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Abstract

Real GDP and industrial production in the US feature substantial tail risk. While this
fact is well documented, several questions remain unanswered. Is this asymmetry driven
by a specific structural shock? No. We show that the 10th percentile of the predictive
growth distributions responds about three times more than the median to both monetary
policy and financial shocks. What mechanism can generate this asymmetry in the data?
We discuss nonlinear VAR models and a nonlinear equilibrium model that are capable
of matching our empirical findings. Furthermore, we provide empirical evidence that

allows us to differentiate between two competing theories.
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1 Introduction

Recent contributions in macroeconomics and finance (Adrian, Boyarchenko and Giannone,
2019; Giglio, Kelly and Pruitt, 2016) have highlighted that growth in measures of US output
are highly asymmetric and feature substantial tail risk. To illustrate this feature, Figure
1 plots the quantiles of the one-year ahead forecast distribution of growth in Real Gross
Domestic Product (GDP) and Industrial Production (IP), commonly called “growth-at-risk”.
We replicate the results from Adrian, Boyarchenko and Giannone (2019) based on quarterly

GDP as well as the monthly GDP measure that we will rely on in our benchmark analysis,

which is based on the model of Caldara, Cascaldi-Garcia, Cuba Borda and Loria (2020).!
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Figure 1: Quantiles of One-Year-Ahead Growth for Various Measures.

Note: Quantiles of Average Growth over the Next Year of Monthly Real GDP Growth and Industrial Pro-
duction Growth as in Caldara, Cascaldi-Garcia, Cuba Borda and Loria (2020) (Top Panel) from January
1973 to December 2019, and of Quarterly Real GDP Growth as in Adrian, Boyarchenko and Giannone (2019)
(Bottom Panel) from 1973-Q1 to 2015-Q4. Grey-shaded bars indicate NBER-dated recessions.

LGiglio, Kelly and Pruitt (2016) focus on asymmetries in industrial production growth due to systemic risk.
Figure 1 shows that this asymmetry is robust to using other specifications than those in their paper.



All panels convey the same asymmetry — the 10th quantile moves substantially more, in a
recession, relative to the median or the 90th percentile.” While this fact is well documented,
several questions remain unanswered. First, is this fact driven by a specific structural shock?
Second, which mechanism is behind this asymmetry? We tackle these questions in two stages.

In the first stage, we derive a convenient two-step estimation routine that merges ideas
from Quantile Regression (Koenker and Bassett, 1978) to determine quantiles of the distri-
bution of interest with Local Projection (Jorda, 2005) to assess the effects of monetary policy
shocks and shocks to financial conditions on the distribution of real GDP growth. We devise
a bootstrap algorithm to capture all relevant statistical uncertainty in this two-step approach
and that might be of independent interest to some readers. We find that responses to both
shocks considered here show substantial asymmetry - over the first year the 10th percentile
moves on average 3 times more than the median in response to the structural shocks.

In the second stage, we devise a conceptual framework to interpret these results by means
of two data-generating processes (DGPs), which we also use as laboratories to test our empir-
ical machinery. The first DGP, a “semi-structural” threshold model, reveals crucial insights
into how to discern between various mechanisms that can drive growth-at-risk. In particular,
while several configurations of the model can give rise to observationally similar responses
of GDP growth to structural shocks, we show that some can be discriminated by looking at
the response of the conditioning set of the quantile regression. Guided by these insights, we
estimate the responses of the conditioning variables of our empirical GDP growth quantiles
and find that structural shocks exert nonlinear effects on GDP growth through both financial
conditions and macroeconomic activity. The second DGP, the nonlinear DSGE model with
financial panics by Gertler, Kiyotaki and Prestipino (2019), confirms that a common prop-
agation mechanism amplifies downturns, thus supporting the plausibility of our empirical

findings. We also use these DGPs to highlight specification choices in our framework.

Our analysis is motivated by concerns that economic policymakers and market participants
have long harbored: They are generally not only worried about what changes to economic
conditions will do to the economy on average, but also how these changes affect both the
probability of large harmful events occurring as well as the magnitude of these events.” We

borrow the concept of value-at-risk from the finance literature to operationalize the concept

2Details on the construction can be found in Section 2.1.

3For research emphasizing that the Federal Reserve is concerned by downside risk, see [Kilian and Manganelli
(2008). For direct evidence of a policymaker thinking about downside risk (which we will use synonymously
with tail risk), see the March 2019 speech by Lael Brainard.


https://www.federalreserve.gov/newsevents/speech/brainard20190307a.htm

of macroeconomic tail risk. To be more precise, we follow Adrian, Boyarchenko and Giannone
(2019) and study the distribution of macroeconomic risk by estimating a quantile forecast
regression of real GDP growth over the next year for various quantiles.
Standard impulse response functions in linear models such as Vector Autoregressions (VARS)
are not built to answer these questions as they track average outcomes. While fully parametric
VARs that specify the probability distribution of the one-step ahead forecast error could be
used to derive such measures of risk, these VARs put many restrictions on the behavior of
forecast densities.” Our goal is to provide a flexible, yet simple framework that can directly
tackle these issues. A flexible approach is useful when studying GDP growth because GDP
growth is far from Gaussian, as can be seen from papers that interpret the non-normality
in GDP growth as coming from fat tails and/or stochastic volatility (Fagiolo, Napoletano
and Roventini, 2008, Curdia, Del Negro and Greenwald, 2014, and Justiniano and Primiceri,
2008). Our approach is constructed to be flexible through the following modeling choices: In
the initial quantile regression stage, we model each quantile separately instead of assuming a
specific distribution for the forecast distribution of real GDP growth. In the second stage, we
use local projections to impose as few restrictions on the data generating process as possible.”
In devising a conceptual framework to study the sources of macroeconomic risk, our paper
also provides key insights on how to replicate growth-at-risk patterns in theoretical models.
So far, there have been limited efforts in trying to rationalize results from the growth-at-risk
literature and to use them as guidance for economic modeling. One such effort is Adrian,
Liang, Zabczyk and Duarte (2020) which adapt a standard New Keynesian model to include
“financial vulnerability” driven by movements in endogenous and forward looking financial
conditions and calibrate it to match growth-at-risk patterns. Another example is Aikman,
Bluwstein and Karmakar (2021) which build a semi-structural New Keynesian model with
financial frictions and obtain a fat-tailed distribution of GDP. What sets our approach apart
is that we specifically build data-generating processes that explain our empirical evidence on

the asymmetric effects of shocks on the growth outlook, as outlined above.

4Even non-linear time series models such as VARs with stochastic volatility and time-varying parameters
along the lines of Cogley and Sargent (2005) and Primiceri (2005) impose substantial structure. Carriero,
Clark and Marcellino (2020) propose an extension to the standard stochastic volatility structure embedded
in these models that helps to capture tail risks.

5As shown by Plaghborg-Moller and Wolf (2019), local projections and VARs asymptotically estimate the same
impulse responses, but are on diametrically opposite ends of the bias-variance trade-off in finite samples.
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The paper is organized as follows. Section 2 gives an overview of our methodology to estimate
the quantiles and the impulse responses of those quantiles to structural shocks. We then
introduce the specifications and data transformations used in our empirical analysis in Section
3, which also presents our main results. In Section 4 we lay out a conceptual framework to
rationalize and shed light on the potential mechanisms behind our findings, and show more
empirical results to support these mechanisms. We offer concluding remarks and suggest

avenues for future research in Section 5.

2 Econometric Methodology

Our approach consists of two steps, which we outline in this section. First, we compute
quantiles of the predictive distribution of one-year-ahead GDP growth. We focus on the 10th
percentile and, as reference points, the median and 90th percentiles. We interpret this 10th
percentile of the predictive distribution of future GDP growth as macroeconomic risk. Our
second step then uses local projections to assess how structural shocks affect macroeconomic
risk and the predictive distribution of average future real GDP growth more generally. In

Appendix A we provide intuition for impulse responses of quantiles.

2.1 Conditional Quantiles

Quantile regression models (Koenker and Bassett, 1978) are a flexible tool to quantify risks
surrounding the growth outlook and to study its determinants.” The first step in our anal-
ysis is to use this methodology to compute conditional quantiles of future GDP growth as
in the quantile regression application in Caldara, Cascaldi-Garcia, Cuba Borda and Loria
(2020). Their framework is inspired by Adrian, Boyarchenko and Giannone (2019), with the
important difference of moving to monthly frequency so as to allow a timely assessment of
developments in financial markets and the real economy. This is done by estimating GDP
growth as well as a financial and a macroeconomic factor at monthly frequency using a
Mixed-Frequency Dynamic Factor Model. The data are illustrated in Appendix B. We use
this monthly measure of GDP as our benchmark because GDP takes a broader view of real
activity compared to Industrial Production and a monthly frequency is helpful to both en-
large our data sample and minimize issues of temporal aggregation when it comes to the

identification of shocks. However, our results are very similar if we switch to a quarterly fre-

SFor an introduction to the quantile regression methodology, see Koenker (2005).



quency and use standard quarterly data on GDP or if we use Industrial Production instead

of the monthly measure of GDP, as shown in Appendix E.

Let us denote by Aiyt+1,t+12 the average (annualized) real GDP growth over the next 12
months and by F'IN; and M F; the financial factor and macroeconomic factor, respectively.
Formally, the conditional future GDP growth quantiles are estimated from a linear quantile

regression model whose predicted value
Grt = Qr(Ayrs1412| FING MEy) = &y 4 B, FIN 4+ 4, MF;, 7€ (0,1) (2.1)

is a consistent estimator of the quantile function of Ayt+17t+12 conditional on { F'I Ny, M Ft}.7’8
For the estimation of the parameters we use data from January 1973 to December 2019.

The time evolution of the one-year-ahead predictive GDP growth distribution can be
illustrated through the fitted values for the 10th quantile (left tail), the median and the 90th
quantile (right tail). As previously shown in Figure 1, these quantiles (top-left panel) are
similar to those obtained by Adrian, Boyarchenko and Giannone (2019) (bottom panel) at
quarterly frequency (originally run for the period from 1973:Q1 to 2015:Q4) by conditioning
on the National Financial Conditions Index (NFCI) and GDP growth.

One novel finding in Caldara, Cascaldi-Garcia, Cuba Borda and Loria (2020) is that not
only deteriorating financial conditions but also decelerating economic activity, once measured
by the informationally rich macroeconomic factor instead of GDP growth as in Adrian, Bo-
varchenko and Giannone (2019), make the growth outlook more vulnerable. In this sense,
this supports the evidence in Plaghorg-Moller, Reichlin, Ricco and Hasenzagl (2020) that

financial conditions are not the (only) determinant of downside risk.

2.2 Impulse Responses

Since the fitted quantiles summarize not only the median but, most importantly, the tails of

the future GDP growth distribution, they constitute a measure of macroeconomic (downside

"Formally, the dependence between explanatory variables z; and a quantile of y; is measured by BT:

T

BT = aggmﬂénz (T : ]]-(ytZaﬂt,B) |yt _xtBT| + (1 - T) ’ ]]‘(yt<$z[3)|yt - xtﬂTD , TE (Oa 1)
TeR =1

where 1.y denotes the indicator function, taking the value one if the condition is satisfied. Note that no
distributional assumptions about the error term are required.
8 A similar approach using factors in quantile regressions can be found in Giglio, Kelly and Pruitt (2016).



and upside) risk. Our interest lies in investigating whether and how these measures of risk
respond to aggregate shocks. We estimate responses of different future GDP growth quantiles
to a variety of aggregate shocks by applying the local projection method of Jorda (2005). As

a baseline, we run the following linear regression:
Grit+s = 07 + 07 shocky+W(L); controlsi+ui, s, s=1{0,...,5} (2.2)

where ¢4+ is the 7th quantile computed in the previous section, shock; is the structural
shock of interest, and V(L)% controls; is a lag polynomial of control variables which include
the lagged quantiles and model-specific controls that we will discuss in detail later.” Note
that there are two distinct notions of “horizon” in our application. First, the horizon in
the quantile regression h, which we keep fixed at one year and which captures how forward-
looking our measure of risk is. The second notion of horizon is s in the local projection,
which we vary as we trace out how risks respond at different horizons to a shock at time t¢.
The response of quantile ¢, at time ¢+ s to a shock at time t is then given by 67.

We construct the impulse-response functions by estimating the sequence of the #7’s in a
series of univariate regressions for each horizon. Confidence bands are based on the bootstrap
procedure described in Appendix C, which controls for serial correlation in the error terms
and the estimation error in the quantiles.

At this point it is useful to contrast our approach with another approach that aims to
combine quantile regressions with local projections, an approach advocated for by Linnemann
and Winkler (2016). We interpret the 10th percentile of average future GDP growth as a
measure of downside risk and we then ask how this measure of risk reacts to different shocks.
We study a number of shocks and find it useful to use the same quantile (or measure of risk)
for all shocks we study in our local projections. Linnemann and Winkler (2016), instead,
are interested in one shock only and model the conditional quantiles conditional on, among
other things, a fiscal shock and thus include the shock directly in the quantile regression.
Linnemann and Winkler (2016) cannot distinguish between the two horizons h and s that
we emphasized above (given that they ask a different question, they probably would not

want to).'" An advantage of their approach is that they do not require a separate step to

9To be specific, we have W(L)$ = W5 L+W§ L?+..4+ W5 LP so that W(L)$ controls; only contains p lags

of the control variables.

10 Another approach in empirical macroeconomics that uses quantile regressions is introduced in Mumtaz
and Surico (2015), who use quantile autoregressive models to study state dependence in the consumption-
interest rate relationship. Recent work that combines quantile regressions with VAR models to estimate
impulse responses is presented in Chavleishvili and Manganelli (2017) and Kim, Lee and Mizen (2019).
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estimate the quantiles. An advantage of our approach is that it allows us to focus on the
shocks’ impact on future growth that operates solely through the conditioning variables of the
quantile regression (in our case, macroeconomic activity and financial conditions). This also
comes with the benefit of reducing noise and thus increasing the robustness of the empirical
model. Indeed, the one-step approach requires more data to obtain reliable estimates as it
tries to estimate conditional quantiles that also condition on specific values of the shocks of
interest. Reassuringly, a one-step approach gives similar results, as shown in Appendix I,
likely reflecting the fact that the financial and macroeconomic factor are a sufficiently rich set
to describe growth-at-risk dynamics. Furthermore, we later confirm these findings in Section

4 by means of a Monte Carlo exercise.

3 The Response of Tail Risk to Macroeconomic Shocks

We estimate how quantiles of average GDP growth over the next year respond to two ag-
gregate shocks, a monetary shock and a financial shock. We choose these shocks because
they represent very different sources of economic fluctuations - if the response patterns are
similar across these shocks this gives us confidence that a common propagation mechanism
is at play. We identify these shocks via standard instruments in the literature. Next, we
introduce the specifications and data transformations. More details on our data sources are

provided in Appendix B. A large battery of robustness checks can be found in Appendix .

Monetary Policy Shocks Our benchmark choice are the monetary policy shocks ex-
tracted from a version of the Gertler and Karadi (2015) proxy VAR which uses the Miranda-
Agrippino and Ricco (2020) shocks (updated up to December 2019) as a proxy for the mone-
tary disturbance in the model.'" Details on how we extract the monetary policy shocks from
the Gertler and Karadi (2015) VAR are provided in Appendix D.

We estimate the following regression for the sample from January 1986 to December 2019:
Grt+s = 07 +07 shocky +W(L)7 shocks +uf s, (3.1)

where shock; denotes the monetary policy shock and twelve of its lags are controlled for. In

1'wWe use Miranda-Agrippino and Ricco (2020) shocks as instruments to deal with the potential confounding
problem in the high-frequency monetary surprises that may arise due to the Fed’s private information, see,
e.g., Nakamura and Steinsson (2018), Jarociniski and Karadi (2020), Miranda-Agrippino and Ricco (2020),
and Zhang (2019).



Appendix I we show that other measures of monetary policy shocks, such as the Antolin-
Diaz and Rubio-Ramirez (2018) and Romer and Romer (2004) shocks, that allow to start

the sample in 1973, give rise to very similar results.

Credit Spread Shocks We take the Gilchrist and Zakrajsek (2012) excess bond premium
(EBP) updated by Favara, Gilchrist, Lewis and Zakrajsek (2016) to construct an aggregate
credit spread shock. This shock can be identified by setting the controls in the local projection
appropriately.'” For the identification of EBP shocks, we assume that no other shocks can
affect the excess bond premium on impact within a month.

We estimate the following regression for the sample from January 1973 to December 2019:
. /
Qri+s =07 +07 EBP 4+ W (L)7 [ EBPF, ", Ay, it} U s (3.2)

where we include twelve lags of all controls. In Appendix I© we show that starting the sample

in 1986 as the monetary policy shock, gives rise to very similar results.

Summarizing Uncertainty Our two-step approach is subject to two key sources of sta-
tistical uncertainty: not only are the coefficients in the local projections step subject to
estimation uncertainty, but the quantiles that are used as data in the local projection step
themselves are estimated with uncertainty. We thus design a bootstrap procedure to obtain
confidence intervals that captures the uncertainty of both the quantile regression and the

local projection step. The full details are provided in Appendix C.

Interquantile Ranges The uncertainty around the IRFs of single quantiles estimated in
separation from each other cannot readily answer the question of whether quantile responses
are statistically different from each other because they represent marginal responses that
disregard the correlation between the responses of the various quantiles. This is why we run,
for both shocks, another regression in which we recognize that the quantiles come from a
common data generating process and thus compute the impulse responses of interquantile

ranges directly. The specification reads:

dryt+s — Ay t+s = 573— + 9:— shocky + \I[(Lﬁ' X+ uf’,t+s7 (3?))

12For a further discussion of how timing restrictions such as this can be incorporated into local projections,
see Barnichon and Brownlees (2019) and Plagborg-Mgller and Wolf (2019).



where 71 and 75 are the quantiles of the interquantile range and X; the shock-specific controls.

3.1 Results

We present the impulse responses of the one-year-ahead GDP growth quantiles and interquan-
tile ranges in Figure 2. In the top panel, we plot the impulse responses of the quantiles after
a contractionary shock. To make the responses comparable across shocks, we rescale the
responses across quantiles such that the median falls by 25 basis points on impact (this pro-
cedure does not distort the sign of the response). The key takeaway from Figure 2 is that
there is a clear asymmetry in the response to all shocks we consider: The 10th percentile
moves more than the median, which in turn moves more than the 90th percentile. The re-
sponses of the difference between the 10th and 50th quantiles are statistically different from
zero, whereas the same cannot be said about the responses between the difference in the
responses between the 50th and 90th quantiles.

These differences are economically sizeable. To give a sense of the quantities, Table 1
shows both the average ratio and the maximum ratio of the impulse responses of the 10th
percentile relative to the median for the first year (in other words, we look at the value of
the red line in the right panels of Figure 2 divided by the black line in the same figure). The
average ratio is 2.6 for the monetary policy shock and 2.7 for the credit spread shock. The
maximum ratios over the first year are similar since ratios are fairly stable. The response of

the 10th percentile for both shocks can be three times as large as the median response.

Table 1: Ratio of Impulse Responses (10th Quantile to Median) Over First Year.

Monetary Policy Shock  Credit Spread Shock

Average Ratio 2.6 2.7
Maximum Ratio 2.9 3.0

This means that a contractionary shock not only makes average (median) outcomes worse,
it moves probability mass to the left tail of the GDP growth distribution even relative to
what one would expect from median outcomes. This statement holds for both monetary
policy and credit spread shocks. These results stress the importance of assessing how shocks
move the entire distribution of future outcomes, and not just measures of central tendency.

As we show in the next section, a linear model cannot generate this asymmetry. Hence our
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Figure 2: Impulse Responses of Quantiles of Average GDP Growth over the Next
Year to Contractionary Shocks.

Note: Red is response of the 10th quantile, black is the median response, blue is response of the 90th quantile.
Confidence bands correspond to median response, 68% significance level, based on Newey-West and block-of-
blocks bootstrapped standard errors. The x-axis gives the horizon of the impulse response, in months. The
response on the y-axis is measured in percentage points.

results emphasize that nonlinearities are important to understand macro risk.'” Furthermore,
these nonlinearities cannot be tightly linked to the response to one specific shock, as it is
present in both shocks we study. Our results imply that these asymmetries are a feature
of the propagation mechanism of shocks, not the original impact. In the next section we

describe two data-generating processes that rationalize the asymmetries we find in the data.

13As highlighted in Koenker (2005), even linear quantile regressions such as those used here can capture
nonlinearities because each quantile is modelled separately.
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4 Inspecting the Economic Mechanism

As noted in our introduction, there are at least two key competing theories on the sources of
Growth-at-Risk. The first is that some shock has an independent, nonlinear effect on growth.
The second is that shocks share a common, nonlinear propagation mechanism.

In the previous section we established that macroeconomic risk is not driven by one
shock only. Indeed, we found that both monetary policy and financial shocks generate an
asymmetric response in the quantiles of future real GDP growth. In this section, we shed
light on potential economic mechanisms underlying our empirical findings. As a by-product,
we also validate our two-step approach. To do so, we perform Monte Carlo experiments that
draw on a “semi-structural” VAR model with switching coefficients and volatilities, as well
as on the nonlinear DSGE model of Gertler, Kiyotaki and Prestipino (2019) featuring bank

panics and financial accelerator mechanisms.

4.1 A “Semi-Structural” Threshold VAR Model

We start by considering a specific version of a “semi-structural” threshold VAR model which
features the following key mechanism: Whenever financial conditions or macroeconomic con-
ditions worsen considerably, the shock’s effect on these variables is more pronounced. This
reflects the idea that during recessions nonlinearities arise which exacerbate the effect of

adverse shocks.

Model I Our shock of interest shocks has a nonlinear effect on the growth outlook through

a common propagation mechanism governed by f; and my.

The VAR model consists of three endogenous variables and three innovations:

yt = Bo + Bife + Pamny + oyef (4.1)
fi= Oélftfl+062mt+043(ft71,mt,1)5h00kt+6{ (4.2)
my = yimy—1 +v2fi—1 +73(fi—1,mi—1)shock, + e} (4.3)
5, if fr> f* & my<m® =5, if fi > f* & my <m*
az(fr,ms) = . 3 fromu) =
1, normal state —1, normal state

12



where v, f¢, ms respectively denote GDP growth, a financial factor, and a macroeconomic
factor and ef el{[ and ef" are shocks to these variables; shock; is the structural shock of interest
for the impulse response functions. All shocks are drawn from an independent standard
normal distribution. Notice that as(f;,m¢) and v3(f;,m;) are a function of f; and m;. In
particular, when f; is larger than a threshold f* and my is smaller than a threshold m™* the
effect of an adverse shock on future GDP growth is more pronounced. This captures the idea
that due to amplification mechanisms, adverse shocks that hit during already bad times, as
measured by tight financial conditions and weak macroeconomic activity, make the growth
outlook particularly vulnerable. The other parameter values can be found in Appendix F.
This model encodes the view that some recessions (i.e. situations where m; is low) can be
more severe than others - for instance, if the financial variable f; is not above the threshold
the associated recession tends to be milder. A similar idea is pursued in Jorda, Schularick
and Taylor (2020). Even though we focus on one structural shock here for parsimony, our
results would be qualitatively the same if instead we had more than one structural shock (i.e.
if we replaced agshock; and y3shock; with 37, abshock} and s v4shock!, respectively,
where shock! is the time ¢ realization of the ith structural shock of interest and the number

of structural shocks [ is larger than 1).

Impulse Responses We simulate the model 1000 times for 408 periods (the number of
periods between January 1986 and December 2019) and store {y, fi,m¢, shock;} for each
simulation. We first construct average future GDP growth over the next four periods and
estimate its quantiles conditional on the financial and the macroeconomic factor. In Figure
3 we report the impulse responses of the quantiles to the (contractionary) shock of interest,
computed via local projection as in our empirical exercise. We again normalize the responses
such that, on impact, the median drops by 25 basis points.

There are two important results that emerge. The first is that in the case of the threshold
VAR model (left panel), the shock pushes down the left tail more strongly than other parts
of the distribution, as in our empirical findings. This can be explained by the fact that
when the shock hits during times of financial and macroeconomic distress, its effect is more
pronounced, thus making the growth outlook more vulnerable. The second result is that,
not surprisingly but reassuringly, no asymmetry is found when we shut down non-linearities
in the DGP and thus consider a linear VAR model (right panel). The parameter values for

the linear model can also be found in Appendix F.
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Figure 3: Impulse Responses of Quantiles of Simulated Future GDP Growth
from Threshold VAR (Left Panel) and Linear VAR (Right Panel) Model.

Note: Straight lines are medians across simulations. Shaded areas are 68% confidence bands.

In Figure 4 we compare the IRFs of the two-step and one-step approach, in which the re-
sponses are obtained by successively leading the dependent variable of the quantile regression
(see equation (4.10)). While the responses are similar in shape and magnitude, the one-step
approach suffers from higher uncertainty, reason why we favor the two-step procedure in our
analysis. Notice that as discussed in Section 2.2, we do not expect the point estimates across

approaches to be the same. What is important is that qualitatively the patterns are similar.

Two-Step Approach One-Step Approach
0.2 0.2 -
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Figure 4: Impulse Responses of Quantiles of Simulated Future GDP Growth
from Threshold VAR Model. Two-Step vs. One-Step Approach.

Note: Straight lines are medians across simulations. Shaded areas are 68% confidence bands.
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Alternative Specifications of the DGP At this point, it is key to recognize and un-
derstand that several data-generating processes can deliver the results shown above. This
happens, for instance, in the competing model II below. In this model the shock has a
linear effect on financial and macro conditions but the propagation mechanism is such that
the latter are nonlinearly related to GDP growth. In particular, it features the following
mechanisms. First, whenever financial conditions or macroeconomic conditions worsen, their
effect on future GDP growth is more pronounced and so is its variance. (This is governed
by the terms (1 (f;,m¢) and Sa(ft,m) in the first equation.) This reflects the idea that dur-
ing recessions nonlinearities arise which can prolong and exacerbate downturns as well as
increase uncertainty. Second, both macroeconomic and financial conditions are still driven
by a common shock (structural shocks affect multiple aggregates at the same time), but this

shock has a linear effect on these variables in this model.

Model IT  Shocks affects fi and my linearly, but their effect on y; is larger during bad times.

ye = Bo+ B (fe,me) fr + Bo(fe, me)me + oy (fr,me)ef (4.4)
fr = a1 fi—1 4+ aomy + asgshocky + e{ (4.5)
my = y1my—1+ 72 fi—1 +y3shocks 4 e (4.6)
—1.5, if ft>f>}< & my <m* 1.5, if ft>f>’< & my <m*
Bl(ftamt): ) BQ(ftvmt): )
—0.5, normal state 0.5, mnormal state

2, if fi > f*" & my<m*
Uy(ftamt) =
0.1, normal state

If we again simulate data from this competing model, feed it to our two-step procedure
and compute the impulse responses, the model would again signal that the effect of the shock
on GDP growth is nonlinear — as evident in the right panel of Figure 5. In particular, we
obtain again the result of model I, in the left panel, that the lower tail moves down more
than the median. This result is not surprising since financial and macro conditions are the
key variables governing the nonlinearity of future growth in our threshold VAR and both of

these variables are in turn driven by that common shock.
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Figure 5: Comparison of Impulse Responses of Quantiles of Simulated Future
GDP Growth from Threshold VAR. Model I vs. Model II.

Note: Straight lines are medians across simulations. Shaded areas are 68% confidence bands.

These same patterns can be replicated by other DGPs, like model III below, in which the
asymmetric effect of the shock is propagated nonlinearly through macroeconomic activity
my; only. However, because the asymmetry with respect to my is inherited by the finan-
cial side (since f; depends on my), only the impulse response of f; to shock; would unveil
the true source of the nonlinearity (m;). Model III thus acknowledges how the interdepen-
dence between macro and financial conditions can confound inference on which variables are

responsible for the asymmetric response of GDP growth to shocks.

Model III Asymmetry from macroeconomic conditions my is inherited by f; and y;.

Yyt = o+ B1fi + Bamy + oyef (4.7)
fr = a1 fi—1+ agmy + asgshock; + e{ (4.8)
my = y1my—1 + Y2 fi—1 +y3(mi—1)shock, + e} (4.9)

Discriminating Theories Some DGPs can be discriminated by looking at the response
of the variables determining GDP growth (f; and m;) to the shock. In model I, the nonlinear
relationship between shock and growth, is a result of the shock’s asymmetric effect on financial
and macro conditions themselves. This is confirmed by their impulse responses in the top
panel of Figure 6, which we compute in one step. Contractionary shocks lead to more

vulnerable financial conditions, with the 90th quantile moving up more than the median, as

16



well macroeconomic activity (with the 10th quantile dropping more than the median).

This result cannot be established in model II, where the shock has a symmetric effect
on financial and macro conditions, as illustrated in the bottom panel of Figure 6. Likewise,
in model IIT only macro conditions respond asymmetrically to the shock, since the financial
factor is linearly related to it. Looking at the response of the unconditional distribution of
the conditioning variables of our quantile regression model can provide valuable insights into

the mechanism driving the asymmetric response of the growth outlook to structural shocks.

Model 1
Financial Factor Macroeconomic Factor
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Figure 6: Impulse Responses of Simulated Financial Factor and Macroeconomic
Factor from Threshold VAR. Model I vs. Model II.

Note: Straight lines are medians across simulations. Shaded areas are 68% confidence bands.
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We thus now focus on the impulse responses of the financial and macro factor quantiles
and interquantile ranges using US data. These responses are estimated in one step, where

the quantiles are estimated via:

¢r (Xigs) = 05+ 07 shocks +V(L)3 controlsy s={0,...,5} (4.10)

where X; = {F'F;, MF;} and ¢; (X¢4s) is the quantile 7 of X; at horizon s. The sequence of

coeflicients 67 traces out the impulse response to a structural shock.
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Figure 7: Impulse Responses of Quantiles of Financial Factor to Contractionary
Shocks using US Data.

Note: Red is response of the 10th quantile, black is the median response, blue is response of the 90th
quantile. Confidence bands correspond to median response, 68% significance level, based on block-of-blocks
bootstrapped standard errors. For the interquantile ranges, the bands are obtained by summing the uncer-
tainty of the quantile-pair considered (since we do not have an estimate for the covariance) and are thus on
the conservative end. The x-axis gives the horizon of the impulse response, in months. The response on the
y-axis is measured in percentage points.
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These IRFs are crucial in giving insight into the nature of the nonlinear relationship
between the shock and the growth outlook. The results in Figures 7 and &, respectively for
the financial and macro factor, point to an asymmetric response of both variables to adverse
shocks. In particular, the monetary policy and the financial shocks make the growth outlook
more vulnerable in that they disproportionately push up the upper tail of the financial factor

(in blue) and bring down the lower tail of the macroeconomic factor (in red).
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Figure 8: Impulse Responses of Quantiles of Macroeconomic Factor to Contrac-
tionary Shocks using US Data.

Note: Red is response of the 10th quantile, black is the median response, blue is response of the 90th
quantile. Confidence bands correspond to median response, 68% significance level, based on block-of-blocks
bootstrapped standard errors. For the interquantile ranges, the bands are obtained by summing the uncer-
tainty of the quantile-pair considered (since we do not have an estimate for the covariance) and are thus on
the conservative end. The x-axis gives the horizon of the impulse response, in months. The response on the
y-axis is measured in percentage points.
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4.2 A Macroeconomic Model with Financial Panics

Next, we show that the nonlinear DSGE model of Gertler, Kiyotaki and Prestipino (2019)

features the same properties as Model I and thus can also rationalize our empirical findings.

The Model We briefly discuss the key mechanism that generates the nonlinearity. We
refer interested readers to the original paper for details of the model."* The model is fully
microfounded and extends the conventional New Keynesian model with investment by in-
troducing bankers. Bankers are more efficient than households in handling loans. However,
bankers are constrained in their ability to raise external funds and are subject to runs. The
latter gives rise to multiple equilibria: one with and one without a financial panic.

A financial panic forces the banking system into liquidation, expanding the share of cap-
ital held by households. The reallocation of capital holdings from bankers to less efficient
households increases the cost of capital, which ultimately disrupts firms’ borrowing. Con-
sequently, investment drops substantially more than in the equilibrium without a bank run.
A self-fulfilling financial panic equilibrium exists if and only if, in the event of all other de-
positors’ run, an individual household will be better off to follow the run. When financial
conditions are strong, the economy fluctuates around a standard equilibrium. In contrast,
when the financial system is weak (i.e., at the edge of the bank-run regime), even a small
shock can push the economy into a self-fulfilling bank-run equilibrium. Combined with a

sunspot shock, this triggers a financial panic and a deep recession.

Model Solution The model is highly non-linear, and the non-linear effects of structural
shocks to the real economy depend on financial conditions. To allow for these non-linear
transition dynamics, the model is solved non-linearly using the collocation method with
policy functions solved by time iteration. We follow the original paper in focusing on a
capital quality shock as a representative structural shock. However, other shocks would give
rise to qualitatively very similar results because the mechanism creating asymmetry is not

specifically tied to one structural shock.

Parameterization We simulate the model using the original calibration of the deep param-
eters and of the capital quality shock process (the only fundamental shock in the model). In

order to generate rare financial crisis, we calibrate the process for the sunspot shock such that

14 The full model consists of 40 equations which we do not include here for the sake of brevity.
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a bank run equilibrium arises after a big negative shock (above two standard deviations).'”

Simulation We simulate this model 1000 times for 408 periods (the number of periods
between January 1986 and December 2019) and store the level of GDP, the credit spread,
and the capital quality shock. In our analysis, we treat the credit spread as the equivalent of
the financial factor though results are robust to the use of alternative measures of financial
conditions in the model. The simulated data shown in the top panel of Figure 9 indicate that
also in this model there is a non-linear relationship between growth and financial conditions.

Indeed, large credit spreads are associated with extremely negative growth realizations.
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Note: Example from one simulation. GDP Growth (left axis) and Credit Spread (right axis).

Figure 9: Simulated Data from Gertler, Kiyotaki and Prestipino (2019) Model.

Quantile Regression We focus on current (period-over-period) GDP growth as the shocks
are transitory and only create a sharp but short-lived recession.'® Further, we only consider
the credit spread as conditioning variable since the non-linearity in the model is mainly

coming from financial conditions. As shown in Table 2, the quantile regression picks up the

150ur calibration intends to make the bank run event (see Figure 2 of the original paper) re-occurring in the
simulated sample. In their event study, the authors feed in two consecutive negative capital quality shocks
of roughly one standard deviation to push the economy to the edge of the bank-run regime. A third shock,
together with a sun-spot shock, then produce the bank run event. We deviate slightly from their event
study by having sun-spot shocks occurring concurrently with a negative two standard deviations capital
quality shocks to ensure the probability of a bank run of 2.5% across simulated samples.

I6Notice that even though the distribution is for current GDP growth, this exercise is still relevant for the
characterization of risks to the growth outlook from a forecasting perspective, as data on credit spreads is
available at a higher frequency than GDP growth data in the US.
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nonlinear relationship between financial conditions and economic growth, suggesting that

financial conditions have a more negative effect on the left tail than on the median.

Table 2: Quantile Regression Coefficients Estimated on Simulated Data from
Gertler, Kiyotaki and Prestipino (2019) Model.

Variable 10th Quantile Median 90th Quantile
Intercept -0.94 0.91 2.55
Credit Spread -2.64 -1.32 0.45

*
Note: Average Across Simulations.

Thus, also in this example, the left tail of the distribution falls substantially during times
of extreme financial distress, characterizing a vulnerable growth outlook. This becomes

evident in Figure 10 which plots the resulting quantiles of GDP growth.
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Figure 10: GDP Growth Quantiles from Gertler, Kiyotaki and Prestipino (2019).

Impulse Responses Figure 11 presents the impulse responses of the quantiles to the
(contractionary) capital quality shock, computed as in our empirical exercise. Also in this
example, we normalize the responses such that, on impact, the median drops by 25 basis
points. We again find that the shock pushes down the left tail more strongly than other
parts of the distribution, as in our empirical findings. Indeed, while the shock enters the
model linearly, as in the previous exercise, its relationship to GDP growth is nonlinear as it

affects the financial variables that transmit and amplify the disturbance nonlinearly.
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Figure 11: Impulse Responses of Quantiles of Simulated GDP Growth to a Cap-
ital Quality Shock from Gertler, Kiyotaki and Prestipino (2019) Model.

Note: Straight lines are medians across simulations. Shaded areas are 68% confidence bands.

Crucially, we now ask how the key variable through which shocks have a nonlinear effect
on GDP growth in the model, namely credit spreads, responds to the capital quality shock.
In Figure 12, an adverse capital quality shock pushes up the upper quantile of credit spreads
disproportionately more. This replicates a key finding from our empirical exercise and a key
pattern of the threshold VAR model which we considered previously: That is, adverse shocks

put GDP growth more at risk by making financial conditions more vulnerable.
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Figure 12: Impulse Responses of Quantiles of Simulated Credit Spread to a
Capital Quality Shock from Gertler, Kiyotaki and Prestipino (2019) Model.

Note: Straight lines are medians across simulations. Shaded areas are 68% confidence bands.
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5 Conclusion

This paper studies tail risk in U.S. aggregate outcomes. In particular, we study how macroe-
conomic shocks affect tail risk. All shocks considered (monetary policy and financial shocks)
affect tail risk disproportionately more than other quantiles (on average the response of the
10th percentile over the first year after impact is around 3 times larger than the median).
Contractionary shocks thus deserve even more attention than what their effect on average
outcomes suggests to the extent that they make poor economic conditions more likely. Our
results suggest that policymakers should be especially weary of unexpected adverse changes
in the economy.

The fact that all shocks we study display this tail risk asymmetry points to a common
mechanism lying behind these asymmetries. Indeed, the two data-generating processes we
use as laboratories to test this hypothesis can replicate our findings: In the first experiment,
a threshold VAR model, a common mechanism (which could be thought of as a financial
accelerator mechanism in a more structural model) amplifies the negative effect on economic
growth of a deterioration in financial and macroeconomic conditions. Guided by insights
from this model, we show also empirically that adverse shocks disproportionately increase
financial stress and macroeconomic strain in bad times. In the second, a macroeconomic
model with financial panics, the bank-run equilibrium features nonlinearities that magnify
the effects of a financial panic on economic activity. In that sense, we find that nonlinear
models are promising for modeling and studying macroeconomic risk.

In providing a conceptual framework to think about the sources of macroeconomic risk,
our paper provides insights on how to replicate growth-at-risk patterns in theoretical models

with a particular focus on impulse responses to structural shocks.
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A Some Intuition for Impulse Responses of Quantiles

This section gives three examples where an initial distribution of a variable changes after
a shock hits. We show these examples to illustrate how a change in quantiles is linked to
changes in the distribution as a whole and how changes in specific moments translate into
changes in quantiles.'” Our scenario is as follows: After an initial distribution of a scalar
variable is hit by a shock, we trace out how this distribution changes on impact and in the

period after impact. We consider three experiments:
1. The shock leads to an increase in the variance of our distribution, which is Gaussian.
2. The shock leads to an increase in the mean of our distribution, which is Gaussian.

3. The shock leads to a change in both the mean and variance of our distribution, which

is Gaussian.

Figure A-1 plots three panels for each experiment. The first panel in each row shows the
initial distribution, the distribution when the shock hits, and the distribution in the period
after the shock has materialized. The middle panel in each row shows the evolution of the
10th and 90th percentile for those three periods. The last panel in each row gives the impulse
responses for the 10th and 90th percentiles under the assumption that if the shock that moved
the distributions had not materialized, the distribution would have remained at its original
position.'® As the impulse response plots the difference between the relevant percentiles and
the original values, the impulse response figures only show values for two time periods (the
period when the shock hits and the period after). Each row presents the figures for one
experiment. Note that the levels of the percentiles are not directly interpretable as IRFs
because we do not subtract the baseline value from the quantiles in those figures. As we can
see, an increase in the variance of a symmetric distribution makes the quantiles drift apart
in a mirror-image fashion, whereas a change in the mean of a symmetric distribution makes
the quantiles move in parallel, which in turn makes the impulse responses lie on top of each
other. With a non-symmetric distribution (or if a shock makes a distribution non-symmetric)
the quantiles can drift apart, but not necessarily in a mirror-image fashion, as highlighted in

the third example.

1TThese examples are not meant to be exhaustive. There can be many other changes in distributions that
lead to similar movements in quantiles to those displayed in this section.

18For our purposes, impulse responses are defined as the difference between two conditional expectations,
where one of the expectations conditions on a specific value for one shock in one specific period.
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Figure A-1: Illustration of Changes in Percentiles.

Interpreting changes in multiple quantiles jointly can be challenging because we have to
envision how the entire distribution changes. As an example, let us focus on the third ex-
periment. As can be seen from the last panel on the bottom row of Figure A-1, the 10th
and 90th percentile drift apart because the 90th percentile increases slightly, whereas the
10th percentile decreases substantially. Thus the distribution spreads out as a result of the
shock—this can also be seen by looking at the leftmost panel of the bottom row, where the
yellow distribution is more spread out than the original blue distribution. Let us for a second
imagine that this impulse response is the response to a contractionary shock and that quan-
tiles react linearly to those shocks (as will be the case in our local projections). Such shocks
would not only move mean and median of the distribution (this can be seen from looking
directly at the Gaussian distributions in the bottom left panel, where the mean/median of
the Gaussian distribution moves from 5 to 3), but it actually moves the 10th percentile sub-
stantially more, thus not only making average outcomes worse, but making outcomes in the
left tail much more likely. This is the relevant case in our emprical results.

Another scenario that could occur is that the impulse responses of various quantiles cross.
It is important to emphasize that this does not mean that the quantiles themselves cross.

In fact, a crossing of impulse responses of various quantiles can just mean that one quantile
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reverts back to its pre-shock value faster than another.

Our responses capture the difference between the expected path of the 7th quantile at horizon
h after a given shock of specific (one standard deviation) size occurs and the expected path
of the 7th quantile conditioning on such a specific shock value. That is, a response equal to
0 at horizon h means that the expected 7th quantile at horizon h is the same independently

of whether we condition on a specific shock value in the initial period.

Next, we show an example where the impulse responses of the quantiles cross. By construc-
tion, however, the quantiles themselves cannot cross because we directly model changes in
the entire distribution. The example is similar to the first example from the main text, but
we change the sequence of variances for the Gaussian distribution to achieve the crossing of

the impulse responses of the 10th and 90th percentiles.

08 Changesin the Distribution
- T

T I
Initial
Iy
06— Period after Impact |—

04— -

02—

Quantiles

10th Percentile
90th Percentile

IRF of Quantiles

10th Percentile
90th Percentile |—

Figure A-2: Example Where Impulse Responses Cross But Quantiles Don’t.
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B Data

This section gives a brief overview of the data we use throughout this paper.

B.1 Growth-at-Risk Data

The data for the quantile regression com from Caldara, Cascaldi-Garcia, Cuba Borda and
Loria (2020). The dependent variable is monthly GDP growth, shown in Figure B-1 whereas
the conditioning variables are a financial and a macroeconomic factor, displayed in Figure
B-2. These three variables are estimated from a Dynamic Factor Model (DFM). The reader is
referred to the original paper for the details on the DFM model and its estimation procedure.

The following set of data inform the two factors used as conditioning variables in the

quantile regression:
1. Financial factor

e Volatility index of the S&P 100 (VXO)
e Excess bond premium
e 3-month LIBOR rate minus 3-month Treasury bill

e 3-month financial commercial paper rate minus 3-month Treasury bill.
2. Macroeconomic factor

e Industrial Production

Retail Sales

New Export Orders Component of Purchasing Managers’ Index (PMI)

Initial Unemployment Claims

e GDP
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Figure B-2: Conditioning Variables in the Quantile Regressions.
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B.2 Local Projection Variables

Most control variables used in the local projection stage are available in FRED. The source

data for the control variables are:

e Consumer Price Index for all Urban Consumers: All Items.
FRED Mnemonic: CPIAUCSL.

e Federal funds rate. FRED Mnemonic: FEDFUNDS.

e Excess bond premium. Source: Favara, Gilchrist, Lewis and Zakrajsek (2016)1,

e Real GDP. Percent Change from Preceding Period, Seasonally Adjusted Annual Rate.
FRED Mnemonic: A191RL1Q225SBEA.

e Chicago Fed National Financial Conditions Index. FRED Mnemonic: NFCI.
e Industrial production. FRED Mnemonic: INDPRO.
e One-year government bond rate. FRED Mnemonic: GSI1.

As to the shocks used in the robustness exercises, the Romer and Romer (2004) monetary
shock is provided by Ramey (2016). We aggregate the monthly shock series to quarterly
frequency by taking the quarterly average. We take the narrative monetary policy shock
provided by Antolin-Diaz and Rubio-Ramirez (2018), again aggregated to quarterly frequency

by calculating the quarterly average.

19The series can be downloaded at https://www.federalreserve.gov/econresdata/notes/feds-notes/
2016/updating-the-recession-risk-and-the-excess-bond-premium-20161006.html.
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C Bootstrap Procedure for Two-Step Approach

This section gives a brief overview of the bootstrap procedure used to obtain the confidence
bands. The procedure is designed to capture the uncertainty involved both with the quantile

regression and with the local projection step of our estimation approach.

Quantile Regression Step The first step of the bootstrap procedure involves quantifying
the uncertainty around the quantile regression estimates. To do so, we use a “blocks-of-
blocks” bootstrap.

For a total number of K =100 bootstrap replications, blocks of data are randomly drawn
to form a new sample of the same size as the original data. Importantly, the blocks are
resampled in the same order for both the dependent variable y and the regressors X, a key
step which preserves the time-dependency in the data.

We pass on to the local projection stage, the time series of estimated quantiles associated
with each of these resampled data sets. The local projection coefficient éﬁ then captures
the effect of the shock on the quantile 7 at horizon s, for each bootstrap replication k. The
procedure is asymptotically valid for stationary processes if the block size [ increases at a
suitable rate as T — co. We set m = /T, where T is the sample size. Finally, this bootstrap
procedure preserves the quantile regression feature of being agnostic about the underlying

distribution of the error terms, as this is not a residual-based approach.

Local Projection Step At each horizon s, 100 bootstrap replications of the local projec-
tion estimates are obtained by drawing the impulse response coefficients from their asymptotic
distribution. This distribution is known and given by 6% ~ N (éﬁ,ii), where éﬁ is the esti-
mated coefficient and X7 is the estimated variance-covariance matrix of the local projection
residuals uf, ;, estimated by Newey and West (1987) with lag order s —1 due to the serial
correlation in the error term induced by the successive leading of the dependent variable in

the s-step ahead direct forecasting regression.

Combining the Uncertainty We merge the two distributions of the impulse response
coefficient éf_k into one distribution. 68 percent confidence intervals are constructed by
looking at the 16th and 84th percentile of that distribution. These intervals are then centered

around the point estimate éf. obtained with the original sample.
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D Gertler and Karadi (2015) Monetary Policy Shocks

We construct the monetary policy shocks implied by the proxy VAR used in Gertler and
Karadi (2015) using the following procedure.

First, we update the data used in the Gertler and Karadi (2015) baseline VAR. They use
monthly data from 1979M7 to 2012M6. We update all time-series to 2019M12. The VAR
includes (the log of) industrial production, (the log of) the consumer price index, the one-year
government bond rate, and the excess bond premium. As instrument for the monetary policy
shock in the VAR we use our updated Miranda-Agrippino and Ricco (2020) shocks series.

Then, we estimate the proxy VAR and compute the implied structural monetary policy
shocks, see the appendix of Mertens and Ravn (2013) for details. The identification of
monetary policy shocks is achieved by relying on the correlation between the reduced form
residuals of the one-year government bond rate and the instrument and that the later is

orthogonal to other structural shocks.

E Robustness

One-Step Approach We report the results from the one-step approach to compute the
impulse responses of the one-year-ahead GDP growth distribution in Figures E-1 and E-
2 for the monetary policy shock and credit spread shock, respectively. In this one-step

specification, we run a following one-step quantile local-projection that delivers:

qr (Y;ers) =02 407 shocky+Y(L): controlsy, s={0,...,5} (E-1)

where Y = Ayt+17t+12. For the monetary policy shock, we use twelve lags of the shock as
. /
controls, whereas for the credit spread shock we use one lag of [EBPt, P Ay, it] as

controls to allow for enough observations.

Horizon - Average GDP Growth over the Next Six Months We explore the sensi-
tivity of our results to the choice of a shorter horizon for the growth outlook. In particular,
we replicate our results for the choice of average GDP growth over the next six months as a

dependent variable in the quantile regression. Figure [-3.

Starting the Local Projection for Credit Spread Shocks in 1986 In Figure -4, we

show results for the two-step and one-step approaches in a specification where credit spread
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shocks start in 1986 as the monetary policy shock. We will focus on this specification in

which the two shocks share the same sample for the following robustness exercises.

Starting the Quantile Regression in 1986 For the IRFs in Figure -5 the quantile

regression starts in 1986 as the local projection..

Industrial Production Instead of Monthly GDP In Figure -6 we explore the sensi-
tivity of our baseline results to the choice of the dependent variable. In particular, we replace

monthly GDP growth by the (month-over-month) growth in industrial production.

Pre-Great-Recession Sample Local projection stops in 2007 September/Q3. To allow

for enough observations we do not control for the lags of the shocks. See Figure [-7.

NFCI Instead of the Financial Factor This specification uses the NFCI instead of the

financial factor. See Figure F-8.

NFCI Instead of the Financial Factor with Monetary Policy Shocks Available
from 1973 This specification is the same as the previous, but uses shocks available from
1973 so that also the local projection starts in 1973. For this exercise, we explore two types
of monetary policy shocks. First, we use the Romer and Romer (2004) (RR henceforth)
narrative-based monetary shocks provided by Ramey (2016). They regress the federal funds
target rate on Greenbook forecasts at each FOMC meeting date and use the residuals as the
monetary policy shock. As a second measure, we use the monetary policy shocks identified by
Antolin-Diaz and Rubio-Ramirez (2018) (AR henceforth) who add narrative sign restrictions
to the VAR model in Uhlig (2005). The sample period runs from January 1973 to December
2007 (RR) and to July 2007 (NAR). See Figure E-9.

Quarterly Specification with Shocks Available from 1973 This specification is the
same as the baseline, but at quarterly frequency and thus using official GDP growth from

the national accounts to construct one-year-ahead GDP growth. Here the sample period is
1973Q1 to 2007-Q4 (RR) and 2007-Q3 (AR) and 2019-Q4 (Credit Spread Shocks).”’ See

Figure E-10.

20Both the Romer and Romer (2004) and Antolin-Diaz and Rubio-Ramirez (2018) monetary policy shocks
are aggregated to quarterly frequency by adding up the monthly values within each quarter.
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Monetary Policy Shock (Two Steps) Monetary Policy Shock (One Step)
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Figure E-1: Impulse Responses of Quantiles of Average GDP Growth over the
Next Twelve Months to Contractionary Monetary Policy Shocks. Two-Step and
One-Step Approach.

Note: Red (dashed) is response of the 10th quantile, black (solid) is the median response, blue (dotted) is
response of the 90th quantile. Confidence bands correspond to median response, 68% significance level, based
on block-of-blocks bootstrapped standard errors. For the interquantile ranges of the one-step approach, the
bands are obtained by summing the uncertainty of the quantile-pair considered (since we do not have an
estimate for the covariance) and are thus on the conservative end. The x-axis gives the horizon of the impulse
response, in months. The response on the y-axis is measured in percentage points.
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Credit Spread Shock (Two Steps) Credit Spread Shock (One Step)
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Figure E-2: Impulse Responses of Quantiles of Average GDP Growth over the
Next Twelve Months to Contractionary Credit Spread Shocks. Two-Step and
One-Step Approach.

Note: Red (dashed) is response of the 10th quantile, black (solid) is the median response, blue (dotted) is
response of the 90th quantile. Confidence bands correspond to median response, 68% significance level, based
on block-of-blocks bootstrapped standard errors. For the interquantile ranges of the one-step approach, the
bands are obtained by summing the uncertainty of the quantile-pair considered (since we do not have an
estimate for the covariance) and are thus on the conservative end. The x-axis gives the horizon of the impulse
response, in months. The response on the y-axis is measured in percentage points.
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Monetary Policy Shock Credit Spread Shock
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Figure E-3: Impulse Responses of Quantiles of Average GDP Growth over the
Next Six Months to Contractionary Shocks.

Note: Red (dashed) is response of the 10th quantile, black (solid) is the median response, blue (dotted)
is response of the 90th quantile. Confidence bands correspond to median response, 68% significance level,

based on Newey-West and block-of-blocks bootstrapped standard errors. The x-axis gives the horizon of the
impulse response, in months. The response on the y-axis is measured in percentage points.
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Credit Spread Shock (Two Steps) Credit Spread Shock (One Step)
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Figure E-4: Impulse Responses of Quantiles of Average GDP Growth over the
Next Twelve Months to Contractionary Shocks. Local Projection for Credit
Spread Shock Starts in 1986. Two-Step and One-Step Approach.

Note: Red (dashed) is response of the 10th quantile, black (solid) is the median response, blue (dotted)
is response of the 90th quantile. Confidence bands correspond to median response, 68% significance level,

based on Newey-West and block-of-blocks bootstrapped standard errors. The x-axis gives the horizon of the
impulse response, in months. The response on the y-axis is measured in percentage points.
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Monetary Policy Shock Credit Spread Shock
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Figure E-5: Impulse Responses of Quantiles of Average GDP Growth over the
Next Twelve Months to Contractionary Shocks. Estimation of Quantile Regres-
sion Starts in 1986.

Note: Red (dashed) is response of the 10th quantile, black (solid) is the median response, blue (dotted)
is response of the 90th quantile. Confidence bands correspond to median response, 68% significance level,

based on Newey-West and block-of-blocks bootstrapped standard errors. The x-axis gives the horizon of the
impulse response, in months. The response on the y-axis is measured in percentage points.
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Monetary Policy Shock Credit Spread Shock
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Figure E-6: Impulse Responses of Quantiles of Average Industrial Production
Growth over the Next Year to Contractionary Shocks. Specification using In-
dustrial Production Instead of Monthly GDP as Dependent Variable.

Note: Red (dashed) is response of the 10th quantile, black (solid) is the median response, blue (dotted)
is response of the 90th quantile. Confidence bands correspond to median response, 68% significance level,

based on Newey-West and block-of-blocks bootstrapped standard errors. The x-axis gives the horizon of the
impulse response, in months. The response on the y-axis is measured in percentage points.

42



Monetary Policy Shock Credit Spread Shock
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Figure E-7: Impulse Responses of Quantiles of Average GDP Growth over the
Next Year to Contractionary Shocks. Sample Stopping Before Great Recession.
Note: Red (dashed) is response of the 10th quantile, black (solid) is the median response, blue (dotted)
is response of the 90th quantile. Confidence bands correspond to median response, 68% significance level,

based on Newey-West and block-of-blocks bootstrapped standard errors. The x-axis gives the horizon of the
impulse response, in months. The response on the y-axis is measured in percentage points.
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Monetary Policy Shock Credit Spread Shock
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Figure E-8: Impulse Responses of Quantiles of Average GDP Growth over the
Next Year to Contractionary Shocks. Specification with NFCI Instead of Finan-
cial Factor.

Note: Red (dashed) is response of the 10th quantile, black (solid) is the median response, blue (dotted)
is response of the 90th quantile. Confidence bands correspond to median response, 68% significance level,

based on Newey-West and block-of-blocks bootstrapped standard errors. The x-axis gives the horizon of the
impulse response, in months. The response on the y-axis is measured in percentage points.

44



Monetary Policy Shock (RR)

IRF of Quantiles

Percentage Points
o

2 ‘ s ‘

0 10 20 30

40

Percentage Points

20

10

-10

-20

Monetary Policy Shock (ADRR)

IRF of Quantiles

0 10 20 30 40

——10th Quantile ——Median ——90th Quantile

IRF of Interquantile Ranges

Percentage Points
<)
wt =] ¢

40

Percentage Points

IRF of Interquantile Ranges

-

0 10 20 30 40

——10th-50th Quantile ——50th-90th Quantile

Figure E-9: Impulse Responses of Quantiles of Average GDP Growth over the
Next Year to Contractionary Shocks. Specification with NFCI Instead of Finan-
cial Factor with Monetary Policy Shocks Available from 1973.

Note: Red (dashed) is response of the 10th quantile, black (solid) is the median response, blue (dotted)
is response of the 90th quantile. Confidence bands correspond to median response, 68% significance level,
based on Newey-West and block-of-blocks bootstrapped standard errors. The x-axis gives the horizon of the

impulse response, in months. The response on the y-axis is measured in percentage points.
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Figure E-10: Impulse Responses of Quantiles of Average GDP Growth over the
Next Year to Contractionary Shocks. Quarterly Specification (with BEA GDP
Growth) with Shocks Starting in 1973:Q1.

Note: Red (dashed) is response of the 10th quantile, black (solid) is the median response, blue (dotted)
is response of the 90th quantile. Confidence bands correspond to median response, 68% significance level,
based on Newey-West and block-of-blocks bootstrapped standard errors. The x-axis gives the horizon of the
impulse response, in months. The response on the y-axis is measured in percentage points.
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F Details on Threshold VAR Model

In this section, we provide details on the parameter values of the models presented in Sub-

section 4.1.

Parameterization The parameters f* and m* are chosen such that, on average, the con-
straint binds in 10% of the sample (on average, across simulations), which is about the
percentage of NBER-dated recessions over the January 1973 to May 2020 sample. 1 = —0.5
and [ = 0.5. Negative values for $; mean that an increase in f; is associated with a tighten-
ing in financial conditions, which depresses growth. Conversely, positive values for 5o mean
that an increase in my is associated with an improvement in macroeconomic activity, which
fosters growth.

We assume [y =1, a1 = 1 = 0.8 for equal persistence of f; and m;, and ag = vy9 = —0.5
as the financial and macroeconomic factor are negatively related, a3 =1 and 73 = —1 as a
positive (contractionary) shock increases the financial factor (tightens financial conditions)
and decreases the macroeconomic factor (weakens economic activity).

As to the switching parameters, in model I we assume the following:

5, if fr > f* & my <m* =5, if fi > f* & my <m*
as(fe,me) = ;o 3 fr,mu) =
1, normal state —1, mnormal state

In the symmetric model a3 and 3 take on the values of the normal state.
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