminate solution.
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Matrices in the ALM

The ALM for the variables in the model can be obtained from the true equations (1)− (4)

together with the true interest rate rule expressed by (13), and can be written in matrix form

as: 

1 0 1
σ
− 1
σ

0 0 0 0 − 1
σ
r

κ
(1+β)

1 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





yt

πt

it

ut

wt

vt

EPA
t (yt+1)

EPA
t (πt+1)

1


=



1 1
σ

0 0 0 0 0 0 0

0 β
(1+β)

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


EPA
t





yt+1

πt+1

it+1

ut+1

wt+1

vt+1

EPA
t+1(yt+2)

EPA
t+1(πt+2)

1




+

+



0 0 0 0 0 0 0 0 0

0 1
(1+β)

0 0 0 0 0 0 0

ψyt ψπt ψit 0 0 0 0 0 ψ0t

0 0 0 ρu 0 0 0 0 0

0 0 0 0 ρw 0 0 0 0

0 0 0 0 0 ρv 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1





yt−1

πt−1

it−1

ut−1

wt−1

vt−1

EPA
t−1(yt)

EPA
t−1(πt)

1


+



0 0 0

0 0 0

0 0 1

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0



ε
u
t

εwt

εvt



or:

Azt = BEPA
t

(
zPAt+1

)
+ Ctzt−1 +Dεt
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Due to indeterminacy, the matrices of the ALM have an invertibility issue. To side-step this

problem, we plug in the PLM of private agents twice to get:

EPA
t

(
zPAt+1

)
= Γ1,tz

PA
t

= Γ2
1,tz

PA
t−1 + Γ1,tΓ2,tε

PA
t

and from this we can write:

Azt = B
(
Γ2
1,tM

PAzt−1 + Γ1,tΓ2,tε
PA
t

)
+ Ctzt−1 +Dεt (15)

where MPA is a matrix selecting the elements of zPAt from zt. Notice that the elements of εPAt

can be written as a function of the elements of εt and zt−1, since εut and εwt are included in εt

and

ωPAt = it − ψtzRt−1
= − (Ft + ψt) z

R
t−1 + vt

= − (Ft + ψt) z
R
t−1 + εvt

where the last step follows from the simplifying assumption that we made in the implementation

of our model that ρv = 0. Notice however that ωPAt enters in (15). For this reason, we adjust

the model to account for private agents’ perceived variance of ωPAt as follows:

εPAt =

 1 0 0

0 1 0

0 0 σv/σ̂ωt

 εt

−

 0 0 0 0

0 0 0 0

0 0 1/σ̂ωt 0

 (Ft + ψt) z
R
t−1

or:

εPAt = S1εt + S2z
R
t−1

S1εt + S2M
Rzt−1

where σ̂ωt is the estimated standard deviation of ωPAt , and MR is a matrix selecting the elements

of zRt−1 from zt−1. Finally, the ALM of the model can be written as:

zt = Ψ1,tzt−1 + Ψ2,tεt (16)

6



where

Ψ1,t = A−1
(
BΓ2

1,tM
PA + C + Γ1,tΓ2,tS2M

R
)

Ψ2,t = A−1 (D + Γ1,tΓ2,tS1)
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